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The definition of reaction coordinates for the characterization of a
protein-folding reaction has long been a controversial issue, even
for the ‘‘simple’’ case in which one single free-energy barrier
separates the folded and unfolded ensemble. We propose a gen-
eral approach to this problem to obtain a few collective coordi-
nates by using nonlinear dimensionality reduction. We validate the
usefulness of this method by characterizing the folding landscape
associated with a coarse-grained protein model of src homology 3
as sampled by molecular dynamics simulations. The folding free-
energy landscape projected on the few relevant coordinates
emerging from the dimensionality reduction can correctly identify
the transition-state ensemble of the reaction. The first embedding
dimension efficiently captures the evolution of the folding process
along the main folding route. These results clearly show that the
proposed method can efficiently find a low-dimensional represen-
tation of a complex process such as protein folding.

reaction coordinate � transition state � manifold � embedding � ISOMAP

The folding of a protein to its functional (native) state can be
viewed as a chemical reaction, for which the ensemble of

unfolded configurations constitutes the reactant and the native
state is the product. Generally, the characterization of chemical
reactions requires the location of the reactants, products, and
transition states on a free-energy surface. Simple models (so-
called ‘‘reaction profiles’’ or ‘‘reaction coordinate diagrams’’)
are often used to describe the change in free energy as a function
of the progress of the reaction from reactant to product. Clearly,
a reaction profile is meaningful if the process of interest can be
described in terms of one or a few collective coordinates. For
instance, in a dissociation reaction in which a diatomic molecule
splits into the constituent atoms, the distance between the two
atoms provides a natural choice for the reaction coordinate, and
the progress of the reaction can be quantitatively characterized
in terms of this coordinate. For more complex reactions, the
definition of a set of reaction coordinates is a nontrivial task.
Because of the high dimensionality of a protein configurational
space, this problem is particularly challenging and is a source of
significant debate in protein-folding studies.

Here, we present an approach to the definition of reaction
coordinates for the theoretical characterization of a protein-folding
free-energy landscape based on the idea of nonlinear dimension-
ality reduction. Modern dimensionality reduction techniques allow
us to define a fast and efficient procedure that uses a significant
sample of configurations along the folding to extract the most
relevant global coordinates that can effectively describe the process.
We prove the efficiency and robustness of this method by applying
it to study the folding of the src homology 3 (SH3) domain, as
obtained from simulation with a coarse-grained protein model (1).

The possibility of using only a few global coordinates to charac-
terize the mechanism through which a protein ‘‘organizes’’ its
constituent atoms into a compact functional structure has impor-
tant practical implications. It is worth mentioning, for example, that
a quantitative comparison between simulation and experiment in

protein folding often relies on the assumption that it is possible to
identify the folding transition state and�or intermediate state
ensembles from the analysis of the simulated folding (and�or
unfolding) trajectories. However, the definition of these ensembles
is generally based on the choice of the reaction coordinates (2–4).
Alternative definitions of reaction coordinates have been discussed
in the literature (2, 5–8), as have different methods for the
identification of a set of transition-state structures (3, 4, 9). Most of
the discussion revolves around the validity of empirical reaction
coordinates that are commonly used in this endeavor. Commonly
used empirical reaction coordinates in folding studies are defined
to condense in a parameter the information on the degree of
similarity with the native structure. Examples of such coordinates
include the fraction of native contacts formed, Q (2, 5, 10–12), the
average shortest path length, �L� (13, 14), the radius of gyration, Rg
(12), or the partial contact order pCO (13, 15). The theoretical
justification for the use of these structural reaction coordinates
relies on the fact that, generally, proteins are minimally frustrated
systems and their folding mechanism can be described as a diffusion
process in a funnel-like energy landscape where the potential depth
is strongly correlated with the degree of nativeness (16–19). This
argument is not sufficient to ensure a perfect a priori correspon-
dence between a given ensemble of structures experimentally
detected [as, for instance, the transition-state ensemble, experi-
mentally characterized by �-value analysis (20, 21)] and the cor-
responding ensembles obtained on a low-dimensional landscape
defined through these reaction coordinates.

