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Abstract
The goal of the present work is to obtain accurate potential energy surfaces (PES) for high-

dimensional molecular systems with a small number of ab initio calculations in a system-agnostic

way. We use probabilistic modelling based on Gaussian processes (GPs). We illustrate that it is

possible to build an accurate GP model of a 51-dimensional PES based on 5000 randomly distributed

ab initio calculations with a global accuracy of < 0.2 kcal/mol. Our approach uses GP models with

composite kernels designed to enhance the Bayesian information content and represents the global

PES as a sum of a full-dimensional GP and several GP models for molecular fragments of lower

dimensionality. We demonstrate the potency of these algorithms by constructing the global PES

for the protonated imidazole dimer, a molecular system with 19 atoms. We illustrate that GP

models thus constructed can extrapolate the PES from low energies (< 10, 000 cm−1), yielding

a PES at high energies (> 20, 000 cm−1). This opens the prospect for new applications of GPs,

such as mapping out phase transitions by extrapolation or accelerating Bayesian optimization,

for high-dimensional physics and chemistry problems with a restricted number of inputs, i.e. for

high-dimensional problems where obtaining training data is very difficult.
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I. INTRODUCTION

Machine learning (ML) is becoming an increasingly powerful tool for applications in

physics and chemistry research. At the core of these application are models that interpo-

late in multi-dimensional physical spaces. These models can be used as surrogates of the

solutions of physical equations [1–3], for optimal control applications [4], design, automation

and optimization of experiments [5–8] and numerical computations [9–18]. There are several

general approaches to building interpolation models. One is based on parametric models

such as neural networks (NN). Another is probabilistic modelling, which, in most appli-

cations, is based on Gaussian processes (GP) [1]. GPs offer several advantages, including

Bayesian algorithms for enhancing model information content [19–21] and models capable

of extrapolation [22, 23]. The major limitation of GP applications is the numerical difficulty

of training and evaluating GP models. Training a GP model with n training points involves

iterative inversion of an n×n matrix, scaling as O(n3), whereas the numerical evaluation of

a GP model is a product of two vectors of size n, scaling as O(n). Therefore, for applications

to high-dimensional problems, it is necessary either to introduce approximations that reduce

this scaling such as, for example, by data sparsification [24–27] or to construct GP models

in a way that enhances model accuracy without increasing n [20–23]. In the present work,

we focus on the latter approach.

A major thrust of recent research has been to develop efficient ML models for representing

potential energy surfaces (PES) for polyatomic systems with accuracy suitable for quantum

dynamics simulations [19, 28–53]. There is also a major effort to develop efficient ML

models of force fields for accurate classical dynamics simulations of complex systems [54–

68]. This previous work has demonstrated many useful ML approaches to constructing

PES and force fields for a variety of systems, including models based on neural networks

(NNs) [28–41, 56, 60, 65–68] and kernel methods [3, 19, 42–55, 61–64, 69–72], including GP

regression [19, 42–53, 55]. For example, both NNs [30–39] and GPs [19, 45–53] have been

used to produce highly accurate PES for quantum scattering calculations for small systems

with 4 to 6 atoms. GPs with data sparsification have been used to generate high-dimensional

force fields for systems as large as bulk crystals [43, 61]. A gradient-domain machine learning

(GDML) approach has been recently proposed to obtain force fields for complex molecules

by training kernel models with atomic gradient information instead of energies [62–64]. This
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approach can produce global PES by integrating gradients. A significant amount of work

has been devoted to building molecular symmetries into the ML models of force fields and

PES [53, 73, 74].

Despite these efforts, the construction of global PESs with accuracy ∼ 0.1 kcal/mol for

systems with more than 10 atoms remains a challenging task. The challenge is due to (i) the

complexity of PESs for molecular systems, especially those with multiple different atoms; (ii)

the lack of a priori information on the landscape of PESs, which makes sampling of the con-

figuration space difficult; (iii) the numerical difficulty of high-level ab initio calculations; (iv)

a wide range of energies spanning both chemical bonds and van-der-Waals interactions that

must be simultaneously considered for quantum scattering applications. To overcome this

challenge, it is important to develop system-agnostic tools for constructing high-dimensional

PES that (i) could be applied to different molecular systems, of different dimensionality; (ii)

could interpolate and extrapolate quantum chemistry results in order to produce accurate

PES using a small number of ab initio calculations. The ability to extrapolate is essential

for the methods to explore the configuration space efficiently using a small number of ab

initio calculations.

