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ABSTRACT
Dynamics of flexible molecules are often determined by an interplay between local chemical bond fluctuations and conformational changes
driven by long-range electrostatics and van der Waals interactions. This interplay between interactions yields complex potential-energy sur-
faces (PESs) with multiple minima and transition paths between them. In this work, we assess the performance of the state-of-the-art Machine
Learning (ML) models, namely, sGDML, SchNet, Gaussian Approximation Potentials/Smooth Overlap of Atomic Positions (GAPs/SOAPs),
and Behler–Parrinello neural networks, for reproducing such PESs, while using limited amounts of reference data. As a benchmark, we use
the cis to trans thermal relaxation in an azobenzene molecule, where at least three different transition mechanisms should be considered.
Although GAP/SOAP, SchNet, and sGDML models can globally achieve a chemical accuracy of 1 kcal mol−1 with fewer than 1000 training
points, predictions greatly depend on the ML method used and on the local region of the PES being sampled. Within a given ML method, large
differences can be found between predictions of close-to-equilibrium and transition regions, as well as for different transition mechanisms.
We identify key challenges that the ML models face mainly due to the intrinsic limitations of commonly used atom-based descriptors. All in
all, our results suggest switching from learning the entire PES within a single model to using multiple local models with optimized descriptors,
training sets, and architectures for different parts of the complex PES.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0038516., s

I. INTRODUCTION

Thermodynamic and dynamical properties of molecules can
be computed if an accurate model for a potential-energy surface
(PES) is provided. Among these properties, transition paths con-
necting pairs of minima on the PES are crucial for understanding
the dynamics of complex systems,1 such as conformational changes
in molecules,2,3 nucleation events during phase transitions,4,5 and
folding and unfolding of proteins.6–8 The state-of-the-art meth-
ods for finding transition pathways range from the optimization
of a single direction on the PES9,10 or a chain of states connecting
both minima, e.g., the string11 and nudged elastic band (NEB)12,13

methods, to the more sophisticated transition path sampling tech-
niques.14,15 Most of them often provide only a single “optimal”
transition path. The rate of success in finding the path highly
depends on the dimensionality and complexity of the PES: flexible

molecules containing a few tens of atoms, such as organic
photoswitches and peptides, are already challenging to deal with.
Moreover, due to the non-trivial interplay between covalent and
non-covalent interactions, the transitions in such molecules may
happen following several different pathways. In this case, one needs
to consider the contribution of every path to the transition process,
and the knowledge about just one optimal pathway is insufficient.
Practical studies of such transitions require reliable force fields (FFs)
able to accurately reconstruct broad regions of the PES, includ-
ing multiple local minima and all the relevant pathways connecting
them.

In recent years, the use of Machine Learning (ML) in chemistry
and materials science has been a subject of intensive research.16–63

Namely, the advent of ML potentials has offered new tools for
meeting the constantly increasing demand for accurate simula-
tions of realistic systems since such potentials aim to keep the
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accuracy of ab initio calculations with an efficiency closer to
that of classical force fields. Among the available methodologies,
neural networks (NNs)33–41 and kernel-based methods16–30 are the
most used to learn the PES of molecules. However, this learning
task is not easy, and it has encouraged the improvement of data
sampling,29–33 molecular representations,23–27,44–55 and NN architec-
tures.37–41,56,57 In addition, some efforts have been directed toward
improving ML-aided search and sampling of transition states and
pathways.32,64,65 For instance, Noé et al.32 showed a promising
method to sample rare events between equilibrium states using
Boltzmann generators. The method is by many orders of magni-
tude more efficient than “brute force” molecular dynamics (MD)
simulations. Other approaches64,65 are built on the state-of-the-art
methods for calculating transition states enhanced with ML tech-
niques. ML-enhanced transition state search methods are more effi-
cient than their precursors but present the same limitations. ML
methods are often data demanding, making their application infeasi-
ble when computationally expensive ab initio methods are required.
Hence, constructing robust ML models for flexible molecules is the
necessary next step for practical applications of ML potentials in
chemistry and biology.

There are two main challenges in building accurate ML mod-
els for flexible molecules: First, generating enough data around
the transition regions of the PES. Second, building a highly accu-
rate and data-efficient ML model that describes the resulting com-
plex PES. In this work, we address both of these challenges in
an azobenzene (C12H10N2) molecule, for example. While being
small in size, azobenzene is flexible enough to feature a cis to
trans thermal relaxation following at least three possible chan-
nels: a rotation, an inversion, and a rotation assisted by inversion
mechanisms.66–70 We start by discussing the problem of building
reliable reference datasets for these transitions. Then, we assess the
performance of the state-of-the-art ML methods in the prediction
of forces and energies along the obtained transition paths. The
methods include NNs, such as Behler–Parrinello neural networks
(BPNNs)36,37 and SchNet41–43 architectures, and kernel-based meth-
ods, such as sGDML16–19 and Gaussian Approximation Potentials
(GAPs)26,27 using the Smooth Overlap of Atomic Position (SOAP)
representation.28 To highlight how the complexity in learning the
PES increases with the flexibility of a molecule, we compare the
results of azobenzene with those of a simpler glycine molecule.
We limit the training datasets to 1000 geometries. The ML models
unable to predict the PES of the considered small molecules correctly
within this limit would face considerable problems for large flexi-
ble molecules where the cost of reference calculations increases very
steeply.

The structure of this article is given as follows: in Sec. II, we
present the isomers of glycine and azobenzene, build possible transi-
tion paths between them, and construct the datasets for training ML
models. In Sec. III, we discuss the frequent pitfalls of the state-of-
the-art ML methods that describe different configurations of flexible
molecules. Then, in Sec. IV, we assess the performance of ML models
(such as sGDML,16–19 GAP/SOAP,26–28 BPNN,36,37 and SchNet41–43)
for azobenzene and glycine molecules trained for both equilibrium
states, as well as the transition paths between them. In Sec. V, we
describe the challenges of ML force fields (MLFFs) when applied
to flexible molecules. Section VI contains the conclusions and an
outlook.