The parameter Pfold, defined as the probability of a protein
structure to reach the folded state before the unfolded state, has
been proposed as an ideal reaction coordinate for protein-folding
studies (2, 8, 14, 22, 23). However, the calculation of Pfold is
computationally so expensive that it becomes unfeasible for many
systems of interest. The definition of new strategies to estimate the
intrinsic dimensionality of a folding reaction and the definition of
the reaction coordinates themselves remain paramount issues in
folding studies (5). The approach presented here addresses both of
these questions.

What Is the Intrinsic Dimensionality of a Folding Landscape?
A protein conformation is usually described by the Cartesian
coordinates of its constituent atoms; a protein structure with N
atoms is therefore completely specified by 3N parameters. How-
ever, these parameters are not independent of each other. Clearly,
the constraints of maintaining intact the covalent bonds and angles
and other steric factors effectively reduce the degrees of freedom
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of a protein molecule. In addition, the high cooperativity of the
folding process strongly suggests that the motion of different parts
of the protein is correlated along the productive folding route(s),
further reducing the effective dimensionality of the configurational
space. These considerations lead us to assume that most of the
relevant conformations visited by a protein throughout the folding
process lie on a low-dimensional manifold embedded in the much
higher-dimensional space described by the Cartesian coordinates.

In folding�unfolding simulations, molecular dynamics trajecto-
ries provide a sampling of configurations populating the embedded
manifold that we wish to characterize. Given a sample of protein
configurations along the folding process, we address the problem of
finding a low-dimensional embedding such that the shape of the
underlying manifold is preserved. The final goal is to rigorously
define a low-dimensional, free-energy landscape that could be used
to quantitatively characterize a folding simulation. The density of
states populated on the manifold needs to be preserved as well so
that free energy can be estimated directly from the low-dimensional
embedding. In practice, the main question underlying the definition
of this embedded folding landscape is whether a base set of
coordinates exists in which very few show considerable variation
and all of the others remain almost constant during the considered
reaction; mathematically, this is a problem of dimensionality re-
duction. Similar problems are common in a number of disparate
fields. For instance, dimensionality reduction plays an important
role in image analysis and recognition, where the essential infor-
mation distributed over a large number of pixels needs to be
captured by few global parameters that can be quantitatively and
meaningfully compared (24–27).

The definition of an embedded, folding, free-energy landscape by
dimensionality-reduction techniques can reduce the systematic
error associated with the choice of empirical reaction coordinates
in the calculations of ensemble averages on particular regions of the
landscape (such as, for instance, transition-state ensembles). An
important feature of dimensionality reduction is that, usually, the
quality of the embedding can be expressed as a function of the
number of dimensions chosen, which allows one to estimate a priori
the error associated with a set of reaction coordinates. Ideally, one
could automatically compute an embedding that preserves, say,
99% of the features of the original data. Unlike empirical reaction
coordinates, the dimensions of an embedding are completely
uncorrelated so that the number of dimensions of an accurate
embedding is the same as the number of dimensions of the
submanifold. Minima and saddle points of a specified function of
the embedding coordinates (such as free energy) can be automat-
ically identified in an embedding, which is important if more than
two or three dimensions are needed to capture the features of the
original data, in which case it is not possible to visually identify the
folded and unfolded minima or transition paths between them.

Dimensionality Reduction of Folding Simulations
The problem addressed by dimensionality-reduction techniques is
to find the best d-dimensional embedding for N objects in an
n-dimensional space. Ideally, the embedding is much more compact
than the original representation, and dependencies between di-
mensions are removed. Dimensionality-reduction techniques fall
broadly into two categories: linear and nonlinear. Principal com-
ponent analysis (PCA) (28) is probably the best known (and widely
used) linear technique. Essentially, PCA computes a hyperplane
that passes through the data points as best as possible in a
least-squares sense. The principal components are the tangent
vectors that describe this hyperplane. These vectors are ordered by
the amount of variance they exhibit on the data. So the first
principal component corresponds to the best possible projection
onto a line, the first two correspond to the best possible projection
onto a plane, and so on. Clearly, if the manifold of interest is
inherently nonlinear, the low-dimensional embedding obtained by
means of PCA is severely distorted. PCA is commonly used in the

analysis of near-equilibrium fluctuations sampled by molecular
dynamics simulations (29–36), because one can usually assume that
the manifold of interest can be reasonably approximated by its
tangent hyperplane around an equilibrium point. However, the
extent of conformational changes involved in a folding process
prohibits any a priori linearization of the manifold, and nonlinear
techniques need to be used. The fact that empirical reaction
coordinates routinely used in protein folding studies cannot be
reduced to a linear combination of the Cartesian coordinates
underscores the inadequacy of linear dimensionality reduction
techniques to characterize a folding landscape.

