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Advances in tandem mass spectrometry (MS/MS) steadily increase the
rate of generation of MS/MS spectra. As a result, the existing ap-
proaches that compare spectra against databases are already facing
a bottleneck, particularly when interpreting spectra of modified
peptides. Here we explore a concept that allows one to perform an
MS/MS database search without ever comparing a spectrum against
a database. We propose to take advantage of spectral pairs, which are
pairs of spectra obtained from overlapping (often nontryptic) pep-
tides or from unmodified and modified versions of the same peptide.
Having a spectrum of a modified peptide paired with a spectrum of
an unmodified peptide allows one to separate the prefix and suffix
ladders, to greatly reduce the number of noise peaks, and to generate
a small number of peptide reconstructions that are likely to contain
the correct one. The MS/MS database search is thus reduced to
extremely fast pattern-matching (rather than time-consuming match-
ing of spectra against databases). In addition to speed, our approach
provides a unique paradigm for identifying posttranslational modi-
fications by means of spectral networks analysis.

alignment � database searching � posttranslational modifications �
tandem mass spectrometry � de novo

Most protein identifications today are performed by matching
spectra against databases, using programs like SEQUEST (1)

or Mascot (2). Although these tools are invaluable, they are already
too slow for matching large tandem mass spectrometry (MS/MS)
data sets against large protein databases, particularly when one
performs a time-consuming search for posttranslational modifica-
tions (PTMs). We argue that new solutions are needed to deal with
the stream of data produced by shotgun proteomics projects. Craig
and Beavis (3) and Tanner et al. (4) recently developed the
X!Tandem and InsPecT algorithms to prune (X!Tandem) and filter
(InsPecT) the sequence databases and thus speed up the search.
However, these tools still have to compare every spectrum against
a (smaller) database.

Here we explore a concept that allows one to perform an MS/MS
database search without ever comparing a spectrum against a
database. We propose to take advantage of spectral pairs, which are
pairs of spectra obtained from overlapping (often nontryptic)
peptides or from unmodified and modified versions of the same
peptide. Most current protocols try to minimize the number of
spectral pairs, because nontryptic and chemically modified peptides
further complicate the spectral interpretations and lead to higher
running times. MacCoss et al. (5) were the first to realize the
potential of overlapping peptides for the identification of modified
proteins and have recently demonstrated the increased throughput
of modified digestion schemes (6). Also, even samples digested with
trypsin typically have many peptides that differ from each other by
a deletion of terminal amino acids (semitryptic peptides). In
addition, the existing experimental protocols already unintention-
ally generate many chemical modifications, and it has been shown
that existing MS/MS data sets often contain modified versions for
many peptides (7, 8).

Although seemingly redundant, spectral pairs open up previously
unexplored computational avenues. Having a pair of spectra (one
of a modified and another of an unmodified peptide) allows one to
(i) separate the b (prefix) and y (suffix) ion mass ladders, (ii) greatly
reduce the number of noise peaks, and (iii) propagate the identi-
fication of modifications from spectrum to spectrum, thereby

detecting unanticipated and multiple modifications. Thus, spectral
pairs allow one to generate a small number of peptide reconstruc-
tions that are very likely to contain the correct one. Instead of
generating covering sets of short 3–4-aa tags (4, 9), this approach
generates a covering set of peptides 7–9 aa long. This set typically
has a single perfect hit in the database that can be instantly found
by hashing and thus eliminates the need to ever compare a spectrum
against the database.‡ Other approaches (10–13) that compare de
novo peptide sequences against a database of protein sequences
obtain their query sequences from individual MS/MS spectra
(instead of from spectral pairs) and thus suffer from relatively low
accuracy of de novo peptide sequencing (14–16). In addition to
improvements in de novo peptide sequencing, spectra denoising and
propagation of modifications also improve the standard MS/MS
database search.

Let S(P) and S(P*) be spectra of an unmodified peptide P and
of its modified version P* (spectral pair). The crux of our compu-
tational idea is a simple observation that a ‘‘database’’ consisting of
a single peptide P is everything one needs to interpret the spectrum
S(P*).§ Thus, if one knows P there is no need to scan S(P*) over the
database of all proteins. Of course, in reality, one does not know P,
and only S(P) is readily available. Below we show that a spectrum,
S(P), is almost as useful as the peptide P for interpreting S(P*) and
can thus eliminate the need for database search. This observation
opens the possibility of substituting an MS/MS database search with
finding spectral pairs and further interpreting the peptides that
produced them. We show that these problems can be solved by
using a unique combination of de novo and spectral alignment
techniques (7, 17) to transform any given spectral pair (S1, S2) into
virtual spectra S1,2 and S2,1 of extremely high quality, with nearly
perfect b- and y-ion separation and the number of noisy peaks
reduced 12-fold.