II. CONSTRUCTING REFERENCE DATASETS
FOR ISOMERIZATION

The starting point for building any MLFF is collecting ref-
erence data covering the relevant parts of the PES of interest.
When modeling transition pathways, the reference data can be
split into two parts: (i) data covering the vicinity of the equilib-
rium states between which the transition process happens and (ii)
data of “far-from-equilibrium” parts of the PES defining the tran-
sition path(s). While the equilibrium states are normally readily
available, configurations describing the transition paths connect-
ing them are, in most cases, not trivial to find. Moreover, the
complexity of this task rapidly grows with the increase in flexibil-
ity and size of the molecule. In view of this, we had to employ
two different strategies for generating the datasets for glycine and
azobenzene isomerization. Below, we discuss in detail the process
followed for each molecule separately. All calculations (unless spec-
ified otherwise) were performed in FHI-aims software71 using the
Perdew–Burke–Ernzerhof (PBE) exchange–correlation functional72

with tight settings and the Tkatchenko–Scheffler (TS) method73 to
account for van der Waals (vdW) interactions. For all MD sim-
ulations, the i-PI package74 was wrapped with FHI-aims. Detailed
information of all methods and MD simulations, as well as all rele-
vant configurations and datasets, are available in the supplementary
material.

A. Glycine
Glycine, being a rather small molecule, possesses numerous

planar and non-planar conformers in the gas phase whose relative
energies have been extensively studied.75,76 Here, we consider the
isomerization from the global minimum geometry, called Ip, to the
IIIp conformer because it is the closest “directly connected” mini-
mum. Transitions to any other metastable state from Ip go through
this conformer. The Ip–IIIp transformation can be characterized by
a change in torsional angles τ1 and τ2 (see Fig. 1), both around the C
bond. They go from 180.0○ and 0.0○ in isomer Ip to 0.0○ and 180.0○

in isomer IIIp, respectively.

1. Transition path
To construct the transition path between the equilibrium states

of glycine, we used the string11 and NEB12,13 methods. Both meth-
ods converge without any issues, providing similar pathways. The
transition state obtained by employing the PBE+TS method lies only
2.4 kcal mol−1 above the Ip isomer (see Fig. S1 of the supplementary
material). The mechanism is defined by almost equal rotations of
both τ1 and τ2 torsional angles (see Table S1 of the supplementary
material for important geometric details).

2. Dataset
Since the relative energy between the Ip isomer and the highest-

energy structure found on the minimum energy path (MEP) is less
than 3 kcal mol−1, the Ip–IIIp transformation is accessible via stan-
dard constant-temperature MD simulations. Therefore, to construct
the dataset for glycine isomerization, we ran two dynamics starting
from both equilibrium geometries. A total of 5000 configurations at
500 K with a time step of 1 fs were obtained from each simulation.
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FIG. 1. Optimized configurations of
the minima considered in this work
and labels of the main degrees of
freedom: the bonds a (C1−−N2 and
N3−−C4 in azobenzene) and b (N2==N3
in azobenzene), the bending angles θ
and θ′ (C1−−N2==N3 and N2==N3−−C4 in
azobenzene), and the torsional angles
ϕ (C1−−N2==N3−−C4 in azobenzene)
and τ1 and τ2 (N1−−C2−−C3−−O4 and
N1−−C2−−C3==O5 in glycine).

A transition was observed in the simulation starting from the IIIp
isomer.

B. Azobenzene
Azobenzene is a photochemical compound; however, it also

exhibits a cis to trans thermal relaxation, on which we focus
in this work. Hence, we avoid issues with electronic multi-
reference states in azobenzene and use the generalized gradient
approximation density functional theory (DFT)-PBE functional
and include vdW interactions with the TS-vdW method for gen-
erating the reference data. The cis and trans configurations of
azobenzene (Fig. 1) differ mostly by a change in the torsional
angle ϕ around the N==N double bond from close to 10.0○ to
180.0○ during the isomerization. Although the existence of the
two forms has been known since the works of Hartley in the
1930s,77,78 there is still an open debate regarding whether azoben-
zene primarily follows a rotation (changes around the dihedral
angle ϕ), an inversion (changes in the angles θ and θ′), or a rotation
assisted by an inversion (changes in both ϕ and θ and θ′) mech-
anism. DFT, multi-reference methods, and ML approaches have
been used in an attempt to unveil the actual mechanism of iso-
merization,66–70,79–81 but conclusive evidence favoring a particular
mechanism is yet to be found.

1. Transition paths
Although azobenzene is not much larger than glycine, all the

transition pathways that can be found in the literature for this
molecule are constructed manually. One can easily check that nei-
ther the string nor NEB methods converge to a reasonable path for
cis to trans transition. Following the previous works,66–70 we also
constructed the transition pathways manually as follows:

● The rotation path, which is defined by a change in the
torsional angle ϕ around the central double bond (see
Fig. 1).

● The inversion path whose main feature is the bending of
either θ or θ′ (see Fig. 1).

● The rotation assisted by an inversion path, which is the
combination of the first two.

Each path is comprised of 15 intermediate geometries linking the
minima. In all cases, the molecule was forced to follow the desired
mechanism by linearly interpolating the main degree(s) of free-
dom between both minima (Tables S2–S4 show important geo-
metric data, and Fig. S1 shows the energy profiles). The obtained
highest-energy geometries are in good agreement with those found
elsewhere.66–69

Table I shows the relative energies (with respect to cisazoben-
zene) of the highest-energy structures found for each transi-
tion path. The rotation mechanism is the most favorable path
at the initial and final steps of the isomerization, but it has the
highest-energy barrier among the three transition paths consid-
ered here. The inversion mechanism is the one with the lowest-
lying highest-energy structure within PBE+TS calculations. The
rotation assisted by an inversion path is the least favored at
the zones close to the minima and presents a plateau region
at the top of the curve with two “peaks” with relative energies
close to that of the highest-energy configuration in the inversion
mechanism.

