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We report an efficient method for detecting functional RNAs. The
approach, which combines comparative sequence analysis and
structure prediction, already has yielded excellent results for a
small number of aligned sequences and is suitable for large-scale
genomic screens. It consists of two basic components: (i) a measure
for RNA secondary structure conservation based on computing a
consensus secondary structure, and (ii) a measure for thermody-
namic stability, which, in the spirit of a z score, is normalized with
respect to both sequence length and base composition but can be
calculated without sampling from shuffled sequences. Functional
RNA secondary structures can be identified in multiple sequence
alignments with high sensitivity and high specificity. We demon-
strate that this approach is not only much more accurate than
previous methods but also significantly faster. The method is
implemented in the program RNAZ, which can be downloaded from
www.tbi.univie.ac.at��wash�RNAz. We screened all alignments
of length n > 50 in the Comparative Regulatory Genomics data-
base, which compiles conserved noncoding elements in upstream
regions of orthologous genes from human, mouse, rat, Fugu, and
zebrafish. We recovered all of the known noncoding RNAs and
cis-acting elements with high significance and found compelling
evidence for many other conserved RNA secondary structures not
described so far to our knowledge.

comparative genomics � conserved RNA secondary structure

Traditionally, the role of RNA in the cell was considered
mostly in the context of protein gene expression, limiting

RNA to its function as mRNA, tRNA, and rRNA. The discovery
of a diverse array of transcripts that are not translated to proteins
but rather function as RNAs has changed this view profoundly
(1–3). Noncoding RNAs (ncRNAs) are involved in a large
variety of processes, including gene regulation (4), maturation of
mRNAs, rRNAs, and tRNAs, or X-chromosome inactivation in
mammals (5). In fact, a large fraction of the mouse transcriptome
consists of ncRNAs (6), and about half of the transcripts from
human chromosomes 21 and 22 are noncoding (7, 8). Structured
RNA motifs furthermore function as cis-acting regulatory ele-
ments within protein-coding genes. Also in this context, new
intriguing mechanisms are being discovered (9).

Hence, a comprehensive understanding of cellular processes is
impossible without considering RNAs as key players. Efficient
identification of functional RNAs (ncRNAs as well as cis-acting
elements) in genomic sequences is, therefore, one of the major
goals of current bioinformatics. Notwithstanding its utmost
biological relevance, de novo prediction is still a largely unsolved
issue. Unlike protein-coding genes, functional RNAs lack in
their primary sequence common statistical signals that could be
exploited for reliable detection algorithms. Many functional
RNAs, however, depend on a defined secondary structure. In
particular, evolutionary conservation of secondary structures
serves as compelling evidence for biologically relevant RNA
function. Comparative studies therefore seem to be the most
promising approach. To date, complete genomic sequences of
related species have been sequenced for almost all genetic model
organisms as, for example, bacteria (10, 11), yeasts (12), nem-
atodes (13, 14), and even mammals (15–17). Several studies
(18–21) have identified a large collection of evolutionary con-

served noncoding elements in mammalian (or, more generally,
vertebrate) genomes, and it must be expected that a significant
fraction of them are functional RNAs.

Possible candidates, however, have been identified only spo-
radically so far (19, 21), simply because there are no reliable tools
to scan multiple sequence alignments for functional RNAs. The
most widely used program QRNA (22), which has been success-
fully used to identify ncRNAs in bacteria (23) and yeast (24), is
not suitable for screens of large genomes. QRNA is limited to
pairwise alignments, and its reliability is low, especially if the
evolutionary distance of the two sequences lies outside of the
optimal range. An alternative approach, DDBRNA (25), suffers
from similar problems and so far has not been used in a real-life
application. MSARI (26), on the other hand, gains its drastically
enhanced accuracy from the large amount of information con-
tained in large multiple sequence alignments of 10–15 sequences
with high sequence diversity. At present, however, data sets of
this kind are not available at a genomewide scale, at least for
multicellular organisms.