In addition to fast peptide identification, our approach also
provides a unique paradigm for the identification of chemical and
posttranslational modifications without any use of a database.
Recently, it was argued (7, 18, 19) that the phenomenon of
modifications is much more widespread than previously thought,
and blind database search was advocated for identification of these
modifications. In particular, blind database search recently resulted
in the most comprehensive set of PTMs identified in aged human
lenses (8). The surprising conclusion of our approach is that we can
discover almost all modifications in cataractous lenses (previously
identified by blind database search) and even detect some PTMs
missed in ref. 8.
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We further combine spectral pairs into a spectral network in which
each vertex corresponds to a spectrum and each edge to a spectral
pair. Fig. 1 shows a spectral network of 945 MS/MS spectra
[corresponding to different peptides from a nuclear factor �B
kinase � subunit (IKK�) protein sample], illustrating the key
advantage of spectral networks over the traditional MS/MS data-
base search. Traditional approaches to peptide identification con-
sider each of these spectra separately without attempting to cor-
relate different spectra from related peptides. As a result, the
important insights that can be derived from the structure of the
spectral network are lost. Our approach consolidates all of these
spectra into 117 clusters (vertices of the network) and reveals
many spectral pairs (edges of the network). This results in the
analysis of all spectra at once and thus increases the confidence of
peptide identifications, reinforces predictions of modifications by
using correlated spectra, and eliminates the need to ‘‘guess’’ mod-
ifications in advance. Moreover, the spectral network even allows
one to assemble these spectra into an intact 34-aa segment of
the IKK� protein, thus opening the door for shotgun protein
sequencing (20).

Results
Interpretation of Spectral Pairs/Stars. The set of all spectra pairing
with a spectrum S in the spectral network is called a spectral star. For
example, the spectral star for the spectrum derived from peptide 3
in Fig. 1 consists of multiple spectra from five different peptides.
The high quality of the virtual star spectra derived from spectral
pairs and spectral stars makes de novo interpretation of these
spectra straightforward [see supporting information (SI) Fig. 4 and
SI Table 2]. Because star spectra feature excellent separation of b-
and y-ion ladders and only a small number of noise peaks, de novo
reconstructions of these spectra produce reliable (gapped) se-
quences that usually contain long correct tags.¶ On average, de novo
reconstructions of our star spectra correctly identify 72% of all
possible ‘‘cuts’’ in a peptide [i.e., on average, 0.72 � (n � 1) b ions
(or y ions) in a peptide of length n are identified]. This is a very high
number, inasmuch as the first (e.g., b1) and last (e.g., bn�1) b ions
are rarely present in the MS/MS spectra, which makes it nearly
impossible to explain �80% of all cuts in the IKK� sample.
Moreover, on average, unexplained peaks account for only 5% of
the total score of the de novo reconstruction.

Benchmarking in MS is inherently difficult because of a shortage

of manually validated large MS/MS samples that represent ‘‘gold
standards.’’ Although the ISB data set (21) represents such a gold
standard for unmodified peptides, large validated samples of spec-
tra from modified peptides are not currently available. As a
compromise, we benchmarked our algorithm by using a set of
11,760 spectra from the IKK� data set that were annotated using
InsPecT and extensively studied in recent publications (4, 7),
including comparisons with SEQUEST, Mascot, and X!Tandem.
Our entire spectral networks analysis (starting from clustering and
ending with interpretations) of this IKK� data set took 9 min on a
regular desktop computer (Intel Pentium 4; 2.8-GHz clock speed).
We compared our performance to that obtained with InsPecT,
which was previously shown to be 2 orders of magnitude faster than
SEQUEST for restricted database search (4). Even when searching
against a moderately sized database, such as Swiss-Prot’s set of
13,749 human proteins, InsPecT’s running time was 55 min (com-
plete running-time results are given in SI Appendix A). Thus, our
spectral networks approach (which finds both unmodified and
modified peptides) is six times faster than InsPecT (in the mode that
searches for unmodified peptides only). Below we give identifica-
tion results for both spectral pairs and spectral stars.

InsPecT identified 515 unmodified peptides in the IKK� sample,
413 of which have some other prefix/suffix or modified variant in the
sample and are thus amenable to pairing. We were able to find
spectral pairs for 386 of these 413 peptides. Moreover, 339 of these
386 peptides had spectral pairs coming from two (or more) different
peptides, i.e., pairs (S1, S2) and (S1, S3) such that spectra S2 and S3
come from different peptides.

The average number of (gapped) de novo reconstructions (ex-
plaining at least 85% of the optimal score) for star spectra was 10.4.
Although star spectra generate a small number of gapped recon-
structions, these gapped sequences are not well suited for fast
membership queries in the database. We therefore transform every
gapped de novo reconstruction into an ungapped reconstruction by
substituting every gap with all possible combinations of amino acids.
On average, this approach results in 165 sequences of length 9.5 aa
per spectrum; for 86% of all peptides, one of these tags is correct.

Although checking the membership queries for 165 sequences
can be done very quickly with database indexing (at most, one of
these sequences is expected to be present in the database), there is
no particular advantage in using such superlong tags (9.5 aa on
average) for standard database search: a tag of length 6–7 aa will
also typically have a unique hit in the database. However, the long
9–10-aa tags have distinct advantages in difficult nonstandard
database searches, e.g., discovery of new alternatively spliced
variants via MS/MS analysis. Moreover, for standard search, one
can generate a smaller set of shorter (6–7-aa) tags based on the

¶In contrast to the standard de novo algorithms, we do not insist on reconstructing the
entire peptide and often shorten the found path by removing its prefix/suffix if the path
does not explain any peaks. As a result, the found path does not necessarily start/end at
the beginning/end of the peptide.

