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We show how to speed up global optimization of molecular structures using machine learning methods.
To represent the molecular structures we introduce the auto-bag feature vector that combines: i) a local
feature vector for each atom, ii) an unsupervised clustering of such feature vectors for many atoms across
several structures, and iii) a count for a given structure of how many times each cluster is represented.
During subsequent global optimization searches, accumulated structure-energy relations of relaxed structural
candidates are used to assign local energies to each atom using supervised learning. Specifically, the local
energies follow from assigning energies to each cluster of local feature vectors and demanding the sum of local
energies to amount to the structural energies in the least squares sense. The usefulness of the method is
demonstrated in basin hopping searches for 19-atom structures described by single- or double-well Lennard-
Jones type potentials and for 24 atom carbon structures described by density functional theory (DFT). In all
cases, utilizing the local energy information derived on-the-fly enhances the rate at which the global minimum
energy structure is found.

I. INTRODUCTION

The field of atomic-scale structure search is crucial in
a wide span of disciplines ranging from catalysis over ma-
terial science to molecular biology. For an efficient search
for the structural global minimum in an energy landscape
of many dimensions it requires optimization techniques of
global character. Such methods include random search1,
basin hopping (BH)2, and evolutionary algorithms3–11.
Common for these methods are that they facilitate an
increased exploration of configuration space compared to
e.g. molecular dynamics driven searches, that excel on
the exploitational search in already identified funnels of
the energy landscape.

First principles methods, that take no input from ex-
periment and involve no empirical parameters, are the
methods of choice for atomic-scale structure search. No-
tably, density functional theory (DFT) is being used
for structure optimization, as it has proven highly ac-
curate in reproducing observed structures, rationalizing
experimental observations where the underlying struc-
tures were elusive12,13, and in some cases even predict-
ing new structures14. The high accuracy of DFT builds
on solving the quantum mechanical problem of single-
particle Hamiltonians for electrons in effective poten-
tials and on representing the electrons through a self-
consistently found all-electron spatial density. These el-
ements of DFT must be attended for each energy and
force evaluation during structural searches and make the
computational method highly demanding.

Recently, machine learning (ML) procedures have been
introduced to map the atomic interactions from the elab-
orate DFT framework to predefined functional expres-

a)Electronic mail: hammer@phys.au.dk.

sions such as force fields15, or to general fitting frame-
works such as linear regression16, neural networks17–23

and kernel based regression24–29.

These ML-based methods demonstrate tremendous
speed-ups for predicting DFT energies and forces at only
moderate loss of accuracy. This has been utilized in
global optimization by consulting the ML-model instead
of expensive DFT or higher order calculations allowing
for searching at a fraction of the original cost. Further-
more, protocols have been established in which the accu-
racy of the ML-model is monitored while the ML-based
potentials are being used in order to capture failure and
re-adjust the ML models30–33. The use of ML has thus
greatly reduced the computational cost of exploring con-
figurational space allowing for more efficient structure
searches.

Another benefit is that with the introduction of ML
methods, a local energy concept often emerges17,20,26,34,
which is not present in DFT unless extra measures are
taken35. A local energy concept is useful in the context of
structure optimization as it opens for directing the struc-
tural search more efficiently by focusing on improving the
high energy regions of structures while preserving struc-
tural arrangements in low energy regions. This has been
shown in previous work employing predefined descriptors
and an evolutionary algorithm36,37.

In the present work, we add to the current develop-
ments in the use of ML methods in chemical physics by
introducing a simple means of representing atomic struc-
tures with the auto-bag feature vector and by formulating
a simple regression framework, that enables the extrac-
tion of average local atomic energies based on grouping
local environments. The method is demonstrated to work
with very little input data at the DFT level, which po-
tentially makes it interesting when probing new systems,
where DFT data is scarce. Local energies are then used
to direct the search towards perturbing unstable regions
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of the structure.
The paper starts by describing the method in the con-

text of a BH-enabled structural search for the optimum
2D structure using only classical Lennard-Jones (LJ) po-
tentials for the atomic interactions. The BH method
and the LJ potentials are sufficiently simple, that stu-
dents and researchers with no prior training in the field
may readily code these elements and reproduce the pre-
sented results. Also, the use of the LJ potentials has the
added benefit that the ML-enabled local energies can be
directly compared to the true LJ-based local energies,
which would not be possible in a DFT-framework. The
paper proceeds with a demonstration of the applicabil-
ity of method when used in conjunction with DFT in a
search for the optimum 2D-cluster shape of a 24 carbon
atom structure.