In this article we address the problem by using an alternative
approach: we combine a measure for thermodynamic stability
with a measure for structure conservation. Using a combination
of both scores we are able to efficiently detect functional RNAs
in multiple sequence alignments of only a few sequences. Our
method is substantially more accurate than QRNA or DDBRNA and
performs better on pairwise alignments than MSARI does on
alignments with 15 sequences. On the large, diverse alignments
used for testing MSARI in ref. 26, our RNAZ program achieved
100% sensitivity at 100% specificity.

Methods
Minimum Free Energy (MFE) RNA Folding. For MFE RNA folding we
used the C libraries of the Vienna RNA package version 1.5 (27).
We used RNAFOLD for folding single sequences and RNAALIFOLD
(28) for consensus folding of aligned sequences. The same
folding parameters were used for both algorithms to ensure that
the obtained MFE values were comparable. For the covariation
part of RNAALIFOLD we used default parameters. Gaps were
removed for single sequence folding.

Calculation of z Scores Using Support Vector Machine (SVM) Regres-
sion. To calculate z scores by regression analysis we used the
following procedure: we generated synthetic sequences of dif-
ferent length and base composition. The length of the test
sequences ranged from 50 to 400 nt in steps of 50. To quantify
base composition, we used the GC�AT, A�T, and G�C ratios of
the sequences and chose values for all ratios ranging from 0.25
to 0.75 in steps of 0.05. This process resulted in 10,648 points in
a four-dimensional space of the independent variables. For each
of the points we calculated the mean and standard deviation of
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the MFE of 1,000 random sequences, representing the depen-
dent variables in our regression.

We used the SVM library LIBSVM (www.csie.ntu.edu.tw�
�cjlin�libsvm) to train two regression models for mean and
standard deviation. Input data for the SVM were scaled to mean
of 0 and standard deviation of 1.

We chose the � variant of regression and a radial basis function
kernel. We optimized the parameters and found � � 0.5, � � 1,
and C � 5 to yield the best results. Finally, we obtained two
models for the mean and standard deviation we used for z-score
calculation.

The traditional sampling of z scores depends on the random-
ization of the native sequence by shuffling the positions. In this
context it was pointed out by Workman and Krogh (30) that a
correct randomization procedure should conserve dinucleotide
content because of the energy contributions of stacked base pairs
in the energy model. In principle, the regression model could be
extended to use dinucleotide frequencies. The good results with
the simple model, however, allow us to neglect this effect.

Generation of the Test Alignments. Sequences for the test align-
ments were taken from the Rfam database (31) with the
exception of the signal-recognition particle (SRP) RNA and
RNaseP test sets, which were taken from other sources (32, 33)
to use the same data as previous studies (22, 26). We used the
procedure as described (34) to generate test sets consisting of a
reasonable number of nonredundant alignments of different
sizes, with a defined range of mean pairwise identities and in
which all sequences were approximately equally represented.

Randomization of the Test Alignments. The program SHUFFLE-
ALN.PL (34) was used to generate the randomized controls for
alignments with up to n � 6 sequences. In brief, this program
implements a randomization algorithm that takes care not to
introduce randomization artifacts and produces random align-
ments of the same length, the same base composition, the same
overall conservation, the same local conservation pattern, and
the same gap pattern at the input alignment. For the large
alignments (n � 10) we used the same procedure as in ref. 26:
we completely shuffled all columns and realigned the alignment
afterward by using CLUSTALW.

SVM Classification. A binary classification SVM, again using
LIBSVM, was trained to classify alignments as RNA or another
sequence. Input parameters are the mean of the MFE z scores
of the individual sequences in the alignments (without gaps), the
structure conservation index (SCI) of the alignment, the mean
pairwise identity, and the number of sequences in the alignment.
For the final calibration of the SVM in the current implemen-
tation of RNAZ we used all classes of ncRNA with the exception
of tmRNAs and U70 small nucleolar RNAs (snoRNAs). For the
tests on known families presented in this article, we generated
models from all classes, leaving out one class at a time. In all
cases, we used alignments with mean pairwise identities between
�50% and 100% and two to six sequences per alignment. For
each native alignment we included one randomized version in
the training set. All parameters were scaled linearly from �1 to
1. We used a radial basis function-kernel and the parameters � �
2 and C � 32 to train the models. The probability estimation
option was used to obtain a model with probability information.