The ISOMAP Algorithm for Nonlinear Dimensionality Reduction. Al-
though several nonlinear dimensionality reduction techniques have
been proposed [especially in the context of image analysis (37),
speech recognition (38), and climate data analysis (40, 41)], the
development of new methods is still an active area of research. The
technique we used here for the characterization of folding land-
scapes is based on the recently proposed ISOMAP algorithm (42).
The basic idea of ISOMAP is to define a low-dimensional embedding
that preserves as best as possible geodesic distances between all
pairs of data points in the sample under consideration (42). The
geodesic distance between a pair of points that lie on a surface (or,
more generally, a manifold) is defined as the length of the shortest
path between them, when the path is confined to lie on the surface.
In the context of the ISOMAP algorithm, we assume that a low-
dimensional embedded manifold exists, but we do not have an
explicit mathematical formulation for the manifold; rather, we have
a discrete set of points sampled from this manifold. Therefore, we
can only approximate the geodesic distance on the manifold
between a general pair of points, say x and y. The idea of ISOMAP
is to estimate the shortest possible path from x to y by ‘‘hopping’’
through neighboring points and adding up the short distances
between them. Fig. 1 illustrates this idea on a simple case of an

Fig. 1. A simple case of embedding. (a) The data points (blue dots) are shown
‘‘live’’ on the two-dimensional surface of the torus, although they are em-
bedded on a three-dimensional space. The application of the ISOMAP algorithm
(42) to this set of data defines two independent coordinates on which all
points are mapped. (b) The resulting two-dimensional embedded space. These
two embedding coordinates cannot be reduced to a linear combination of the
original coordinates. The network of neighboring points (used to compute the
geodesic distances) is shown both in the original (a) and embedded (b) space.
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embedding. The data points shown in Fig. 1a lie on a two-
dimensional torus embedded in a three-dimensional space. The
application of the ISOMAP algorithm to this set of data produces the
two-dimensional manifold shown in Fig. 1b, where the network of
neighboring points is also shown. A pair of points has been chosen
to show the approximation of the geodesic distance between them.
The red curve connecting this pair of points represents the shortest
‘‘hopping’’ distance within the network of neighbors, both in the
original three-dimensional space (Fig. 1a) and on the resulting
two-dimensional embedded surface (Fig. 1b).

This approximation for the geodesic distance holds provided that
the data represents a good sampling of the embedded manifold
(that is, the sampling of the manifold is sufficiently dense). If a poor
data sampling is used, then connecting a point to its nearest
neighbors may result in taking ‘‘shortcuts’’ across the surface,
artificially shortening distances.

In addition, this approximation for the geodesic distance relies on
the definition of neighboring points. Each point should be con-
nected to a number of neighboring points that is not too small (to
ensure the connectivity of the manifold) or too large (to minimize
the occurrence of shortcuts), that is, a robust definition of ‘‘neigh-
boring points’’ is required. Neighboring points can be defined
around each point either by choosing a fixed number of neighbors
(that is, the k closest points according to a distance measure, as for
instance the least rms deviation), or by assigning a cut-off distance
and considering all of the points residing within it.

In the work presented here, for each point we have defined its
nearest neighbors as the k points with the smallest rms deviation to
it, with k � 9. The robustness of this definition is discussed in detail
in the supporting information, which is published on the PNAS web
site, where several tests on the validity of the approximations used
are presented.

In practice, the ISOMAP algorithm consists of the following three
steps:

1. First, the nearest neighboring points are computed for each
point. The nearest neighbor network (or graph) is represented
by the list of neighbors for each point, with their associated
distances.