The pathways introduced in the previous paragraphs are just
linear interpolations between the cis and trans geometries. This
introduces constraints on how the different degrees of freedom can

TABLE I. Relative energies (ΔE in kcal mol−1) of the highest-energy structures on
each mechanism computed with the PBE+TS method.

Mechanism Rotation Inversion Rot+Inv

ΔE 30.2 27.4 27.5, 27.6
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evolve through the transition. To obtain a path affected by the
contributions of all the important degrees of freedom, we “opti-
mized” the rotation path by choosing the values of θ, θ′, and a and
b (Fig. 1) that minimize the energy at each step. The optimized rota-
tion path is the most favorable with the PBE+TS method with an
energy barrier of 26.1 kcal mol−1. The geometric details of this path
can be found in Table S5.

All the paths described here can be considered as good insights
into the real isomerization process. It has been found that the
activation barrier of the cis to trans thermal relaxation in n-heptane
solution is between 22.7 kcal mol−1 and 25.1 kcal mol−1.80 Hence,
in the gas phase, we would expect greater values like those pre-
sented here. In what follows, we will focus on the optimized rotation
(named simply rotation from now on) and the inversion mecha-
nisms.

2. Datasets
Constructing a dataset for a molecule such as azobenzene

requires a more elaborate procedure compared to the simpler glycine
molecule. First of all, the transition process is a rare event at ambi-
ent conditions and cannot be easily accessed; second, there are more
than one possible transition pathways.

Here, we build separate datasets for the rotation and inver-
sion mechanisms. We first combined two types of MD simula-
tions: (a) long constant-temperature MD runs with a time step of
1 fs at 300 K at the PBE+TS/light level of theory starting from
the equilibrium geometries, from which we selected a configura-
tion every 25 steps and carried out single-point calculations with
the PBE+TS/tight method (around 3500 configurations were col-
lected for each minimum); (b) constant-temperature MD runs of
300 steps with a 0.5 fs time step at 100 K starting from each of the
intermediate steps of the rotation and inversion paths. From the
energy distributions shown in Fig. 2(a), one can conclude that the
configurations visited during our MD simulations are bounded by
the temperature to certain energy ranges, as indicated by the well-
defined peaks representing trans- and cis-like configurations. The
addition of configurations obtained from the rotation and inver-
sion mechanisms had little impact on the energy distribution, which
leads us to conclude that the transition parts are still poorly sam-
pled. Thus, we generated additional configurations by performing
(a) four constant-temperature MD simulations (of 2500 steps each)
at 750 K with a time step of 1 fs starting from structures close to
equilibrium and (b) constant-temperature MD simulations of 2500
steps at 50 K with a very small time step (0.025 fs) starting from
steps 7 and 9 of the inversion path and the steps 8 and 10 of the
rotation path (see Tables S3 and S5 for details). The former pro-
vide the data required to model the cooling down process from
transition states to minima, which involves high kinetic energies.
The latter allow us to include slow changes in the degrees of free-
dom during the transition process. Figure 2(b) shows that the new
reference geometries sample different energy distributions for close-
to-equilibrium, rotation, and inversion datasets. The final datasets
combine the results of all four types of simulations containing 26 455
data points for the rotation and 25 528 data points for the inversion
mechanisms.

An alternative to the above-described procedure would be
to use an enhanced sampling technique (e.g., metadynamics or

FIG. 2. Distribution of relative energies (in kcal mol−1, with respect to the optimized
configuration of transazobenzene) of (a) “close-to-equilibrium” configurations at
300 K and geometries close to the transition paths at 100 K and (b) high-energy
“close-to-equilibrium” configurations and properly sampled geometries close to the
transition paths.

umbrella sampling). The key component in such methods is the
introduction of a bias potential that penalizes already visited system
configurations. To do so, one defines a low dimensional projection
of the configurational space of the system, the so-called collec-
tive variables (CVs), where energy minima and transition paths are
well distinguished. During the simulation, a repulsive (bias) poten-
tial is added every n steps in the CV space to prevent revisiting
already sampled parts of the configuration space. As a result of this
procedure, all configurations have an equal probability of being sam-
pled, regardless of their potential energy. Thereby, broad regions
of the PES containing multiple minima and transition pathways
can be sampled. In our work, we are interested in specific parts of
the PES: the regions surrounding the cis and trans isomers of the
azobenzene molecule and the transition pathways between them.
While the two angles of azobenzene could be used as CVs, it is
not clear that these two variables are sufficient to properly resolve
different transition mechanisms. In addition, the transition state
energies are high compared to the thermal energy of the molecule
at ambient conditions. As a result, choosing the parameters of the
bias potential for an efficient metadynamics simulation yields a
dataset where the transition mechanisms are undersampled. For
a more detailed analysis, see Sec. V. On the contrary, setting the
width and the amplitude of the bias potential that allows for a good
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resolution in the transition region makes the metadynamics sim-
ulation inefficient. Hence, the construction of datasets combining
manual and MD-generated configurations is more efficient for sam-
pling high-energy transitions, giving us the opportunity to assess
the performance of ML models on the transition paths of flexible
molecules.