Test of Other Programs. We used QRNA version 1.2b and DDBRNA
as available from the author (version of July 2004, www.tigem.
it�Research�DiBernardoPersonalWebPage.htm). For the tests
shown in Table 2, we chose the cutoffs log-odd � 15 for QRNA
and K � 1.5 for DDBRNA, respectively. For RNAZ we used a cutoff
of P � 0.9 and customized models for the SVM that excluded
both SRP RNA and RNaseP from the training set.

Results
The SCI. In a recent article (34) we demonstrated that the program
RNAALIFOLD [which originally was developed for prediction of
secondary structure in aligned sequences (28)] also can be used
for detection of evolutionarily conserved secondary structure.
RNAALIFOLD implements a consensus folding algorithm gener-
alizing the standard dynamic programming algorithms for RNA
secondary structure prediction algorithms (35) by adding se-
quence covariation terms to the folding energy model (36, 37).
More precisely, a consensus MFE is computed for an alignment
that is composed of an energy term averaging the energy
contributions of the single sequences and a covariance term
rewarding compensatory and consistent mutations (28). As this
consensus MFE is difficult to interpret in absolute terms, we
previously used a time-consuming random sampling method to
assess its significance (34). This approach would require massive
computational effort even for small-sized genomes and it does
not seem practicable for large genomes as, for example, the
human genome.

A much more efficient normalization can be achieved, how-
ever, by comparing the consensus MFE with the MFEs of each
individual sequence in the alignment. To this end, we folded the
alignment and calculated the consensus MFE EA of the align-
ment by using RNAALIFOLD. If the sequences in the alignment
fold into a conserved common structure, the average E� of the
individual MFEs will be close to the MFE of the alignment,
EA � E� . Otherwise, the MFE of the alignment will be much
higher (indicating a less stable structure) than the average of the
individual sequences, EA �� E� . We therefore define the SCI as

SCI � EA�E� .

A SCI close to zero indicates that RNAALIFOLD does not find a
consensus structure, whereas a set of perfectly conserved struc-
tures has SCI �1. A SCI � 1 indicates a perfectly conserved
secondary structure, which is, in addition, supported by com-
pensatory and�or consistent mutations, which contribute a
covariance score to EA.

A Normalized Measure for Thermodynamic Stability. It is widely
believed that MFE predictions cannot be used for detection of
functional RNAs after an in-depth study on the subject (38).
Although thermodynamic stability is not significant alone, it still
can be used as a valuable diagnostic feature because functional
RNAs are indeed more stable than random sequences to some
degree (34, 38). This effect is particularly dramatic in the case of
microRNA precursors (39).

The significance of a calculated MFE value m is assessed by
comparison with a large sample of random sequences. This
approach was introduced 16 years ago (40) and is still widely
used today (18, 19, 39). Typically, the normalized z score z �
(m � �)�� is used, where � and � are the mean and standard
deviations, respectively, of a large number of random sequences
of the same length and same base or dinucleotide composition.

The parameters � and � are, by construction, functions of
length and base composition. In the case of RNA molecules we
found that they can be computed very accurately from a rela-
tively simple regression model, which we obtained by means of
a standard implementation of a SVM algorithm. SVMs are a set
of related supervised learning methods with a solid mathemat-
ical foundation, applicable to both classification and regression.
SVMs nonlinearly map their n-dimensional input space into a
high dimensional feature space by using a so-called kernel
function. In this way, nonlinear classifiers can be created by
constructing linear classifiers in the feature space (41). To
calibrate the regression model we used 1,000 random sequences
for each of �10,000 points evenly spaced in the variable space
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spanned by chain length and base composition. Independent
SVMs were trained for � and � (see Methods for details).

The accuracy of the SVM regression model was verified by
comparing z scores from the SVM approach with z scores
obtained by sampling (Fig. 1). We found that the correlation
between sampled values and SVM values was as good as the
correlation between two independently sampled z scores for the
same test sequences at a sample size of 1,000. We therefore can
replace the time-consuming sampling procedure by the SVM
estimate without a significant loss of accuracy, while saving
about a factor of 1,000 in computer time.