2. The second step involves computing the shortest paths between
every pair of points. As explained above, the distances along
these shortest paths within the neighbor network are added up
to approximate the geodesic distance between the points.

3. Finally, a low-dimensional representation of the points (i.e.,
protein configurations for the case considered here) is found
such that the interpoint Euclidean distances best preserve their
geodesic distances.

Scalable ISOMAP (ScIMAP) and Its Application to Large Folding Simu-
lations. Although the idea is very straightforward, the basic ISOMAP
algorithm as described above suffers from performance bottlenecks
when used on large data sets and cannot be directly applied to the
study of folding reactions. The major bottleneck when working with
molecular data resides in the computation of all neighboring points,
for every point, especially if the distance measure is computation-
ally expensive. There are also problems in the computation of the
shortest paths for all pairs and in the computation of the final
coordinates for the embedding, because these require working with
huge matrices (for which, for example, eigenvalues are needed).
These bottlenecks render computationally impractical the applica-
tion of the ISOMAP algorithm to study protein simulations, where the
number of conformations sampled is generally N �� 100,000, and
the protein size yields a very expensive distance measure. We use
here the basic idea of ISOMAP as a starting point to define a
procedure that is computationally scalable to very large data sets.
We introduce a number of nontrivial modifications to suit the basic
ISOMAP algorithm to analyze large data sets, such as protein
conformations generated in folding�unfolding trajectories. We call
this modified procedure ScIMAP.

First of all, the computational bottlenecks present in ISOMAP can
be strongly reduced by using landmark points, as has been proposed
in recent literature (43, 44). We designate nL data points (i.e.,
protein configurations) to be landmarks, where nL �� N. Rather
than computing all-pairs shortest paths, we just compute the
shortest path from each landmark to every other point. The use of

Fig. 2. Residual variance as a function of dimensions considered in the
embedding, as obtained when the PCA (blue dots) or our nonlinear dimen-
sionality reduction (red dots) [based on the idea of the ISOMAP algorithm (42)]
is used to characterize the space sampled in extensive folding�unfolding
simulations of a SH3 protein model.

Fig. 3. A one-dimensional free-energy profile F(x1) as a function of the first
embedded dimension, x1, as extracted from the dimensionality reduction
procedure. One single barrier is detected around the value x1 � �4. (Inset) The
average value of Pfold associated to each small interval x1 � 	x1 � (�7, 0) is
plotted as a function of x1. The error bar corresponds to the variance of Pfold

for a given value of x1. The continuous gray line is the theoretical folding
probability Pt(x1) associated with the one-dimensional free-energy curve F(x1)
(see text for detail). The red circles identify the Pfold and Pt values correspond-
ing to the top of the free-energy barrier (that is, around x1 � �4).

Das et al. PNAS � June 27, 2006 � vol. 103 � no. 26 � 9887

CO
M

PU
TE

R
SC

IE
N

CE
S

BI
O

PH
YS

IC
S



landmarks reduces the shortest-path computation time by a factor
nL�N. The intuition for landmark-based ISOMAP is that if the
manifold is low-dimensional, each point can be located by consid-
ering its distance to only a small number of landmarks. In theory,
if nL � d 
 1 and the landmarks are in general position, then there
are enough landmarks to locate each point. If the landmarks are
chosen randomly, then nL needs to be sufficiently larger than d to
guarantee stability (see the supporting information for details).

Although it is more space- and time-efficient than the basic
version of the algorithm, landmark-based ISOMAP is still not prac-
tical to compute low-dimensional embeddings of large molecular
trajectories (typically �100,000 conformations). To obtain a good
coverage of the conformational manifold (which is, in turn, essential
to ensure the validity of the geodesic approximation and to obtain
accurate free energy estimates), it is necessary to compute embed-
dings of very large trajectories.

To make the problem computationally tractable, we can make
the following observation. We expect that low free-energy areas on
a folding landscape will have a very high sampling density, resulting
in a multitude of conformations. In particular, for a canonical
sampling at the temperature close to the folding temperature, a
significant fraction of the sampled points is expected to fall near the
protein’s folded state, typically with little spatial variability. These
redundant conformations, although crucial to estimate the density
of states (thus to compute all thermodynamic averages), are not
necessary to infer the overall shape of the manifold we are trying
to recover and can be initially ignored to obtain the embedding
geometry. Once the low-dimensional embedding has been found,
the discarded conformations can be reinserted into place by com-
puting their low-dimensional coordinates as a combination of the
coordinates of their nearest neighbors, which is a less demanding
process than solving for the global manifold shape of the original
data set. The reinserted points now restore the original density of
states of the trajectory around the folded state and allow for the
computation of thermodynamic quantities.