III. ADVANTAGES AND LIMITATIONS OF DIFFERENT
ML METHODS

Before applying any ML method, the molecular configurations
must be encoded into a rotationally, translationally, and permuta-
tionally invariant representation or “descriptor”. There are many
descriptors for MLFF available in the literature,22–27,44–55 and efforts
to find suitable representations are still ongoing. We remark that
a descriptor must balance efficiency with accuracy; hence, differ-
ent descriptors are applicable to different scenarios. One can divide
them into local and global descriptors. For the former, neural net-
works (e.g., SchNet41–43) and kernel-based potentials (e.g., when
using descriptors such as FCHL22,55 or SOAP28) assume locality
through the introduction of a cutoff radius, and the interactions
between atoms are modeled as a sum of individual atomic contri-
butions. Conversely, global descriptors (such as inverse pair-wise
distances16,44,62) can serve to build models where the prediction is
obtained for the whole structure. Both approaches have their own
advantages: for instance, while local descriptors can identify simi-
lar neighborhoods in small molecules that can later be transferred
to larger systems, global descriptors can capture all interactions
of a given system whenever the reference calculations contain the
relevant information. However, descriptors also have their pitfalls,
some of which arise with large flexible molecules and might become
problematic when dealing with complex processes, such as those
happening along transition paths.

The first immediate issue that one can foresee is the limited
reach of local descriptors, as imposed by the selection of the cutoff
radius of the atomic environments. Figure 3 shows the interatomic
distance distribution in glycine and azobenzene rotation datasets.
While for glycine, the largest distances remain below 6 Å and values

FIG. 3. Distribution of interatomic distances (in Å) in glycine and azobenzene
rotation datasets.

lower than 4 Å are the most populated, in azobenzene, the distances
present values of up to 12 Å, and distances between 5 Å and 8 Å are
rather common. Thus, local descriptors might already face problems
with molecules as large as azobenzene when relevant interactions fall
outside their scope (see the results with GAP/SOAP in Sec. IV). An
example of such interactions is the long-range ones, which play an
important role in azobenzene isomerization as suggested from the
paths constructed in Sec. II. Specifically, vdW interactions decrease
going from the cis to the trans configuration, and these interactions
lead to an increment in the energy barriers of all paths of more
than 1.0 kcal mol−1 (the details are shown in Tables S2–S5). Increas-
ing the cutoff radius appears to be a straightforward solution, but
the potential gain in accuracy might lead to a significant loss in
efficiency.

The second problem affects both local and global descriptors
and is related to the scope of the descriptor itself. If some important
features are not included or not properly represented in the selected
descriptor, the method will fail to achieve appropriate performance
(see the results with sGDML in Sec. V). This could well apply to tran-
sition paths, where small changes in specific degrees of freedom of
the molecule result in considerable energy variations. The addition
of the relevant features to the descriptor might alleviate this issue but
requires a priori knowledge of the studied system.

IV. ACCURACY OF ML MODELS FOR TRANSITION
PATHS

Although ML potentials have evolved successfully, there are
many open challenges. Among others, the problem of building accu-
rate and data-efficient ML models for flexible molecules describ-
ing equilibrium states and the transition pathways between them
deserves special attention. Below, we assess the performance of the
state-of-art ML models (BPNN,36,37 SchNet,41–43 GAP/SOAP,26–28

and sGDML16–19) on the PES of glycine and azobenzene molecules.
The cutoff radius in BPNN, SchNet, and GAP/SOAP was set to a
typical value of 5 Å, although additional tests with GAP/SOAP were
done with larger cutoffs. All other important settings for each ML
method are given in the supplementary material. Namely, we used
(a) the glycine dataset and (b) the inversion and rotation datasets of
azobenzene (see Sec. II).

The training and test sets were created as follows: first, we used
the training set selection process of sGDML (which draws a sam-
ple from the dataset that preserves its original energy distribution)
to create subsets from each of the datasets used in this work. The
subsets have a size equal to five times the number of training points
(e.g., for 1000 training points, a subset of 5000 configurations was
constructed). We then performed fivefold cross-validation on each
subset, using a single fold for training and the rest for testing. For
instance, when using 1000 training points, we tested our model with
the remaining 4000 configurations (which represents around 15% of
the datasets of azobenzene and 40% of the glycine dataset). We ran-
domly created the cross-validation tasks while ensuring that in each
fold the energy distribution of the whole dataset was preserved. In
this way, each of the folds is representative of the original dataset
such that testing our models on these folds will give the same results
as testing on the complete dataset. The proposed training/test set
selection procedure is comparable to a default random scheme, as
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implemented in SchNet, while providing more reliable and accurate
ML models.

Figure 4 shows the energy and force prediction accuracy for the
best models out of all cross-validation tasks. For SchNet, BPNN, and
GAP/SOAP, the best model for a given training set size is the one

showing the lowest energy root mean squared error (RMSE) in the
test set because these methods are trained on energies and forces. In
the case of sGDML, the best model usually is the one with the lowest
force RMSE in the test set because sGDML is trained only on forces.
However, if two or more sGDML models with similar force RMSE

FIG. 4. Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy in terms of root mean squared error (RMSE) as a function of training set size for (a) glycine,
(b) inversion, and (c) rotation datasets of azobenzene using the best models of BPNN, GAP/SOAP, SchNet, and sGDML with the default descriptor (sGDML [1/r]) or with the
extended descriptor (sGDML [1/r + ang]) out of all cross-validation tasks. Only models with errors below 5.0 kcal (mol Å)−1 and 3.0 kcal mol−1 are shown. (b) and (c) show a
side view of the highest-energy structure on the inversion and rotation paths of azobenzene, respectively.
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[∼0.1 kcal (mol Å)−1] present substantially different energy RMSEs
(∼1.0 kcal mol−1), we favored the one with the lowest energy RMSE.
In the following paragraphs, the errors we discuss correspond to
those of the best models.