Classification Based on both Scores. To classify alignments as a
functional RNA or other sequence we have to determine the
separatrix between functional RNAs and other sequences in the
SCI�z-score plane. Again, this is a typical application for SVMs;
we therefore trained a binary classification SVM on test sets
encompassing all major known classes of ncRNAs.

We generated test alignments by using CLUSTALW of 12 well
known ncRNA classes from Rfam (31) as well as random
controls for which any native secondary structure is removed by
shuffling the alignment positions (see Methods) and computed z
score and SCI. Fig. 2 illustrates the results for a test set of tRNAs
and 5S rRNAs. Fig. 3, which is published as supporting infor-
mation on the PNAS web site, shows the results for the other

ncRNA classes. We find that the combination of both scores
reliably separates the native alignments from the randomized
controls in two dimensions.

To improve the performance of the binary classification SVM
we used not only z score and SCI but also the mean pairwise
identity and the number of sequences in the alignment as input
parameters. In essence, this additional input teaches the SVM to
interpret the information contained in the numerical value of the
SCI depending on the sequence variation in the alignment. This
refinement is necessary because the information content of a
multiple alignment strongly depends on these parameters. In the
extreme case, an alignment of identical sequences has SCI � 1
but does not contain any information about structural conser-
vation at all. Because we used a randomized control that has the
same number of sequences and the same pairwise sequence
conservation together with each positive example, the calibra-
tion process was not biased by these additional variables.

The class probability P estimated by the SVM provides a
convenient significance measure. Table 1 shows the sensitivity
and specificity for detecting different ncRNA classes at different
probability cutoffs. We used alignments with mean pairwise
sequence identities between 60% and 100% and two to four
sequences per alignment. At a cutoff of P � 0.9, we can detect
on average 75.27% at a specificity of 98.93%.

The accuracy of the classification depends quite strongly on
the type of ncRNA. We can find most RNA classes with high
sensitivities in the range of 80% to 100%. Only 2 of the 12 classes
in our test set (U70 snoRNA and tmRNA) were difficult to
detect. The scatter plots (Fig. 3) show that the U70 is quite stable
but not very well conserved, whereas the tmRNA has a con-
served secondary structure that is obviously not very stable
and moreover contains pseudoknots. Alignments with more
sequences are needed to detect these two RNA classes
quantitatively.

We emphasize that, although we use here a machine learning
approach for classification, we do not train the SVM on specific
sequences, sequence patterns, structure motifs, conservation
patterns, or base compositions. We use the SVM solely as a guide

Fig. 1. z scores calculated by SVM regression in comparison with z scores
determined from 1,000 random samples for each data point. As test sequences
we chose 100 sequences from random locations in the human genome and 100
known ncRNAs from the Rfam database (31). (Upper) Correlation of z scores
from two independent samplings (mean squared error: 0.00990). (Lower)
Correlation of calculated z scores and sampled z scores (mean squared error:
0.00998)

Fig. 2. Classification based on z scores and SCI by using a SVM. Alignments
of tRNAs and 5S rRNAs with two to four sequences per alignment and mean
pairwise identities between 60% and 90% are shown. Green circles represent
native alignments, and red crosses represent shuffled random controls. The
background color ranging from red to green indicates the RNA class proba-
bility for different regions of the z–SCI plane.

2456 � www.pnas.org�cgi�doi�10.1073�pnas.0409169102 Washietl et al.



to interpret the SCI and z score, which represent two diagnostic
features that do not contain any information that is specific for
a particular class of ncRNAs. In fact, it would be interesting to
replace the SVM by a direct statistical model. To demonstrate
that our classification procedure is generally applicable and not
biased toward ncRNA classes of the training set, we trained the
SVM by excluding particular classes of ncRNAs and used those
models to classify the excluded ncRNAs and their randomized
controls. The sensitivities summarized in Table 1 therefore can
also be expected for novel classes of structured ncRNAs.