The reinsertion of conformations into a precomputed low-
dimensional embedding can also be used to further enrich the
resolution of the landscape, for instance by adding configura-
tions sampled at different temperatures [that can be combined
in free energy calculations (45, 46)]. Moreover, the reinsertion
of configurations provides a way to test the robustness of the
procedure to extract the low-dimensional embedding. If some of
the configurations to be reinserted are in regions where their
closest neighbors are in fact far apart, the approximation used is
not valid. In the application presented below, all of the config-
urations initially filtered out could be reinserted without expe-
riencing such a problem.

Finally, after the problem size has been reduced as outlined
above, the algorithm can be run in parallel on a cluster of com-
puters. In particular, we adopted parallel, iterative procedures (47,
48) that efficiently compute the top m �� N eigenvalues of the
distance matrix as required by the embedding method. The details
are presented in the supporting information.

Results: Folding Landscape of SH3 as a Low-Dimensional
Embedded Manifold
We tested ScIMAP outlined above by applying it to characterize the
protein-folding landscape obtained from simulation of a coarse-
grained model of an SH3 domain. The basic ideas of the model are
detailed in a recent publication (1), where a comparison of the

Fig. 4. A two-dimensional free-energy profile F(x1, x2) as a function of the
first and second embedded dimensions (x1 and x2, respectively) as extracted
from ScIMAP. (a) The free energy is shown as a contour plot. Each contour
represents an increase of free energy of 1 kBT and colored according to the
color key (colors from red to blue indicate progressively decreasing free
energy). (b) The free-energy gradient field is superimposed on the free-energy
contour plot. The thick gray line approximately locates the separatrix between
the folded and unfolded state basins, where gradient fluxes leading to

opposite minima meet. (c) The results from the Pfold analysis are superimposed
on the two-dimensional embedded landscape. The average value of Pfold at a
given (x1, x2) position on the landscape is color-coded according to the color
key. Colors ranging from red to blue indicate values of Pfold increasing from 0
to 1. The comparison of b and c reveals that the region with Pfold � 0.5 is fully
consistent with the separatrix region.
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results with experimental data also are presented. The purpose of
the application presented here is not to further validate this
coarse-grained protein model but rather to show how nonlinear
dimensionality reduction can be used to estimate the intrinsic
dimensionality of the configurational space explored in folding
simulations, and to ‘‘naturally’’ define a set of orthogonal reaction
coordinates associated to the relevant dimensions.

The performance of a dimensionality-reduction procedure can
be estimated by monitoring the residual variance �r(d, n) as a
function of the number of dimensions considered for the embedded
manifold, d, and the dimensionality, n, of the original space.
Following the definition used in ref. 42, the residual variance �r(d,
n) can be computed as �r(d, n) � 1 � R2(D̂d, Dn), where R(D̂d, Dn)
is the correlation coefficient taken over all of the entries of matrices
D̂d and Dn. The matrix D̂d contains all of the pairwise distances as
obtained on the d-dimensional embedding, whereas the matrix Dn
stores the corresponding geodesic distances as computed in the
original (n-dimensional) space. In the case of the SH3 folding
simulations that we are considering here, the original space has
dimensionality n � 3 � 57 � 171. The function �r(d, n) monoton-
ically decreases as the number of embedding dimensions, d, in-
creases, up to the limit value �r(n, n) � 0 when d � n. By definition,
the maximum possible value of the residual variance is �r(d, n) �
1, if the distances computed on the d-dimensional embedded
manifold are completely uncorrelated with the geodesic distances
computed in the original space. If �r(d, n) drops close to zero for
small values of d �� n, then the space of interest can be well
approximated by considering only d embedding dimensions.