II. METHOD

A. Representation

When ML methods are introduced, the first concern is
a proper representation of the data on which the learn-
ing is made. Representation is highly domain specific.
In text processing, the bag-of-words vector, that counts
the occurrence of known words and neglects grammar
and word order, is often used to map an entire text to a
simple vector of integers. Likewise, performing customer
segmentation in a retail or web shop, a customer (as iden-
tified by a credit card or a login) may be represented by
his or her historical spending in various predefined prod-
uct categories in what we may dub a bag-of-spendings
vector.

In the chemical physics domain, structures are nat-
urally described by a list of atomic identities and cor-
responding cartesian coordinates, and – for space filling
matter – by the super cell vectors. However, such a repre-
sentation is not adequate for ML38, since it is not invari-
ant to translations, rotations, or permutation of identical
atoms – operations that do otherwise leave the physical
properties of the compounds unchanged.

Several representations have been proposed that deal
with this deficit. One of the simplest such represen-
tations is one in which all interatomic separations are
evaluated, sorted in ascending order, and kept in ”bags”
of AA, AB, BB, . . . bond-type, where A, B, . . . are
the atomic identities. The resulting bag-of-bonds vec-
tor thus represents the entire structure39. Several other
global descriptors have been proposed, including the
fingerprint feature vector40 and the coulomb matrix
representation24,41. Presently, much work in the field re-
lies on local feature vectors such as the Behler-Parrinello
symmetry functions17, smooth overlap of atomic posi-
tions (SOAP)42 and others34,43,44. These feature vectors
describe the local environment of each atom in a given
structure and represent entire structures by the collection
of such atomic feature vectors.

To keep the complexity of the method introduced in
this work at a minimum and to construct a method that
requires only little data to provide useful predictions, we
propose the auto-bag feature vector representation, which
will be detailed in the following. The method has two ele-
ments, (i) the automated identification of bags of atomic
environments, and (ii) the representation of a structure
as the count of the occurrence of those environments in
that given structure.

Fig. 1 presents the build-up of the auto-bag feature
vector. Its starts by evaluating atomic feature vectors for
each atom in a collection of structures. Next, the feature
vectors are grouped in ”bags”, and finally for each struc-
ture the abundance of group members may be counted
and collected as a vector of integers. The groups act
as the classification in line with the ”known words”, the
”predefined product categories”, and the ”AA, AB, and
BB bond-types” in the bag-of-words, bag-of-spendings,
and bag-of-bonds methods discussed above. However, by
using a ML technique, clustering, to identify the groups,
they need not be predefined, and hence the naming: the
auto-bag feature vector.

In Fig. 1, the local feature vector describing each
atomic environment is considered two-dimensional for il-
lustration purposes, but it may in fact be chosen as sim-
ple as a single number, e.g.:

fi(r1, . . . , rN ) = fαi (1)

where N is the number of atoms and fαi is a function
describing the local density around atom i within some
cutoff distance (α being a label). A simple example of
such a local feature is the radial symmetry function as
given by Eq. (A1) in the appendix. However, a radial
symmetry function will not uniquely define the local en-
vironment. It will for instance not be able to differentiate
between configurations with two atoms located a distance
r from atom i but with different bond angles. To encap-
sulate angular information the local feature vector can
be expanded to

fi(r1, . . . , rN ) =

[
fαi
fβi

]
(2)

where fβi is an angular symmetry function given by
Eq. (A2) in the appendix (β being a label). For an even
more detailed description of the local environment sev-
eral radial and angular symmetry functions can be used
to yield a higher dimensional local feature vector as de-
scribed in the appendix.