Comparison to Other Methods. RNaseP and SRP RNAs have
repeatedly been used for benchmarking ncRNA detection algo-
rithms (22, 26). We therefore use these data sets here as well. For
the comparison to QRNA and DDBRNA we used pairwise and
three-way alignments with mean pairwise identities between
60% and 90%, respectively. In contrast to the previous section,
we excluded alignments with identities �90% because both
QRNA and DDBRNA are known to perform poorly on such input
data. We used a cutoff of P � 0.9 for RNAZ and chose the cutoffs
for the other programs in a way that the specificity is at least 90%.
Results are summarized in Table 2. We found that RNAZ is
substantially more sensitive on both pairwise and three-way
alignments than QRNA and DDBRNA and at the same time has a
larger specificity.

We also tested our method on larger alignments with 10
sequences as used for benchmarking MSARI. We generated 150
alignments that had mean pairwise identities between 50% and
70%. Our SVM classification model currently is trained only for
up to six sequences so we did not use it for the classification of

this test set. It turns out, however, that the simple rule SCI � 0.3
and z � �1.5 perfectly separates the native alignments from the
controls with 100% sensitivity and 100% specificity by using
either of the two scores without help of a SVM. Although the
alignments produced by CLUSTALW are, at this level of sequence
similarity, structurally not perfectly correct, our consensus fold-
ing algorithm still finds the correct common structure and the
SCI is still significant, albeit at lower levels.

At the time this article was written, no executable version of
MSARI was available so we can compare RNAZ only with the
published results: according to ref. 26, MSARI achieves at best a
sensitivity of 56% at 100% specificity for CLUSTALW alignments
of n � 10 RNaseP or SRP RNA sequences.

Implementation and Run Time. The method described above was
implemented in RNAZ by using the C programming language. The
time complexity of our method is � (N � n3), where N is the
number of sequences and n is the length of the alignment. Table
3 compares the run time for pairwise alignments of different
lengths between RNAZ and the alternative methods: RNAZ is not
only more accurate but also significantly faster than the other
methods. (A comparison with MSARI was not possible because no
implementation is publicly available. It should have similar run
times as RNAZ, however, because it also uses the RNA folding
routines of the Vienna RNA package as the rate-limiting step.)

Screening the Comparative Regulatory Genomics (CORG) Database for
Functional RNA Structures. The CORG database is a collection of
conserved sequence elements in noncoding, genomic DNA (42).
The release 2.0 version contains multiple sequence alignments of
conserved elements in the upstream regions (up to 15 kb from
the translation start) of orthologous protein-coding genes from

Table 1. Detection performance for different classes of ncRNAs

ncRNA type N

Cutoff, classification probability

0.5 0.9 0.99

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

5S ribosomal RNA 297 81.48 (242) 96.63 (10) 68.69 (204) 99.33 (2) 33.00 (98) 100.00 (0)
tRNA 329 94.83 (312) 93.62 (21) 90.27 (297) 97.87 (7) 75.68 (249) 99.70 (1)
SRP RNA 464 100.00 (464) 96.55 (16) 96.55 (448) 98.92 (5) 66.16 (307) 100.00 (0)
RNAse P 291 98.97 (288) 96.22 (11) 84.19 (245) 99.31 (2) 56.70 (165) 100.00 (0)
U2 spliceosomal RNA 351 98.58 (346) 97.72 (8) 95.44 (335) 99.15 (3) 66.67 (234) 99.72 (1)
U5 spliceosomal RNA 285 91.58 (261) 98.25 (5) 81.75 (233) 100.00 (0) 70.53 (201) 100.00 (0)
U3 snoRNA 277 83.75 (232) 98.56 (4) 62.82 (174) 99.28 (2) 44.40 (123) 99.64 (1)
U70 snoRNA 363 61.16 (222) 96.69 (12) 35.54 (129) 98.90 (4) 17.91 (65) 99.72 (1)
Hammerhead III ribozyme 271 100.00 (271) 95.20 (13) 98.15 (266) 98.89 (3) 89.67 (243) 99.26 (2)
Group II catalytic intron 407 78.62 (320) 96.31 (15) 76.90 (313) 98.53 (6) 25.31 (103) 100.00 (0)
tmRNA 386 24.87 (96) 96.37 (14) 18.65 (72) 98.19 (7) 8.55 (33) 99.48 (2)
MicroRNA mir-10 380 100.00 (380) 95.26 (18) 97.63 (371) 99.21 (3) 62.37 (237) 100.00 (0)
Total 4,101 84.17 (3,452) 96.42 (147) 75.27 (3,087) 98.93 (44) 50.18 (2,058) 99.80 (8)