Fig. 2 shows that the embedded landscape associated to the
folding simulations of the coarse-grained model of SH3 has ex-
tremely low residual variance (blue points), even when only one
dimension is considered. Namely, �r(1, n) � 0.08, �r(2, n) � 0.04,
and �r(3, n) � 0.02. These values give an estimate of the distortion
introduced when one, two, or three embedding dimensions are used
as reaction coordinates to describe the folding landscape. The small
magnitude of these values is evident when they are compared with
the corresponding residual variance obtained when PCA is used on
the same data (red points in Fig. 2). These results support the idea
that the folding landscape of SH3 can be essentially described by
one reaction coordinate, in agreement with results from previous
work (1, 49).

Free-energy surfaces can be computed as a function of the
embedding coordinates. Fig. 3 shows the free-energy profile ob-
tained when only the first dimension is used as a reaction coordinate
for the folding process. These results are obtained for a temperature
very close to the folding temperature Tf. One main barrier separates
the free-energy minima corresponding to the unfolded and folded
states, as expected in a two-state folding process. On this reaction
profile, the transition state can be defined as the ensemble of states
with a value of the first embedding coordinate corresponding to the
top of the free energy barrier. For a two-state folding process, the
parameter Pfold provides a stringent test for the identification of
the transition-state ensemble (2, 8, 10, 14, 22, 23). Each individual
configuration around the free-energy barrier (namely, each con-
formation with a value of the first embedding coordinate x1 in the
range �7 � x1 � 0) is labeled with a value of Pfold by means of a
set of 100 ancillary simulations starting from it. For each small
interval x1 � 	x1 an average value of Pfold is computed over all
conformations with a corresponding x1 within that interval, whereas
the variance is reported as an error bar. Fig. 3 Inset shows that the
range of values on the first embedding coordinate x1 � �4
corresponding to the location of the free-energy barrier has an
associated value of Pfold � 0.5. The red circle in Fig. 3 Inset identifies
the Pfold values corresponding to the top of the free-energy barrier
(that is, around x1 � �4). Remarkably, the transition state identi-
fied by means of the one-dimensional free energy profile F(x1) as
a function of the first embedding coordinate, x1, is in full agreement
with the ensemble obtained by a thorough Pfold analysis: The top of

the free energy barrier corresponds to Pfold � 0.5. The theoretical
folding probability (39)

Pt�x1
 �
�x1

xU exp �F� y
�kBT
dy

�xN

xU exp �F� y
�kBT
dy
[1]

associated to the one-dimensional free energy F(x1) is also shown
in Fig. 3 Inset. The folding probability Pt is in agreement with the
calculated Pfold values on most of the interval considered,
particularly at the transition state. Deviations between the
average value of the calculated Pfold and the theoretical folding
probability Pt(x1) are observed around the folded state (x1 � �6)
and can be explained in terms of the variation of free energy
along the second embedding dimension in this region (as it
appears from Fig. 4, discussed below).

It is worth noting that for the protein model considered here, the
Pfold analysis required �12,000 central processing unit (CPU) hours
on an 2.2-GHz Intel Xeon processor and was performed for a small
subset of configurations,** and the embedding procedure was
completed in �500 CPU hours (�24 CPU hours running on 20
processors) and provides information on the whole configurational
space.

Not surprisingly, the transition-state ensemble from the one-
dimensional embedded manifold of the SH3 model also is in good
agreement with what can be obtained by using the parameter Q as
an empirical reaction coordinate (data not shown). Previous studies
have shown that Q is a robust reaction coordinate for some
two-state folding proteins (5, 10, 49), SH3 being one of them, which
may not be the case in general, however, particularly for more
complex folding reactions for which more than one reaction coor-
dinate is needed.

Additional information on the folding process is obtained when
the first two embedding dimensions are considered reaction coor-
dinates in the free-energy calculation. Fig. 4 presents the two-
dimensional embedded free-energy landscape as a function of the
first two embedding dimensions.