The goal of the present work is to obtain accurate PES for high-dimensional molecular

systems with a small number of ab initio calculations n in a system-agnostic way. In par-

ticular, we aim to obtain GP models of PES with similar accuracy as in previous work on

low-dimensional poyatomic systems (≤ 6 dimensions), using similar n, but for systems with

many more degrees of freedom. We demonstrate the construction of a 51-dimensional (51D)

global PES for a 19-atom system without any information on the evolution of the PES other

than a random distribution of potential energy points in a Cartesian space. We follow Refs.

[20–23], to improve the interpolation and extrapolation accuracy of GP models in high-

dimensional spaces by increasing the complexity of models, instead of increasing n, without

sparsification. We show that this allows us to build GP models capable of interpolation and

extrapolation in a 51D space based on n ≈ 5, 000 inputs. The present algorithms can be

used to model any high-dimensional physics or chemistry problem that depends on a large

number (∼ 50) of parameters. This opens up the prospect for applications of GPs, such

as non-parametric extrapolation or acceleration of Bayesian optimization by enhancement

of model information content, for high-dimensional physics and chemistry problems with a

restricted number of inputs, i.e. for high-dimensional problems where obtaining training
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data is very difficult.

II. METHOD DESCRIPTION

We begin by a brief description of the conventional algorithm for GP regression. A GP

y(x) can be considered as a limit of a Bayesian neural network with an infinite number of

hidden neurons [3]. In this work, the inputs x = [x1, ..., xN ]> are the variables describing

the internal coordinates of a polyatomic system. The output y is the value of the potential

energy. GPs produce a normal distribution P (y) of values y at any x. The goal is to

condition P (y) by n known values of the potential energy y = [y1, ..., yn]> at n points

[x1, ...,xn]> of the N -dimensional variable space. The mean of this conditional distribution

at an arbitrary point x∗ is given by [1, 3]

µ∗ = k>∗K
−1y, (1)

where k∗ is a vector with n entries k(x∗,xi) and K is a square n × n matrix with entries

k(xi,xj). The quantities k(x,x′) are the kernels, which represent the covariance of the

normal distributions of y at x and at x′ [1, 3]. Eq. (1) is used to predict the value of the

potential energy at x = x∗.

Building a GP model thus reduces to finding optimal kernels k(x,x′). To do that, one

assumes a simple kernel function, such as, for example,

k(x,x′) =Mv =
21−v

Γ(v)

(√
2vr(x,x′)

)v
Kv

(√
2vr(x,x′)

)
(2)

where r2(x,x′) = (x − x′)> ×M × (x − x′), M is a diagonal matrix with N parameters,

Kv is the modified Bessel function, Γ is the Gamma function, and v is a half-integer. The

parameters of the kernel function are found by maximizing the logarithm of the marginal

likelihood [1, 3]

logL = −1

2
y>K−1y − 1

2
log |K| − n

2
log 2π. (3)

We now make three observations: (i) while Eq. (1) can interpolate any smooth function

with any kernel function if n → ∞, for finite n, the interpolation accuracy depends on the

functional form of the kernel function k(x,x′); (ii) Eq. (3) is related to cross entropy of the

model and data distributions so maximizing Eq. (3) enhances the information content in the
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model (1); (iii) Eq. (1) uses the training points y = [y1, ..., yn]> directly, so the prediction

accuracy is sensitive to the distribution of these points in the N -dimensional space. We

exploit these observations to enhance the accuracy of the GP model without increasing n.

𝟐 ×

𝑹 : 51d

𝑹1, 𝑹2: 21d

𝑹12: 3d or 15d or 27d
or 39d or 51d

51d

39d

27d

15d

3d

(a)

(b) (c)

±𝟐𝟎°

+𝟎. 𝟐 Å
−𝟎. 𝟏 Å

+𝟎. 𝟓𝟎 Å
−𝟎. 𝟏𝟎 Å

±𝟎.𝟎𝟓Å

±𝟎. 𝟐 Å

FIG. 1: Schematic illustration of the protonated imidazole dimer. Panel (a) shows the coordinate

displacements of each atom used to obtain the global surface. Panels (b) and (c) illustrate the

fragmentation (4) of the full GP.

The system considered here is the protonated imidazole dimer, shown in Figure 1 (a).