For the small glycine molecule [Fig. 4(a)], BPNN presents
high errors, with a RMSE above 6.0 kcal (mol Å)−1 for forces and
around 2.0 kcal mol−1 for energies, even after using 1000 training
points. sGDML and SchNet perform much better with errors below
1.0 kcal mol−1 and 1.0 kcal (mol Å)−1 with 300 and 400 training
points, respectively. GAP/SOAP also shows a good performance in
energy prediction with errors below 1.0 kcal mol−1 after using 100
training points, although it is less accurate when predicting forces
[errors remain around 1.5 kcal (mol Å)−1 with 1000 training points].
Based on this analysis, we are henceforth not considering BPNN
as a valid candidate to reproduce a more complex PES of flexi-
ble molecules using a limited amount of training points, instead
focusing on GAP/SOAP, sGDML, and SchNet.

For the azobenzene datasets, the results for different models
show high variability. GAP/SOAP obtains an error in energies below
1.0 kcal mol−1 for the inversion mechanism with only 200 train-
ing points [Fig. 4(b)]. However, for the rotation mechanism, this
performance is achieved with 400 training points [Fig. 4(c)]. In addi-
tion, force prediction accuracy is worse for the rotation mechanism
[remains above 2.4 kcal (mol Å)−1 with 1000 training points] than
for the inversion mechanism [remains above 1.8 kcal (mol Å)−1

with 1000 training points] along the whole learning curves. This
means that the parts of the PES that are covered by each transi-
tion process cannot be evenly described with the same mapping.
Indeed, SOAP learns the local information (within the selected cut-
off radius), which quickly saturates with the increase in the train-
ing set, but cannot equally capture the relevant interactions of both
mechanisms.

The sGDML model achieves an outstanding performance for
both transition mechanisms. For the inversion dataset, errors in
energy go below 1.0 kcal mol−1 with 100 training points and errors
in forces go below 1.0 kcal (mol Å)−1 with 800 training points
[Fig. 4(b)]. For the rotation dataset, 300 training points are needed
to obtain an energy RMSE lower than 1.0 kcal mol−1 and the force
RMSE gets close to 1.1 kcal (mol Å)−1 after using 1000 training
points. To achieve this performance, however, one requires different
descriptors for different mechanisms: the default descriptor (inverse
pair-wise distances) for the inversion mechanism and an extended
descriptor [inverse pair-wise distances, and information on bonded
angles and dihedrals in the form DΘ = (1 − e−Θ)2 − 1 and DΦ = 1
+ cosΦ, respectively]. The features in a given descriptor are not
evenly important for all parts of the PES. Thus, a single descrip-
tor might be unable to properly resolve all relations between the
relevant degrees of freedom for the PES and each of its transition
mechanisms.

SchNet also achieves a “chemical accuracy” of 1.0 kcal mol−1

for both inversion and rotation datasets, but, contrary to sGDML, it
can deal with both mechanisms using the same settings [Figs. 4(b)
and 4(c)]. However, SchNet is less reliable than sGDML when pre-
dicting forces, with an overall RMSE of around 1.4 kcal (mol Å)−1

for both the inversion and the rotation datasets with 1000 training
points. Better performance can be expected with larger training sets.
However, this is a trivial solution limited, in practice, by the
increased computational costs of the reference data for larger

molecular sizes. The reason that SchNet outperforms GAP/SOAP is
also clear: even though SchNet primarily learns local features, it can
learn other interactions by embedding such features into the local
environments for different parts of the molecule.

V. CHALLENGES FOR ML MODELS IN FLEXIBLE
MOLECULES

Even though GAP/SOAP, sGDML, and SchNet methods are
able to learn the PES of the azobenzene molecule with chemical
accuracy, there is a considerable difference between the predictions
for different methods, as well as for different transition mechanisms
within the same method. Below, we demonstrate that these contrast-
ing results are caused by imperfections of the implemented training
set selection schemes (suboptimal for a complex PES with multi-
ple local minima), as well as intrinsic limitations of the employed
descriptors (unable to equally capture all interactions). To do so, we
(i) explore the dependence of the performance of ML methods on
the specific selection of a training set by considering the results of all
cross-validation tasks and (ii) modify the descriptors of GAP/SOAP
and sGDML models.

The prediction accuracy of GAP/SOAP models is not consider-
ably affected by the particular choice of a training set of each cross-
validation task. The average energy RMSE over all cross-validation
tasks (see Fig. 5) is practically the same as the RMSE of the best
model (see Fig. 4), with both errors going below 1.0 kcal mol−1 with
400 training points. The main shortcoming of GAP/SOAP mod-
els seems to be the learning of long-range interactions. This would
explain the ∼0.3 kcal mol−1 larger RMSE for the rotation mecha-
nism (Fig. 5). Indeed, due to the different mutual orientations of the
benzene rings [see geometries of the highest-energy structures on
each transition path in Figs. 4(b) and 4(c)], the vdW energy contri-
bution along the rotation transition pathway is, in average, larger by
∼0.3 kcal mol−1 than that for the inversion one. To further explore
this conclusion, we removed the vdW correction to the energy and
forces from our rotation dataset (i.e., we constructed a dataset at
the PBE level of theory) and retrained GAP/SOAP models using the
same cross-validation tasks. Unexpectedly, the prediction accuracy
of all models was the same with or without the inclusion of long-
range vdW interactions. This means that GAP/SOAP might face a
different problem, which could be related to an issue in the mapping
from configuration space to the PES for the rotation mechanism.
Since this error is comparable to the vdW energy contributions,
neglecting it is comparable to ignoring non-covalent vdW interac-
tions. Increasing the cutoff radius while keeping the same number
of basis functions does not resolve this issue. Figure 6(a) shows the
best energy and force RMSE as a function of the cutoff radius in
GAP/SOAP models with 12 radial and six angular functions. In fact,
both energy and force prediction become slightly worse. Increas-
ing the number of basis functions to alleviate this issue would lead
to computationally expensive ML models, impractical for realistic
applications.