Fig. 4a shows a contour plot of the free energy. Again, as
expected for a two-state folding protein, two distinct free-energy
minima appear: one that is more localized corresponding to the
folded state and one with a larger basin corresponding to the
unfolded state. The free-energy gradient field is superimposed to
the free-energy contour plot in Fig. 4b. The transition-state en-
semble on this two-dimensional landscape can be defined by
considering the ‘‘Continental Divide,’’ i.e., the separatrix between
the basin corresponding to the folded and unfolded states. In
practice, a point on the landscape is considered in the basin of a
given minimum if the gradient flux starting from that point leads to
the minimum. The transition-state ensemble is then defined as all
regions on the landscape where gradient fluxes leading to opposite
minima meet. The transition-state region so defined is depicted in
Fig. 4b.

It is clear from Fig. 4 that the most populated folding route
(defined by the minimum free-energy path on this landscape)
closely follows the first embedding dimension. However, deviations
from the main folding route are probable, because a nonnegligible
amount of structures lie outside the minimum free-energy path
(�15% of structures lie within the light orange free-energy level on
Fig. 4).

It is important to clarify that the existence of a main folding route
does not mean that the folding mechanism follows a deterministic
pathway where one single protein structure evolves into the next
one along the pathway. Each point along this route on the low-
dimensional landscape represents a large ensemble of structures

**The Pfold parameter was computed for �8,000 protein configurations. The total number
of configurations used in the definition of the embedded free-energy landscape is
1,818,000.
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that are not necessarily similar to each other. The fact that a single
parameter (i.e., the first embedding dimension, in this case) cap-
tures the evolution of the folding process simply means that it is
possible to define a ‘‘macroscopic’’ quantity condensing into a single
number the common features of the ensemble of structures pop-
ulated at a given stage of the folding process. The first embedding
coordinate describes the evolution of this parameter from the
unfolded to the folded ensembles.

Fig. 4c presents the results from the Pfold analysis superimposed
on the two-dimensional embedded landscape. The comparison of
Fig. 4 b and c reveals that the region with Pfold � 0.5 matches the
separatrix region identified by the diverging gradient fluxes. The
variance of Pfold measured in each two-dimensional interval (x1 �
	x1, x2 � 	x2) is �Pfold � 0.12, which is significantly lower than the
variance �Pfold � 0.2 observed in the one-dimensional case (see Fig.
3). The larger uncertainty obtained when only one embedding
dimension is considered accounts for the fluctuations observed
along the second embedding coordinate.

Conclusions
We have proposed a general procedure to obtain a low-
dimensional free energy landscape associated with a simulated
protein-folding reaction. By using ScIMAP [based on ISOMAP
(42)], an embedded folding manifold is extracted from a large set
(�2,000,000) of protein conformations sampled throughout
extensive folding�unfolding simulations of a coarse-grained
model of SH3. The first few embedding coordinates provide a
set of reaction coordinates independent of each other. The
quality of the embedding can be expressed as a function of the
number of dimensions considered. This feature provides an
estimate of the error introduced when the first few d embedding
dimensions are used as reaction coordinates to describe the
simulated folding process. As a consequence, it is possible to
estimate the intrinsic dimensionality of a simulated folding
process.

The application of ScIMAP to the folding of a coarse-grained
protein model of an SH3 domain reveals that its folding landscape

is essentially one-dimensional. The first embedding dimension
captures the evolution of the folding process along the main folding
route. However, additional features emerge when two or three
dimensions are considered. For instance, the two-dimensional free
energy landscape as a function of the first two embedding dimen-
sions reveals deviations around the main folding route, populated
with a lower probability. The simulated folding reaction considered
in this paper is known to be a two-state folding process, where no
intermediate states are significantly populated. For such kind of
processes, the calculation of the transition probability (or Pfold
parameter) provides a strict a posteriori test for the ‘‘goodness’’ of
a reaction coordinate on the identification of the transition-state
ensemble. Remarkably, a thorough Pfold analysis confirms that
protein configurations in the transition-state region as identified on
the embedded free-energy landscape have Pfold � 0.5. Moreover,
fluctuations around this average value of Pfold significantly decrease
when the transition-state region is identified on the two dimen-
sional free-energy landscape (defined by means of the first two
embedding coordinates), with respect to a one-dimensional, free-
energy landscape (where only the first embedding coordinate is
used). These results validate the use of the first few embedding
dimensions as optimal reaction coordinates to characterize the
protein folding reaction, at least for the protein model used here.
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