The potential energy of the molecule was calculated using the Gaussian program package

[75] at the MP2/6-31++G(d, p) level of theory. To compute the global PES, we started

with the known geometry of imidazole dimer in Ref. [76], reoptimized it with the MP2/6-

31++G(d, p) calculations and used the resulting lowest-energy structure as our starting

guess. The global deviation of the molecule from this geometry was described using the

Cartesian XY Z coordinates for each carbon and nitrogen atom, with the sampling range

[−0.05,+0.05] Å for each XY Z-direction. The coordinate frame was defined by placing
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the two nitrogen atoms sharing the proton on the X axis, with one of these atoms in the

origin of the coordinate frame, and a carbon atom adjacent to the atom at the origin – in

the XY plane. The configurations for the terminal hydrogen atoms were sampled so that

the distance between each hydrogen and its adjacent atom is within [−0.1,+0.2] Å and

the angle is [−20◦,+20◦], as illustrated in Figure 1 (a). Within these coordinate ranges,

the potential energy was computed at 15,000 points, randomly generated using the Latin

hypercube sampling method to avoid clustering [45]. The resulting ab initio points cover the

energy range between zero and 35, 000 cm−1. To quantify the accuracy of resulting PES, we

compute the root-mean-square error (RMSE) using a large number of ab initio points that

are not used for training GP models.

To build the 51D surface, we change the above algorithm for constructing the GP model

as follows. First, we follow Refs. [20–22] to increase the complexity of the kernel function

by defining a set of basis kernel functions and combining these basis functions into linear

combinations that produce the larger value of L in Eq. (3). The basis functions include

the functions in Eq. (2) with v = 3/2, 5/2 and ∞ as well as the rational quadratic kernel

MRQ =
(

1 + |x−x′|2
2α`2

)−α
. Note that we use a different metric for model selection from that

in Refs. [20–23]. Second, we follow Refs. [44, 77] to split the full configuration space into

smaller parts and represent the energy of the entire molecular system as

Etotal(R) = E1(R1) + E2(R2) + E12(R12), (4)

whereR is a 51D-vector, E1 and E2 are independent GP models depending on vectors of lower

dimensionality, and E12 is a GP model that brings the fragments 1 and 2 together into the full

surface and that depends on the vector R12 with the dimensionality to be determined. The

model (4) is hereafter referred to as ‘Composite GP’. While the fragmentation (4) is general,

here, we use R1 and R2 to represent the separate 21D imidazole fragments, shown in Figure

1 (b). To determine the dimensionality of R12, we construct a series of surfaces, sampling a

different number of active degrees of freedom in R12, corresponding to the fragments shown

in Figure 1 (c). Our results show that R12 must account for all 51 dimensions in order for

Eq. (4) to be accurate (see Supplementary Material [78]).

The representation (4) essentially reduces the problem of constructing the 51-dimensional

PES to building GP models of potential energy for smaller molecular fragments and con-

structing a 51-dimensional GP model of the difference between the global surface and these
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lower-dimensional GPs. In the following section, we will demonstrate the accuracy gain due

to this approach by comparing GP models (4) with those obtained directly by fitting energy

in the 51-dimensional space. This approach is motivated by Ref. [77] which introduced a

hierarchy of molecular fragmentations to approximate the total electronic energy from the

energies of the fragments. It is also analogous to the approach in Ref. [44], which aims to

obtain local energy functionals from total energies. In general, the molecular fragmentation

for Eq. (4) should be done to ensure that the energy of the fragments and of the full system

can be computed using the same ab initio method.

III. RESULTS

The main interpolation results of this work are summarized in Table I, illustrating

◦ that it is possible to construct a 51D surface based on n = 5, 000 ab initio energies

with the global error under 0.2 kcal/mol; and

◦ how the fragmentation (4) and increasing the complexity of the kernels improve the

accuracy of the resulting surface.

Here, ‘Simple GP’ refers to the 51D model of the surface trained directly by ab initio points

in the R-space. ‘Complex k’ refers to the complex kernels. To identify such kernels, we use

the greedy-search algorithm – as in Refs. [22, 23] – that combines different simple kernel

functions in order to maximize the log-likelihood function. This algorithm determined the

following complex kernels for the composite models: k = aMv=5/2+bMv=3/2+cMv=∞, with

a, b and c being free parameters, for E1 and E2; and k = (aMv=5/2×MRQ+bMv=∞)×Mv=1/2

for E12. For the simple GP model with complex k, this algorithm determined the kernel

k = aMv=5/2 + bMv=3/2 + cMv=∞ + dMv=∞ to give the optimal results. Note that the

parameters of each of the models, including those of the two Mv=∞ models in the last

equation, are independent. The results labeled ‘Simple k’ in Table I refer to GP models

with k =Mv=5/2.