The grouping of local feature vectors illustrated in the
middle of Fig. 1 must be done using an unbiased method
in order for the method to work autonomously. This
is possible using unsupervised ML techniques known as
clustering methods. A clustering method acts to identify
relations and propose a categorization of data without
prior definition of the categories – hence the adjective
”unsupervised”. Many clustering schemes have been pro-
posed and some have even been demonstrated to enable
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FIG. 1. Schematic illustration of the method for extracting the auto-bag feature vector. From left to right: structures with
atoms (grey disks) in various local environments. Atomic feature vectors (grey hexagons) are extracted. The feature vectors
for all structures are clustered (colored hexagons). Each structure may subsequently be illustrated either in feature space
(structure-wise plots of colored hexagons) or in real space (colored disks). By counting the abundance of members of each
cluster in a given structure, I, the auto-bag feature vector, FI , is obtained.

speed-up of structural search45,46. In the present context,
we have found the simple clustering method, the K-means
algorithm47, sufficient to fulfill the needs of establishing
the auto-bag feature vector. K-means takes the num-
ber of desired clusters as input and is non-deterministic
in that its random initialization may cause new results
in repeated uses on the same data. This property is
not a problem in connection with structure optimization
where a certain level of stochastic behavior may even
be desirable46. To stabilize the method using K-means,
we did, however, use the K-means++ initialization48 to
achieve a reasonable local optimum and prevent empty
clusters.

Once the clustering is done, a structure will be de-
scribed by a global feature vector:

F(f1, . . . , fN ) = [n1, . . . , nc, . . . , nC ], (3)

where nc is the number of atoms in cluster c with C
clusters in total. The global feature vector respects in-
variance to permutation of identical atoms, and inherits
translational and rotational symmetry from the local fea-
ture vectors.

B. Local energies

We now propose to parameterize the system energy as

E(r1, . . . , rN ) =

N∑
i=1

ε(fi) ≈
N∑
i=1

εc(i) =

C∑
c=1

ncεc, (4)

where ε(fi) is the local energy of atom i as defined by its
local feature vector, εc is a common local energy assigned

to all members of cluster c, and c(i) is the cluster index
for atom i. We note that writing the total energy of a
structure as a sum of local energies is an approximation.
By bundling the local energies, i.e. forcing them to be
identical for all members of a given cluster, the approx-
imation becomes even more severe. However, choosing
such bundled cluster-wise local energies means that the
method has fewer free parameters and that extraction of
meaningful energies can be done with the simple method
that follows below.

Introducing an index, I, that enumerates the struc-
tures we have the relation:

EI =

C∑
c=1

nIcεc (5)

defining the unknown local energies εc as a func-
tion of the global feature-energy relations, (FI , EI) =
([nI1, . . . , nIc, . . . , nIC ], EI). By observing multiple
structures, a matrix problem emerges:n11 . . . n1C

...
. . .

...
nS1 . . . nSC


ε1...
εC

 =

E1

...
ES

 , (6)

where nIc is number of atoms in cluster c, for structure
I, with a total of S structures observed. Eq. (6) can be
restated as

Xε = E, (7)

which ordinary least squares estimate the solution to by
minimizing

E = ||Xε−E||2, (8)
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FIG. 2. Illustration of the basin hopping framework.

i.e. the sum of squared residuals. Eq. (8) is minimized
by

ε = (XTX)−1XTE. (9)

However, depending on the rank of X, XTX can po-
tentially be singular. To overcome this problem ridge
regression is used by altering Eq. (8) to

E = ||Xε−E||2 + λ||ε||2, (10)

where λ is a positive parameter chosen by the user.
Eq. (10) is minimized by

ε = (XTX + λI)−1XTE, (11)

where I is the identity matrix. Eq. (11) always exists
and has the added benefit of preventing overfitting by
regularization on the free parameters ε.

C. Optimization

To demonstrate the applicability of the auto-bag fea-
ture and the local energies we will derive and use these
during global optimization runs. Fig. 2 illustrates the
layout of a BH search for the global minimum energy
structure of a set of atoms.

First, a random structure is initiated and relaxed into
the nearest local minimum energy structure according to
the atomic forces. Next, the structure undergoes some
perturbative modification. Many strategies may exist for
this step. In the present context we have chosen a simple

procedure that we shall refer to as the fireworks pertur-
bation. With this procedure, a random number, Nat, of
atoms are repositioned uniformly within a disk centered
at the center of mass of the structure (Fig. 2, black ring).
The radius of the disk is a parameter analogous to the
rattle distance in a rattle mutation. Nat follows the nor-
malized geometric series:

P (x) =

(
1

2

)x/ N∑
x=1

(
1

2

)x
, (12)

where N is the total number of atoms. With Eq. (12),
P (1) ≈ 1

2 , P (2) ≈ 1
4 , . . . , meaning that with about 50%

likelihood only one atom is repositioned, with about 25%
likelihood two atoms are repositioned, and so on. When
the optimization is run without use of the local energies,
the atoms are chosen randomly. However, when the lo-
cal energies are exploited, the Nat atoms are drawn one
by one with a likelihood that also follows the normalized
geometric series. That is, every time an atom is chosen,
there will be about 50% chance that it is the most unsta-
ble atom not yet chosen, about 25% chance that it is the
second most unstable and so on. A more elaborate ex-
pression could involve a dependence on the cluster energy
and the number of clusters.