Results for alignments with two to four sequences and mean pairwise identities between 60% and 100% are shown. N is the number of alignments in the
test set. For each native alignment, one randomized alignment was produced, and randomized alignments classified as ncRNA were counted as false positives.
Sensitivity and specificity are shown in percentage for three cutoffs of the RNA class probability predicted by the SVM. Absolute numbers of true positives and
false negatives are shown in parentheses.

Table 2. Detection performance (sensitivity�specificity) for SRP
RNA and RNAseP alignments with mean pairwise identities
between 60% and 90%

Program

No. of sequences in alignment

2 3 10

QRNA 42.9�92.9 — —
DDBRNA 45.4�98.5 58.0�94.5 —
MSARI — — � 56�100
RNAZ 87.8�99.5 94.1�99.6 100�100

Table 3. Computer time in s for 1,000 alignments on an Intel
2.4-GHz Pentium 4

Program

Alignment length

100 200 300

QRNA 485 4,044 14,777
DDBRNA 741 921 1,522
RNAZ 163 375 754
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human, mouse, rat, Fugu, and zebrafish. We focus here on the
4,263 conserved noncoding blocks (CNBs) that are �50 nt.

We scanned the alignments by using RNAZ; after clustering
overlapping and redundant CNBs we found 89 distinct regions
are predicted as structural RNA with P � 0.5. Of these, 28 score
with P � 0.9 (see Table 4). Among the predicted RNAs we can
find all known ncRNAs from Rfam (31) and the miRNA registry
(43) that are located in the upstream regions of known protein-
coding genes. We identified six micro-RNAs with P � 0.99 and
the snoRNA U93 with P � 0.72. Furthermore, we also could
reliably (P � 0.98) detect known structural cis-acting elements
(44); in particular, we encountered four internal ribosome entry
sites (45) and one iron response element (46).

Thus only 11 of the 89 RNAZ hits are known ncRNAs or
cis-acting structures. This leaves us with 78 candidates, 17 of
which have RNAZ probabilities above P � 0.9. We estimated the
specificity in this screen by scoring random controls and found
that the P � 0.5 and P � 0.9 cutoffs have associated specificities
of 99.2% and 99.9%, respectively. This finding is even higher
than in the test examples; we therefore are confident that most
of these hits are true positives.

Table 4 lists the top hits and their genomic context. We found
several hits in 5� UTRs of protein-coding genes, as for example
in NFAT5, the only known transcription factor involved in
osmoregulation in mammalian cells. NFAT5 has a spliced 5�
UTR, and in one exon we found a stable and conserved
stem–loop structure (CNB-405712). Interestingly, several splice
variants of this mRNA exist, some of which have this exon,
whereas others do not. We suspect that CNB-405712 is an
important regulatory module of the NFAT5 mRNA.

Significant hits also were found in introns, even though introns
are not systematically covered in the current release of CORG.
For example, CNB-284325 is a structurally highly conserved

element supported by many compensatory mutations in the
intron of a muscle-specific LIM domain protein. This structure
probably is part of a ncRNA.

Some other hits are not directly related to any known protein-
coding genes. CNB-134297 is an exceptionally large (�1,800 nt)
conserved region without any annotation or predicted coding
capacity. We scanned alignments �300 in sliding windows of size
300 and slide 50. In this special case, significant RNA structures
were predicted in several independent windows. This region is
thus a strong candidate for a novel ncRNA.

The CORG database sporadically contains alignments of
coding regions, and we also found significant secondary struc-
tures in some of them (e.g., CNB-453969: P � 0.999). In some
instances we could detect only a signal in the reverse comple-
ment strand compared with the mRNA, possibly indicating
structured antisense transcripts. For some hits, this prediction
was additionally supported by EST data. We routinely scanned
the reverse complement for all alignments, because RNAZ scores
are generally higher if the RNA in question is provided in the
correct orientation. The snoRNA U93 found in CNB-470004 is
a good example demonstrating the remarkable sensitivity of
RNAZ. It is predicted as RNA with P � 0.72 in its correct
orientation, whereas there is no significant signal in the reverse
complement strand (P � 0.06).