For all of the results in this work, the training energy points are sampled randomly from

the indicated energy interval using Latin hypercube sampling to avoid clustering in the

configuration space. To verify the stability of our results, we performed the following two

calculations for the PES obtained with n = 1000 ab initio points by interpolation using GPs
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TABLE I: The RMSE for the full 51D surface computed using 10,000 points in the energy range

[0, 35000] cm−1 as a function of the number of training points n.

Number of RMSE [kcal/mol]

training points Simple GP Simple GP Composite GP Composite GP

Simple k Complex k Simple k Complex k

1000 3.285 2.480 0.9875 0.7837

2000 2.353 1.545 0.7416 0.5373

3000 1.883 0.8569 0.6203 0.4123

4000 1.537 0.8666 0.5315 0.2642

5000 1.286 0.7709 0.4776 0.1815

with complex kernels in the energy range [0, 35000] cm−1 (RMSE = 0.7837 kcal/mol as

reported in Table I). First, we trained a new model of the PES using a different set of 1000

points randomly selected from our set of 15,000 ab initio points described in the previous

section. The RMSE of the resulting surface thus obtained was 0.801 kcal/mol. Second,

we computed a new set of 1000 ab initio points, not included in any of the other training

distributions in this paper, and constructed a new PES with these energies as training points.

The resulting RMSE was 0.769 kcal/mol. The variation of the RMSE is thus about 2%. Note

that the models using n = 1000 represent the extreme case and the variation of the RMSE

with the randomly selected training distributions must be smaller for models with a larger

number of training points.

To illustrate the extrapolation power of high-dimensional GP models, we construct a

series of surfaces using the ab initio points at low energies and predict the global surface

at high energies. Table II summarizes the results. The errors reported in Table II are

computed using 7,092 ab initio points in the energy range [20, 000− 35, 000] cm−1. Models

A, B and C are trained by n potential energy points in the energy ranges [0 − 35, 000];

[0 − 20, 000] cm−1, and [0 − 10, 000] cm−1, respectively. It is impressive to see that model

C with n = 5, 000 points, all at energy below 10, 000 cm−1, produces a 51D-surface in the

energy range [20, 000− 35, 000] cm−1 with the global error ≈ 0.6 kcal/mol. This represents

the relative average accuracy of better than 1 % in this energy range.
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TABLE II: RMSEs for 7,092 testing points of the energy range [20, 000− 35, 000] cm−1 computed

for three kinds of models (4) trained by n ab initio points in the energy range [0 − 35, 000] cm−1

(models A); [0− 20, 000] cm−1 (models B), and [0− 10, 000] cm−1 (models C).

Models A Models B Models C

n [cm−1] [kcal/mol] [cm−1] [kcal/mol] [cm−1] [kcal/mol]

1000 304.4 0.8702 332.7 0.9513 622.8 1.781

2000 208.7 0.5967 220.3 0.6299 430.0 1.230

3000 161.1 0.4605 168.2 0.4810 371.3 1.062

4000 103.3 0.2954 115.1 0.3291 287.9 0.8233

5000 71.01 0.2030 86.53 0.2474 222.1 0.6350

Models B and C use no information about the PES at energies above 20, 000 cm−1. The

largest deviation of these model predictions from the ab initio results in the energy range

[20, 000− 35, 000] cm−1 is 514 cm−1 for model A and 2740 cm−1 for model C (both for the

composite, complex kernel case with n = 5000). This represents the relative error for that

single worst point of < 2.6% (model A) and < 13.7% (model C). Figure 2 illustrates the

accuracy of the interpolation and energy extrapolation of the surface represented by model

B with complex kernels.

To show that the GP PESs are smooth and physical, we compute the potential energy

profile describing proton transfer between the imidazole molecules. Figure 3 shows that the

potential energy predicted by the composite GP model (4) trained with n = 5, 000 ab initio

points is in perfect agreement with the ab initio results for this minimum energy proton

transfer path. Note that the curves shown in Figure 3 represent the minimum of a 51D

surface for fixed imidazole - H+ separations.