Once the structure has undergone the perturbation,
it is relaxed according to the forces and a local min-
imum energy structure is identified. This new struc-
ture replaces the previous structure according to the
Metropolis-Hastings criterion:

A = min {1, exp[β(Ek−1 − Ek)]}, (13)

where A is the probability of acceptance, β = 1/kBT ,
kB is the Boltzmann constant and T is a temperature
parameter. Here Ek is the potential energy of the newly
found structure and Ek−1 is the potential energy of the
previous structure. If the structure is accepted it serves
as the starting point of the next perturbation, otherwise
it is discarded.

III. LENNARD-JONES SYSTEM

As a first demonstration of the method, we consider
a 2D structure of 19 atoms described by the classical
Lennard-Jones (LJ) interaction potential. Using this
simple potential has several benefits, it is easily pro-
grammable meaning that the reader may code it and
reproduce our results. Local energies can be uniquely
assigned to LJ atoms meaning that the approximate ma-
chine learned local energies following our method above
may be benchmarked, and, importantly, calculating the
LJ potential is fast, which allows for fast testing and the
production of converged statistics on the efficiency.

The LJ pair-potential is given by:

V (r) = ε0

[(r0
r

)12
− 2

(r0
r

)6]
. (14)



5

10 30 100 300

Num ber of t raining st ructures

0.05

0.10

0.20

0.40

0.80

M
A

E
 [

0
] 5

10

20

0.00 0.25 0.50 0.75 1.00

Lennard-Jones energy [ 0 ]

0.0

0.2

0.4

0.6

0.8

1.0

R
e

g
re

s
s
io

n
 e

n
e

rg
y

 [
0
]

0123

3

2

1

0 C =  5

0123

3

2

1

0 C =  10

0123

3

2

1

0 C =  20

(a) (b)

FIG. 3. (a): Local energy learning curve for 19 atoms us-
ing varying number of clusters. The curve shows the mean
absolute error (MAE) on the predicted energies of a set of
test structures not available during training. (b): Prediction
of local energies for unseen structures upon training on 300
configurations with 5, 10 or 20 clusters. The color indicates
the density of data points. The three black arrows indicate
atoms with no neighbors.

ε0 sets the energy scale and further turns out to be the
depth of the well in the pair-potential, while r0 sets the
length-scale and coincides with the equilibrium distance
of the LJ dimer. Upon training the model by solving
Eq. (11) for various data sizes and with varying num-
ber of clusters, the error on predicting local energies of
structures not included in the training set is seen in Fig.
3. The cutoff radius is chosen as rc = 2 r0 and a single
radial Behler-Parrinello feature vector, Eq. (A1), with
rs = 0 and η = 0.05 is employed. Only relaxed struc-
tures are used for both training and testing, resulting in
energies ranging from −22 ε0 to −45 ε0. All relaxations
and perturbations where confined to a plane causing the
resulting structures to become strictly 2D.

Figure 3 shows that including more data in the training
generally leads to lower mean absolute errors (MAEs).
However, with only few clusters, C = 5, the possible im-
provement of the MAE stagnates when utilizing around

FIG. 4. (a)-(h): Lennard-Jones structures and feature vec-
tors colored to express the local energies based on ML model
trained on 300 random structures. (i): Success curve for find-
ing the global minimum without machine learning (blue) and
with (red). (j): Lennard-Jones potential.

100 different structures. This behavior is as expected
since restricting the number of local environments will
naturally provide a lower bound on the error if less clus-
ters than unique local environments are used. Applying
more clusters improves the lower bound on the error at
the expense of an increased error for small training sam-
ples due to additional free parameters. Increasing the
number of clusters prevents dissimilar atoms from being
forced into the same cluster and thus leads to a more ac-
curate energy prediction. This is seen in the transition
from 5 to 10 to 20 clusters where atoms not participat-
ing in any chemical bonds (see arrows in Fig. 3) initially
belong to a non-zero-energy cluster, then a zero-energy
cluster with non-zero-energy atoms and finally a zero-
energy cluster with only zero-energy atoms.