The sGDML model provides the most accurate and data-
efficient FF but faces two important issues. The first one is the
descriptor, as shown in Fig. 4, where we had to employ differ-
ent descriptors for different transition mechanisms. Specifically, for
the inversion mechanism, the default sGDML descriptor (inverse
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FIG. 5. Mean of the energy (in kcal mol−1) and the force [in kcal (mol Å)−1] prediction accuracy over all cross-validation tasks in terms of root mean squared error (RMSE)
as a function of training set size for SchNet, SOAP, and sGDML with the default descriptor (sGDML [1/r]) and with the extended descriptor (sGDML [1/r + ang]) for (a) the
inversion and (b) the rotation datasets of azobenzene. Only models with errors below 5.0 kcal (mol Å)−1 and 2.0 kcal mol−1 are shown. In the case of sGDML models, we
only show the curve of the best performing descriptor for each mechanism.

pair-wise distances) is sufficient. In contrast, a reliable description
of the rotation mechanism requires the inclusion of information
about angles and dihedrals in the form DΘ = (1 − e−Θ)2 − 1 and
DΦ = 1 + cosΦ, where Θ and Φ are any bonded angle and dihe-
dral of the molecule in radians, respectively. The performance of the
default and extended descriptors is shown in Fig. 6(b). The default
descriptor for the rotation mechanism and the extended descriptor
for the inversion mechanism present considerable oscillations in the
energy error as a function of training set size [Fig. 6(b)], which is
unacceptable behavior for a reliable ML model. The reason is simple:
on the one hand, inverse pair-wise distances cannot correctly resolve
the states along the transition path of the rotation mechanism,
which are defined by changes in the dihedral angle ϕ. On the other
hand, all angles and dihedrals are not equally representative of the
inversion mechanism, and adding them misleads the model in this
case.

We would like to remark that even when using an appropri-
ate descriptor, the training set selection is still crucial. Out of all
the methods, sGDML is the most affected by the model selection in

cross-validation tasks [compare Figs. 4(c) and 5(b)]. While for
1000 training points, the difference between the average energy
RMSE over all cross-validation tasks and the energy RMSE of
the best model is of only 0.2 kcal mol−1, for 400 training points,
this difference is as large as 0.6 kcal mol−1. Thereby, one needs
to be very careful when selecting the best sGDML models. Fur-
thermore, the training set dependency often leads to models with
a similar force RMSE but considerably different energy RMSEs.
For instance, the average difference in energy RMSEs between the
best and the worst models for the rotation mechanism using the
extended descriptor (over all training set sizes considered here) is of
0.7 kcal mol−1, while the average difference in force RMSEs is less
than 0.2 kcal (mol Å)−1. To understand this behavior, one needs
to recall that sGDML models contain two hyperparameters apart
from the regularization. One is the width of the kernel, which is
defined by optimizing the force predictions. The other one is the
constant shift for the energy, which is employed to minimize the dif-
ference between the prediction results and the energy values in the
dataset. The energies of different conformers of flexible molecules
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FIG. 6. Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy in terms of root mean squared error (RMSE) (a) as a function of cutoff radius for GAP/SOAP
models of the rotation dataset of azobenzene trained with 600 training points and (b) as a function of training set size for sGDML with the default descriptor (sGDML [1/r])
and with the extended descriptor (sGDML [1/r + ang]) for the inversion and rotation datasets of azobenzene. Only models with errors below 5.0 kcal (mol Å)−1 and 5.0 kcal
mol−1 are shown.

are often degenerate. Consequently, even though all our training sets
follow the energy distribution of the complete dataset, they represent
different parts of the PES unequally. As a result, the energy shift
hyperparameter obtained from a given training set can become
suboptimal for the whole dataset. Hence, the force-based model
selection scheme, as implemented in sGDML, may lead to large
oscillation in energy prediction accuracy as a function of training set
size [similar to those in the green solid line in Fig. 6(b)]. To resolve
this issue, one should consider both energy and forces to select the
optimal model. For each cross-validation task, the training scheme
does not change and still relies only on forces, but for selecting the
best model out of many possibilities, we also account for the energy
prediction accuracy. Summarizing, accurate and data-efficient mod-
els are achievable with sGDML, but both descriptors and training
sets must be carefully selected.

SchNet is an optimal compromise between GAP/SOAP and
sGDML models. Like GAP/SOAP, it does not heavily depend on the
specific selection of a training set (see Fig. 5), while being capable
to learn all kind of interactions, akin to sGDML (see Fig. 4). As a

result, SchNet reproduces both transition mechanisms equally accu-
rately using the same settings, with errors only slightly larger than
those of the sGDML models. This is a consequence of the embed-
ding of local features of different atoms through the interaction
layers. To train our SchNet models, we employed six interaction lay-
ers with a 5 Å cutoff radius for local environment. This architecture
guarantees that we cover all possible interatomic distances within
an azobenzene molecule (Fig. 3), making our SchNet models effec-
tively global. However, a good overall RMSE might not always mean
a good ML model. Figure 7(a) shows the energy and force predic-
tion accuracy on different clusters of the rotation dataset of the best
SchNet model out of the five cross-validation tasks with 1000 train-
ing points [RMSEs of 0.6 kcal mol−1 and 1.3 kcal (mol Å)−1 over
the complete rotation dataset]. Each cluster corresponds to different
values of the dihedral angle ϕ (from the interval between 0○ and 10○

for index 0 to the interval between 170○ and 180○ for index 17). One
can see that the errors for close-to-equilibrium configurations are
four times larger than those for the transition regions. Increasing the
training set size and having information of the two mechanisms (i.e.,
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FIG. 7. Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy in terms of root mean squared error (RMSE) for different clusters of the rotation dataset using
(a) the best SchNet model obtained with 1000 training points of the rotation dataset [RMSEs of 0.6 kcal mol−1 and 1.3 kcal (mol Å)−1 over the complete rotation dataset]
and (b) a SchNet model trained with 4000 configurations combining the rotation and inversion datasets [RMSEs of 0.4 kcal mol−1 and 0.8 kcal (mol Å)−1 over the complete
rotation dataset]. The configurations for each cluster were selected depending on the value of the dihedral angle ϕ, going from an interval between 0○ and 10○ for index 0 to
an interval between 170○ and 180○ for index 17. Relative population of each cluster is also indicated (orange solid lines, arbitrary units).