To illustrate the global performance of the 51D GP PES in the computation of observ-

ables, we calculate the vibrational frequencies for the 51 normal modes of the molecule. To

do that, we diagonalize the Hessian matrix constructed directly from the ab initio results

(hereafter referred to as ‘Exact’) and from the GP models. Figure 4 compares the GP model

results with the exact results (the numerical values of the vibrational frequencies plotted in

this figure are listed in the Supplementary material [78]). Figure 4 shows that all normal
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modes with the frequencies > 100 cm−1 are well described by the composite GP PES with

n = 5000. Moreover, the GP PES constructed with n = 1000 ab initio points captures

qualitatively 48 out of 51 normal modes. This illustrates that a qualitatively correct 51D

PES can be constructed with 1000 ab initio points.

0.6 0.7 0.8 0.9 1.0 1.1 1.2
D [Å]

5000

10000

15000

20000

25000

30000

35000

En
er

gy
 [c

m
−1

]

FIG. 2: The 51D GP model (circles) in comparison with ab initio results (squares). The size of the

square represents the energy interval 200 cm−1. The results are shown for the GP model C trained

with 5000 ab initio points (not shown) at energies below 20,000 cm−1 (shaded region). D is the

Euqlidean distance from the equilibrium geometry of the 51D molecule.
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FIG. 3: The minimum energy path for the proton transfer in the protonated imidazole dimer:

solid curve - ab initio calculations; broken curves and green symbols – the results from the 51D

GP models as indicated in the legend box. Upper panel – results obtained with the simple kernel

k =Mv=5/2; lower panel – results obtained with complex kernels, as described in text. The green

symbols representing the 51D composite GP model are in excellent agreement with the ab initio

calculations. 11
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FIG. 4: Vibrational frequencies (cm−1) for the 51 normal modes of the protonated imidazole dimer

computed from the global PES given by Eq. (4) with n = 1000 (circles) and n = 5000 (squares).

The numerical values of the frequencies are tabulated in the Supplementary Material [78].
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IV. CONCLUSION

We have demonstrated an accurate GP model of a 51-dimensional PES for the proto-

nated imidazole dimer (C6N4H+
9 ) trained directly by energy points at 5000 randomly chosen

molecular geometries. The PES considered here has a complex landscape, spanning the

energy range of 100 kcal/mol. It is instructive to compare the accuracy of the PES obtained

here (0.18 kcal/mol) with the GDML models in Ref. [62] that considered eight molecular

systems ranging in complexity from aromatic systems such as benzene with the energy range

of 20.2 kcal/mol to aspirin (C9H8O4) with the energy range up to 47 kcal/mol. Ref. [62]

demonstrated that the GDML models trained by 1000 geometries can produce PES with

RMSE ranging from 0.09 kcal/mol (for benzene) to 0.36 kcal/mol (for aspirin). The fully

converged GDML model for aspirin was shown to produce an RMSE of about 0.27 kcal/mol.

We will perform a more direct comparison of these two methods in future work. We note

that the GDML models in Ref. [62] use kernel ridge regression with a simple isotropic kernel

of the Matérn family. The present work illustrates the accuracy gain due to increasing kernel

complexity guided by marginal likelihood maximization. It will be interesting to explore if

the accuracy of the fully-converged GDML models can be enhanced by Gaussian process

regression (based on marginal likelihood optimization) and by increasing kernel complexity

as in the present work.

We note that the accuracy of the models presented here can be further enhanced by

increasing n and optimizing the training data distributions. Since the form of the kernels

in this work is adjusted to the training distributions, an optimal algorithm would require

simultaneous optimization of the kernel complexity and the training distributions. The ac-

curacy of the models can also be increased by choosing priors that correspond to the analytic

evolution of the PES. However, most of these algorithmic improvements are expected to be

system-dependent.