A further inspection of the local energies is seen in Fig.
4 where several structures have been colored according to
predicted local energies from the fully trained model with
10 clusters. As the LJ energy correlates with the coordi-
nation of atoms and all atoms are placed approximately
equidistantly to their nearest neighbors it is easily veri-
fied that the order of the local energies is correct for the
global minimum shown show in Fig. 4 (h). In Fig. 4 (f)
an indication of the applicability of local energies is seen
as the only misplaced atom is predicted to be the most
unstable. An inspection of the atom just above the most
unstable atom reveals additional insight into the model
as this atom, despite having four neighbors, is more un-
stable than the other atoms with four neighbors. The
same tendency is observed in Fig. 4 (b) and Fig. 4 (d)
where in all cases the most stable four-neighbor atom
has three or more second-nearest neighbors, whereas the
more unstable atom only has two. For atoms with two
and five neighbors the same effect is observed. Thus, the
ML model is able to correctly order very similar local



6

FIG. 5. (a)-(h): Double-well Lennard-Jones structures and
feature vectors colored to express the local energies based on
a machine learning model trained on 300 random structures.
(i): Success curve for finding the global minimum without
machine learning (blue) and with 1D feature (Eq. (1), red
dashed) and 2D feature (Eq. (2), solid red). (j): Double-well
Lennard-Jones potential.

environments.
Having shown that local energies are possible to learn

it remains to be seen if they can be utilized in a opti-
mization setting. Hence a ML model with 10 clusters is
trained on-the-fly during a BH search and used to pre-
dict the local energies. 10 clusters are chosen based on
optimizing the performance of the search as early as pos-
sible, while also obtaining an acceptable final error. In
each BH step, a number of atoms according to Eq. (12)
are perturbed. The atoms are chosen randomly in the
benchmark run – or dependent on their local energies ac-
cording to the ML model as detailed in the discussion of
Eq. (12). The radius of the disk in the perturbation is
3 r0. Due to the small number of local minima for the
LJ system the search is executed at T = 0K. From re-
peating the search 500 times, the cumulative success is
seen in Fig. 4 (i). We stress that each run starts with
an untrained ML model. Only a minor increase in the
success rate is observed, presumably due to the low com-
plexity of the system. To test this hypothesis the search
is repeated for a double well LJ system:49

V (r) = ε0

[(r0
r

)12
− 2

(r0
r

)6
− exp

(
− (r − 1.7r0)2

2σ2

)]
,

(15)
with σ2 = 0.02 r20. The global minimum is identical to
that of the ordinary LJ potential and the same pertur-
bation as before is used. As the pair-potential has two
minima, more structures may evolve as meta-stable lo-
cal minima in configuration space, and as a consequence,
finding the global minimum becomes a harder ordeal.
As a measure to increase the success rate of finding the
global minimum energy structure, the BH runs were per-
formed at a finite temperature of kBT = 0.1 ε0. Yet,

the search remains a challenge as testified to by Fig. 5
where the benchmark run now takes 500 BH iterations
to find the global minimum with ∼20% likelihood, while
it took about 200 BH iterations to find it with almost
100% certainty with the standard LJ pair-potential.

As the 19-atom structure represents a harder problem
with the double well LJ pair-potential, it becomes eas-
ier to demonstrate the beneficial effects of the ML ap-
proach introduced in this work. The dashed red line of
Fig. 5 shows how greater success is achieved when local
energies are derived based on a one-dimensional feature
vector and exploited in the BH search. However, even
more striking is the success rates achieved when a two-
dimensional feature vector is employed, as shown by the
solid red line in Fig. 5. Now, the ∼20% success level in
finding the global minimum is achieved after a mere 100
BH iterations, representing a five-fold rate increase over
the benchmark run. The two-dimensional feature vector
contains an angular component of the Behler-Parrinello
type with parameters: η = 0.005, λ = 1 and ξ = 1.
Extending the feature vector with an angular compo-
nent clearly outperforms the one-dimensional one. We
attribute this to a richer variety of local environments
being present in the relaxed structures of the double well
potential compared to the standard LJ potential. The
increased performance seen with LJ type potentials mo-
tivates a search using a quantum mechanical energy ex-
pression as with DFT, where the both the energy land-
scape and the local environments can be much more com-
plex.