adding the data of the inversion mechanism to the rotation dataset)
does not change this ratio [Fig. 7(b)]. We remark that while building
these models, we expect to be able to use them for accurate simu-
lations of the transition mechanism, computing reaction rates, and
lifetime of cis configuration. In order to achieve this goal, one needs
to ensure that the MLFF is equally accurate for all relevant parts of
the PES. As one can see from Fig. 7, this requirement is not fulfilled
by the obtained SchNet FFs. Importantly, by using a total of only 600
training points for both trans- and cis-like configurations (300 for
each isomer), one can train a single sGDML model that reproduces
the performance of the 4 K SchNet model on clusters 0, 1, 2, 16, and
17. Hence, while learning the entire PES of the azobenzene molecule
is possible within a SchNet model, this approach is not particularly
data efficient. There are two options to solve this problem: one is
to use a training set optimization technique, flattening the predic-
tion across the configuration space.82 The second option would be
to design schemes that combine a set of local models into a global
one, finding optimal descriptors, training sets, and models for each
part of the PES.

One might think of training ML models on a dataset con-
structed from metadynamics simulations, called MLmeta models
hereafter (see the supplementary material for the details of the meta-
dynamics simulation). However, as mentioned in Sec. II, metady-
namics datasets of the same size would contain less information
about the transition processes as compared to the rotation/inversion
datasets. One expects the MLmeta models to be less accurate com-
pared to ML models trained on the rotation/inversion datasets (for
simplicity, henceforth, we refer to them as MLmd models). Figure 8
shows the energy and force prediction accuracy of SchNetmeta mod-
els when applied to reproduce the rotation dataset from Sec. II. Each
cluster corresponds to different values of the dihedral angle ϕ (from
the interval between 0○ and 10○ for index 0 to the interval between
170○ and 180○ for index 17) to be compared to Fig. 7. The average
RMSE of the resulting SchNetmeta models is twice larger than that of
SchNetmd models presented in Fig. 7. In addition, the distribution
of errors is drastically different. The largest errors are now in the
transition region (clusters 4–13) and can be up to an order of mag-
nitude larger compared to those of the SchNetmd models. Moreover,
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FIG. 8. Energy (in kcal mol−1) and force [in kcal (mol Å)−1] prediction accuracy in terms of root mean squared error (RMSE) for different clusters of the rotation dataset
using (a) a SchNetmeta model trained with 1000 configurations and (b) a SchNetmeta model trained with 4000 configurations. The configurations for each cluster were selected
depending on the value of the dihedral angle ϕ, going from an interval between 0○ and 10○ for index 0 to an interval between 170○ and 180○ for index 17. Relative population
of each cluster is also indicated (orange solid lines, arbitrary units).

the error distribution is not uniform, which means that the differ-
ent parts of the PES responsible for the transition are not equally
represented within the metadynamics dataset.

It is important to mention that several approaches exist to
improve ML models to large and flexible molecules, such as mul-
tiscale GAP/SOAP,48 the recently developed LODE,83 or the addi-
tion of physical potentials.84 These are all promising directions,
and our study demonstrates how more advanced techniques are
necessary even for relatively small molecules such as azobenzene.
Nevertheless, multiscale approaches might lead to less data-efficient
models. Indeed, a single GAP/SOAP model is the most computa-
tionally expensive method among those used in this work. There-
fore, although a multiscale GAP/SOAP could solve the problem for
azobenzene, it could become infeasible when dealing with larger
molecules. As for methods to learn long-range interactions, they
need to be carefully integrated with local ML models since local
properties used in long-range interaction models can vary substan-
tially for different local chemical environments. This is supported
by the results we observed when comparing the performance of

GAP/SOAPmd models trained on PBE and PBE+TS reference
data.

The final step to confirm the reliability of our MLmd models is
to demonstrate their applicability in MD simulations. Figure 9 shows
the values of the dihedral angle ϕ and the angle θ as a function of sim-
ulation time obtained with constant-temperature MD runs starting
from structures close to the transition states. We selected the best
GAP/SOAPmd, SchNetmd, and sGDMLmd models trained on 1000
training points to run with each method four MD simulations of
50k steps at 300 K with a time step of 0.5 fs (video files of the simu-
lations can be found in the supplementary material). For the simu-
lation that starts from step 7 of the inversion mechanism [Fig. 9(a)],
GAP/SOAPmd and SchNetmd models lead to the trans isomer, while
the sGDMLmd model leads to the cis isomer. For the simulations
that start from step 9 of the inversion path and steps 8 and 10 of
the rotation path [Figs. 9(b)–9(d)], all models lead to the trans, cis,
and trans isomers, respectively. To keep local geometry fluctuations
under control during the relaxation process, we choose a friction
coefficient for the Langevin thermostat equal to 2 fs. From Fig. 9,
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FIG. 9. (a)–(d) Change in the main degree of freedom (ϕ for the rotation mechanism and θ for the inversion one, in ○) as a function of the simulation time (in fs) for the
four different MD simulations performed with the best GAP/SOAPmd , sGDMLmd , and SchNetmd models trained on 1000 training points. The initial geometry used for each
simulation is indicated over the graph. Tick labels on the right mark the value of the degree of freedom in the trans isomer and the cis isomer.

one can see that all MLmd models are able to correctly reproduce
the transition processes avoiding unphysical configurations, despite
the large fluctuations in the angles caused by the thermostat. This
demonstrates that the MLmd models are reliable and stable, and the
constructed datasets contain the information necessary for studying
the cis to trans thermal relaxation of azobenzene.