Finally, we have illustrated that 51D GP models with composite kernels can be used to ex-

trapolate PES from low energies (< 29 kcal/mol) to high energies (57 – 100 kcal/mol). This

opens up the possibility to extend the application of Bayesian methods for searching new

physics, such as the approach in Ref. [22] to identify phase transitions, to high-dimensional

physics problems with unknown property landscapes. This can also be used to design ef-

ficient methods for Bayesian optimization in high-dimensional spaces [79–82]. Ref. [82]
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illustrated that convergence of Bayesian optimization for two- and five-dimensional prob-

lems can be accelerated by enhancing GP kernels using Bayesian information criterion for

model selection. Since the convergence acceleration is due to the improvement of GP mod-

els used for optimization, the present work indicates that a similar acceleration of Bayesian

optimization should be expected for high-dimensional problems.
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Supplementary Material

Online Supplementary Material presents the numerical values of the RMSE supporting

the conclusion regarding the dimensionality of the vector R12 in Eq. (4) and the numerical

values of the normal mode frequencies depicted in Figure 4. Online Supplementary Material

also includes the ab initio energy points for the protonated imidazole dimer calculated in

this work and the python code to construct the 51D PES of the protonated imidazole dimer.

Data availability

The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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Supplementary material for ‘Interpolation and extrapolation in a
51-dimensional variable space: system-agnostic construction of high-
dimensional PES’

The purpose of this Supplementary Material is to present the numerical values of the

RMSE supporting the conclusion regarding the dimensionality of the vector R12 in Eq. (4)

of the main manuscript and the numerical values of the normal mode frequencies depicted

in Figure 4 of the main manuscript.

TABLE III: The RMSE of E12(R12) in Eq. (4) of the main manuscript computed using 10,000 test

points and the GP of different dimensionality corresponding to fragments illustrated in Figure 1(c)

of the main manuscript. The GP models are trained with 5000 ab initio points.

Surface dimension RMSE (kcal/mol)

3d 3.045

15d 1.880

27d 1.793

39d 1.276

51d 0.1576
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TABLE IV: Vibrational frequencies (cm−1) for the normal modes of the protonated imidazole dimer

computed from the global PES given by Eq. (4) with different n.

n = 1000 4000 5000 Exact

1 3602.3 3635.5 3686.5 3698.6

2 3587.0 3624.6 3680.9 3688.2

3 3553.7 3435.0 3379.4 3379.6

4 3452.8 3430.2 3367.3 3370.3

5 3412.9 3380.1 3359.9 3367.3

6 3410.3 3367.2 3350.4 3361.6

7 3368.5 3329.4 3337.5 3352.0

8 3363.9 3323.9 3324.8 3345.4

9 2031.0 2002.5 2031.0 2018.9

10 1700.1 1687.4 1689.4 1676.8

11 1641.3 1584.1 1587.0 1584.4

12 1597.2 1579.3 1574.8 1583.6

13 1580.6 1564.1 1563.9 1564.0

14 1570.5 1551.7 1553.9 1552.2

15 1519.2 1504.6 1500.8 1498.8

16 1518.7 1502.7 1495.5 1497.3

17 1441.9 1426.7 1423.7 1422.8

18 1396.6 1403.0 1401.9 1400.3

19 1347.2 1355.6 1360.2 1360.6

20 1287.5 1277.2 1284.0 1281.0

21 1276.5 1272.7 1281.4 1272.3

22 1244.3 1217.2 1212.3 1207.6

23 1237.5 1203.6 1198.2 1198.1

24 1190.6 1199.3 1192.7 1185.8

25 1176.9 1190.3 1185.6 1182.7

26 1150.2 1131.9 1144.0 1134.6

27 1139.9 1126.4 1140.7 1132.9

28 1106.2 1110.5 1112.9 1110.3

29 1087.8 1088.8 1096.3 1093.7

30 982.3 958.5 955.7 957.9

31 964.6 936.4 936.2 936.1

32 955.8 932.5 929.7 932.0

33 920.1 843.8 851.5 851.2

34 862.0 795.9 794.6 789.8

35 806.4 790.3 779.3 780.5

36 790.6 773.3 768.7 777.3

37 750.1 761.9 756.6 760.4

38 746.5 723.0 710.0 721.3

39 730.3 714.7 708.2 709.7

40 700.1 687.6 682.0 685.9

41 683.8 673.6 671.5 673.2

42 655.3 606.8 620.2 616.2

43 570.7 601.5 603.1 613.8

44 490.2 508.2 579.0 581.8

45 458.9 477.6 560.3 561.0

46 213.0 178.6 168.8 159.7

47 209.2 164.2 141.4 143.8

48 145.8 112.7 106.2 123.5

49 87.5 76.4 91.2 48.7

50 17.8 62.3 82.5 44.1

51 -8.4 26.7 78.2 30.3
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