A detailed description of all 89 hits can be found at www.tbi.
univie.ac.at�papers�SUPPLEMENTS�RNAz, where we pro-
vide links to the University of California, Santa Cruz genome
browser (47), allowing a detailed study of the genomic context
for all hits (annotation, mRNA structure, ESTs, etc.). Unlike
other methods, RNAZ does not only predict the existence of a
functional RNA element, it also predicts an accurate model of
the consensus structure. These can also be found at www.tbi.
univie.ac.at�papers�SUPPLEMENTS�RNAz together with the
annotation of compensatory mutations.

Table 4. Top-scoring alignments in the CORG database

CORG ID P Genomic context Function

110355 1.000 5� UTR of Di George syndrome critical region gene 8 IRES
194820 1.000 Micro RNA: mir-196b
226470 1.000 MicroRNA: mir-10a
288188 1.000 Micro RNA: mir-10b
393758 1.000 5� UTR of solute carrier family 40 (iron-regulated transporter) IRE
119596 0.999 Micro RNA: mir-34b
159932 0.999 Micro RNA: mir-138-2
373196 0.999 Not annotated Unknown
453969 0.999 Coding exon of retinoic acid-induced 17 Unknown
461749 0.999 Coding exon of CIN85-associated multidomain containing RhoGAP Unknown
264053 0.997 5� UTR of brain chitinase like protein 2 IRES
376858 0.997 Not annotated Unknown
405712 0.997 5� UTR exon of nuclear factor of activated T cells 5, tonicity-responsive (NFAT5) Unknown
391315 0.996 Micro RNA: mir196a-2
386451 0.985 5� UTR of a hypothetical protein Unknown
260572 0.984 Upstream of a hypothetical protein Unknown
430443 0.983 Upstream�5� UTR of Hairy and enhancer of split 1 Unknown
57635 0.980 5� UTR of a hypothetical protein IRES
238772 0.980 5� UTR of a hypothetical protein IRES
284325 0.964 Intron of skeletal muscle LIM-protein 2 Unknown
134297 0.963 Not annotated Unknown
501416 0.961 Coding region of hypothetical protein Unknown
363131 0.950 Upstream of Eyes absent 1 Unknown
386639 0.950 5� UTR of ribosomal protein L12 Unknown
143688 0.938 Upstream of zinc finger protein 503 Unknown
456164 0.921 Intron of the spliced 5� UTR of checkpoint suppressor 1 Unknown
154812 0.918 Upstream�5� UTR of basic helix–loop–helix domain containing, class B 5 Unknown
406119 0.902 Upstream of zinc finger protein of the cerebellum 3 Unknown

IRE, iron response element. IRES, internal ribosome entry site.
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Discussion
We have described here a versatile method for detecting func-
tional RNAs in genomic screens. This approach can reliably
detect a surprisingly wide variety of different ncRNAs and
cis-acting RNA elements by using only evolutionary conserva-
tion and thermodynamic stability as characteristic signal. Al-
though conceptually simple, the SCI proved to be a convenient
and effective measure of structural conservation. Our stability
measure, on the other hand, shows that, contrary to common
belief, thermodynamic stability can be useful for ncRNA detec-
tion. As a consensus of several independent sequences in an
alignment, stability can be a significant measure. Furthermore,
we have demonstrated that a properly normalized stability
measure can be directly calculated without the need for time-
consuming sampling of shuffled sequences or alignments. Our
results show that RNAZ is suitable for large-scale genomic
annotation whenever alignments can be obtained.

A wealth of genomic data together with new methods for
generating high-quality alignments (29) are already available.
Aided by visualization tools (47), we aim to draw genomewide
maps of significant RNA structures. This approach of ‘‘compu-
tational RNomics’’ opens a perspective, which we hope will
result in the discovery of additional terrain in the expanding
RNA world of cellular mechanisms.
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