Summarizing the results of this section, while the state-of-the-
art ML models are capable of reproducing the complex PES of
flexible molecules, this challenge is far from being solved in prac-
tice. Default approaches demonstrating excellent performance for
small molecules or rigid systems struggle with increasing flexibil-
ity and dimensionality. Even the best performing models present
difficulties to efficiently learn the PES in its entirety. Moreover, the
way datasets are constructed is crucial for the performance of the
resulting ML models. To overcome this challenge, one should ensure
that the descriptors contain all relevant features to capture the
complex geometrical transformations in the high-dimensional PES.
In addition, training sets must represent all parts of configuration

space, which exhibits high energetic degeneracy, which makes purely
following an energy distribution ineffective. Although MD simula-
tions executed with the constructed ML potentials are promising,
we suggest further developments of robust approaches for select-
ing training points, appropriate descriptors, or even using different
models for different parts of the PES.

VI. CONCLUSIONS
In the present work, we discussed the challenge of modeling

the PES of flexible molecules using the state-of-the-art ML mod-
els when using limited sets of training data. Our results show that
methods based on local descriptors (e.g., BPNN and GAP/SOAP)
saturate quickly with the increase in the number of training points,
while not achieving the desired prediction accuracy. This is a conse-
quence of the limitations imposed by the cutoff radius for the atomic
environments. The ML methods based on global descriptors (e.g.,
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sGDML) require careful model selection procedures when the refer-
ence datasets consist of several disconnected parts of the PES. The
main challenges are the inability of simple training schemes to select
appropriate training datasets in unbalanced reference data and the
limitations of the standard molecular descriptors to pick up the fea-
tures describing the complex geometric transformations in flexible
molecules. Finally, end-to-end NNs (e.g., SchNet) do not reproduce
all relevant parts of the PES with equal accuracy. Moreover, NNs
require a larger amount of training data compared to kernel meth-
ods, which can result in a high computational cost when generating
reference datasets. All the tested MLFFs in their current form can
be further improved for quantitative studies of complex processes in
flexible molecules. Important features of ML, such as descriptors and
selection of training points, could and should be revised. The varying
performance of most of the ML models for the rotation and inver-
sion mechanisms in azobenzene also suggests switching from learn-
ing the entire PES within a single task to the employment of multiple
local models for different parts of the PES and then combining them
into a global FF.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following:

● Computational details and tables with the relevant geomet-
ric and energetic data of the minima and the structures on
the transition paths (Supporting.pdf)

● All xyz files of the minima and the structures on the transi-
tion paths (Geometries.zip)

● The datasets used for training and testing in the extended
xyz format. Energies are given in kcal mol−1, and
forces are given in kcal (mol Å)−1 (Datasets.zip and
Dataset_MetaMD.zip)

● The video files (in the mpg format) of the MD simulations
performed with the ML potentials (Movies.zip)
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81J. Dokić, M. Gothe, J. Wirth, M. V. Peters, J. Schwarz, S. Hecht, and P. Saalfrank,
J. Phys. Chem. A 113, 6763 (2009).
82See https://github.com/fonsecag/MLFF for a code to optimize the training set
selection process.
83A. Grisafi and M. Ceriotti, J. Chem. Phys. 151, 204105 (2019).
84T. Bereau, R. A. DiStasio, Jr., A. Tkatchenko, and O. A. von Lilienfeld, J. Chem.
Phys. 148, 241706 (2018).

J. Chem. Phys. 154, 094119 (2021); doi: 10.1063/5.0038516 154, 094119-14

Published under license by AIP Publishing

https://scitation.org/journal/jcp
https://doi.org/10.1021/acs.jctc.8b00908
https://doi.org/10.1103/physrevlett.108.058301
https://doi.org/10.1021/ct400195d
https://doi.org/10.1039/c6cp00415f
https://doi.org/10.1103/physrevb.96.014112
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1063/1.4973380
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1021/acs.jctc.7b00577
https://doi.org/10.1103/physrevb.97.184307
https://doi.org/10.1103/physrevlett.120.036002
https://doi.org/10.1063/1.5008630
https://doi.org/10.1021/acs.jctc.8b00110
https://doi.org/10.1063/1.5020710
https://doi.org/10.1016/j.commatsci.2018.03.005
https://doi.org/10.1016/j.commatsci.2018.03.005
https://doi.org/10.1103/physrevlett.120.143001
https://doi.org/10.1063/1.4961454
https://doi.org/10.1039/c7sc04934j
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1038/s41467-017-00839-3
https://doi.org/10.1021/acs.jpclett.5b00831
https://doi.org/10.1038/s41467-020-20212-1
https://doi.org/10.1021/acs.jctc.9b00708
https://doi.org/10.1039/d0cp04670a
https://doi.org/10.1039/d0cp04670a
https://doi.org/10.1039/a905055h
https://doi.org/10.1021/ja038327y
https://doi.org/10.1021/ja038327y
https://doi.org/10.1007/s00214-003-0528-1
https://doi.org/10.1007/s00214-003-0528-1
https://doi.org/10.1016/j.theochem.2006.11.025
https://doi.org/10.1021/jacs.7b10030
https://doi.org/10.1021/jacs.7b10030
https://doi.org/10.1016/j.cpc.2009.06.022
https://doi.org/10.1103/physrevlett.77.3865
https://doi.org/10.1103/physrevlett.102.073005
https://doi.org/10.1016/j.cpc.2018.09.020
https://doi.org/10.1021/ja00050a041
https://doi.org/10.1021/jp004128e
https://doi.org/10.1038/140281a0
https://doi.org/10.1039/jr9380000633
https://doi.org/10.1021/jp031149a
https://doi.org/10.1039/c1cs15179g
https://doi.org/10.1021/jp9021344
https://github.com/fonsecag/MLFF
https://doi.org/10.1063/1.5128375
https://doi.org/10.1063/1.5009502
https://doi.org/10.1063/1.5009502