IV. DENSITY FUNCTIONAL THEORY SYSTEM

Owing to the non-local Hamiltonian of quantum sys-
tems it is uncertain whether useful local energy infor-
mation can be extracted. To investigate this we use
DFT to describe a 3D system of 24 carbon-atoms uti-
lizing a basis of linear combination of atomic orbitals for
computational efficiency as available in the GPAW50,51

code with the Atomic Simulation Environment (ASE)52

package managing the atomic structures and optimiza-
tion. To describe the exchange and correlation effects
the PBE functional53 was chosen. The computational
cell was constructed with no atoms closer than 6 Å to
the non-periodic cell boundaries. The optimization task
is conducted using the auto-bag feature based on 10 clus-
ters. The local feature vector is expanded to 13 dimen-
sions using standard Behler-Parrinello symmetry func-
tions with cutoff radius rc = 2 Å, rs = 0, and default
remaining parameters taken from Ref. [54] (see Table I in
the appendix). The cutoff radius is chosen such that only
nearest neighbors are included. This choice supports the
extraction of the local energies early on in the global min-
imum searches where the datasets are small. Tests with
larger cutoff showed a need for more data to learn useful
local energies. To further prevent stagnation a parallel
tempering scheme55 is employed where four BH searches
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at different temperatures are performed simultaneously.
Every five iterations temperature swaps between simu-
lations with adjacent temperatures (i, j) are attempted
and accepted with probability

A = min {1, exp[(βik − β
j
k)(Eik − E

j
k)]}, (16)

where βik = 1/kBT
i
k and Eik is the potential energy

as before. The subscript refers to the structure at it-
eration k and the superscript is an index on the par-
allel runs. Stagnated structures will then eventually
acquire a higher temperature allowing them to escape
local minima. Temperatures are chosen as kBT =
[0.200 eV, 0.293 eV, 0.425 eV, 0.620 eV], keeping a con-
stant ratio between adjacent temperatures as suggested
in the literature56. The temperatures are chosen to span
both low temperatures allowing for exploitation as well as
high temperatures for efficient exploration. The highest
temperature is chosen to give a 20% chance of accept-
ing a structure 1 eV higher than the current energy, and
the lowest temperature such that almost only lower en-
ergy structures are accepted. In order to evaluate the
efficiency of the local energies a full parallel tempering
minimum search is conducted. In this work we presume
that the D6h structure is the global minimum. To direct
our search towards planar structures the same perturba-
tion as for the two-dimensional LJ system is used but
with a disk of radius 4 Å. While the perturbation ac-
tion was 2D, structural relaxation was done without any
constraints leading to the structure becoming quasi-2D
and occasionally 3D. As a benchmark the same parallel
tempering algorithm is run with atoms to be perturbed
chosen stochastically.

In Fig. 6 a parallel tempering run for C24 structures
with DFT potential energy is illustrated. Structures are
shown at selected iterations, and the swapping action is
shown at one given iteration. The structures and energies
reported show how the highest temperature run remains
agile and keeps exploring new structures through the run,
while the lower temperature runs exploit found structures
and perform refinements (or remain stuck). Eventually,
the run with the second lowest temperature identifies the
presumed global minimum energy structure (D6h with
E ≡ 0.00 eV) and the calculation was stopped. Atoms
are colored according to the ML model energy prediction
at the given time of the search. Since the ML model is
refined on-the-fly, as more training data is accumulated,
it is not possible to compare colors for different itera-
tions, especially not for the initial and earliest iterations.
However, in general it is observed that atoms pointing
out of the structures are drawn in red or reddish colors
meaning that they are the more unstable atoms. This
is for instance seen in the structure prior to the global
minimum. Here the unsaturated carbon atom is shown
to be extremely unstable. In the same structure it is also
observed that one 5-membered ring and the 7-membered
ring contain unstable atoms, whereas 6-membered rings
are shown to be stable. The other 5-membered ring of
that structure is composed of more stable atoms accord-

ing to the modeled local energies. This is an effect of
an atom in this ring binding to the low coordinated high
energy atom (colored dark red) and shows how the auto-
bag feature captures the details in the local environments
of atoms.

The cumulative success for 40 runs is seen in Fig. 7 dis-
playing a convincing boost in the success rate for the ML
enhanced run. Note the improvement in cumulative suc-
cess already in the beginning of the run, demonstrating
the limited amount of data necessary to achieve reason-
able local energies. In order to reach 50% success the
ML enhanced approach required 81 attempts, which is
69 iterations less than the ordinary algorithm that re-
quired 150 iterations. Using the computationally inex-
pensive ML model described in this work thus produced
a speed-up factor of almost two when applied to a full
atomic-scale structural search within a DFT setting.

V. SUMMARY

In this work we have introduced the auto-bag feature
vector that combines a local feature vector for each atom
in a structure, unsupervised machine learning (K-means)
to establish clusters of such local feature vectors, and su-
pervised machine learning (ridge regression) to extract
atomic energies. The method was first demonstrated to
be capable of extracting the local energies for a pair-
wise classical potential of the Lennard-Jones form, where
the local energies are well-defined. Next, these machine
learned local energies were used to speed up the search
for the global minimum energy structure of 19 atoms
described by the standard Lennard-Jones potential or
a more challenging double well Lennard-Jones poten-
tial. Finally, the methodology was applied to a density
functional theory, description of structures of 24 carbon
atoms. Here the local energies might be ill-defined, yet
our results show that the stochastic search for the global
minimum energy structure using the method of paral-
lel tempering may be sped up considerably when per-
turbing in the basin hopping steps preferentially atoms
that are predicted to be more unstable. The elements of
the method are rather simple and both Behler-Parrinello
feature vectors as well as clustering have been shown to
work for multi-component systems46,54. We thus expect
similar behavior for structural searches within chemical
physics in general including multi-component systems,
molecules, nanoparticles, and solids.
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FIG. 6. Initial, intermediate and final structures found by a parallel tempering search with local energies depicted as the model
predicted them on-the-fly. Configurational swaps were made possible for every five basin hopping iterations, but for clarity
only one such swap is shown. Likewise, most basin hopping steps are omitted. The total length of the run was 90 iterations.
DFT based total energies are given relative to the presumed global minimum.
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FIG. 7. Cumulative success rate over 40 independent paral-
lel tempering search runs for C24 described with DFT. The
blue curve represents the benchmark situation, where per-
turbed atoms are picked randomly. The red curve shows the
results when perturbed atoms are picked according to their
machine learned local energies, Eq. (11), using the auto-bag
feature. Stagnation in fullerene type 3D structures more sta-
ble than the D6h 2D structure occurred rarely (2.5% and 5%
for benchmark and machine learning runs, respectively) and
was counted as failure.

Appendix A: Local feature vector

To describe an atomic environment, we use the symme-
try functions proposed by Behler and Parrinello17, which
ensure rotational and translational invariance. The fea-
ture vector of atom i is composed of pairwise- and triple-
atom interactions given as

fαi (r1, . . . , rN ) =
∑
j 6=i

e−η(rij−rs)
2/r2cfc(rij), (A1)

and

fβi (r1, . . . , rN ) = 21−ξ
∑

j,k 6=i(j 6=k)

(1− λ cosφijk)ξ

× e−η(r
2
ij+r

2
ik+r

2
jk)/r

2
cfc(rij)fc(rik)fc(rjk), (A2)

respectively. Here j and k denote the index of other
atoms, rij is the distance between atom i and atom j,
φijk is the valence angle between atom i, j and k, cen-
tered at atom i and η, rs, ξ and λ are parameters. By
using multiple sets of parameters one can achieve a de-
tailed description of the local environment, resulting in
a high-dimensional local feature vector. See Ref. [57] for
more information on choosing the parameters. The inter-
actions are only accounted for within a sphere of radius
rc by the use of the cutoff function

fc(r) =

{
0.5(1 + cosπr/rc), if r ≤ rc
0, if r ≥ rc

(A3)



9

which is a smoothly decaying function approaching zero
at r = rc. For the 13-dimensional feature vector the
parameters can be seen in Table I.

TABLE I. Behler-Parrinello parameters

Radial symmetry functions
η 0.05 2 4 8 20 40 80
rs 0

Angular symmetry functions
ξ 1 2 4
λ 1 -1
η 0.005
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