1  KQGGTLDD  LEE  QAREL
2  KQGGTLDD  LEE  QARE
3  KQGGTLDD  LEE  QAR
4  KQGGTLDD  LEE  QA
5  KQGGTLDD  LEE-18QAR
6  KQGGTLDD  LEE-18Q
7   QGGTLDD  LEE  QAR
8   QGGTLDD-53LEE  QAR

1

2

3

457

8 6

Fig. 1. Spectral network constructed by aligning spectra from overlapping peptides. (Left) Spectral network for 945 spectra representing different peptides
from the fragment IVDLQRSPMGRKQGGTLDDLEEQARELYRRLREK of the human IKK� protein. The spectral network is constructed without any knowledge of
the peptide annotations. Each of 117 vertices in the spectral network corresponds either to a single MS/MS spectrum or to a consensus spectrum of multiple MS/MS
spectra from the same peptide (derived by clustering). Two vertices are connected by an edge whenever the corresponding spectra form a spectral pair. (Center)
A subnetwork of the entire spectral network spanning the fragment KQGGTLDDLEEQAREL (shown by red vertices Left). (Right) Paired peptides found by
analyzing the Center spectral subnetwork with our paired spectra detection procedure.
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original gapped reconstruction and use them for membership
queries. We used the obtained gapped reconstruction to generate
such short 6-mer tags. On average, each consensus spectrum
generates �50 6-mer tags. It turned out that 82% of spectra derived
from spectral stars contain at least one correct 6-mer tag.

Using Spectral Networks for PTM Identification. Our approach allows
one to detect modifications without any reference to a database.
The difference in parent masses within a spectral pair corresponds
to either a modification offset or a sum of amino acid masses.
Although not every difference in parent mass corresponds to a
modification offset (some spectral pairs may be artifacts), a histo-
gram of parent mass differences (Fig. 2a) reveals the modifications
present in the IKK� sample. Indeed, seven of the eight most
frequent parent mass differences in Fig. 2a are listed among the
eight most common modifications in the IKK� data set (7). We
emphasize that Fig. 2a was obtained without any reference to a
database, whereas Tsur et al. (7) found these modifications by
database search. The only frequent modification identified by Tsur
et al. (7) and not represented in Fig. 2a is deamidation with a small
mass offset of 1 Da that is difficult to distinguish from parent mass
errors and isotopic peaks artifacts. Interestingly, our approach
reveals an offset of �34 (present in thousands of spectral pairs) that
was not reported in ref. 7.

Additionally, spectral networks can make a contribution for the
detection of rare modifications. These modifications usually occur
on only a very small number of peptides and are thus unlikely to be
detected by the PTM frequency matrix approach from ref. 7.
Furthermore, these modifications can co-occur with other more
frequent modifications and thus completely escape identification.
We addressed these cases by focusing on modification networks,
which are subnetworks of the spectral network connecting multiple
modification states of the same peptide.

We illustrate our modification networks approach to PTM
identification by using the Lens data set. Lens proteins, because of
a very low turnover, tend to accumulate many PTMs over time and
often result in increased opaqueness and cataracts (7, 13). Of all
11,932 spectra, 2,001 were found to be paired, resulting in the
identification of 280 unmodified peptides (88% of all unmodified
peptides that have some pair in the data set).

Although at a first glance the number of annotations (280) may
seem small when compared with the number of paired spectra
(2,001), it should be noted that many of these paired spectra come
from modified peptides and thus may not generate sufficiently long
tags to match the correct peptide in the database. However, most

spectra from modified peptides were correctly paired with their
unmodified counterparts and were thus already linked to the
correct peptide. Additionally, as illustrated in Fig. 3e, the spectral
alignment between any two spectra promptly provides both the
location and mass of the modification. Thus, suppose that an
identified spectrum S was annotated with a peptide p1 . . . pn and
paired with a nonannotated spectrum S�. Using our spectral
alignment approach, we can determine on which amino acid pi
the modification occurred and readily annotate S� with
p1 . . . pi�1p*i pi�1 . . . pn, where p*i stands for a modification of pi. This
operation is defined as the propagation of a peptide annotation by
means of spectral pairs. To use propagation on any given spectral
network, we need to consider two additional conditions: (i) some
nonannotated spectra may not be directly connected to an anno-
tated spectrum (e.g., spectra with two modifications), and (ii) some
nonannotated spectra may be connected to multiple annotated
spectra (e.g., different prefix/suffix variants). We therefore use an
iterative procedure that, at each step, propagates peptide annota-
tions from every annotated spectrum onto all its nonannotated
neighbors. If a nonannotated spectrum happens to gain more than
one putative annotation, then we simply choose that which best
explains the spectrum. The neighbors are then marked as annotated
and are allowed to propagate their annotations on the next itera-
tion. For example, the propagation procedure starts from 58 (of
117) annotations of unmodified peptides in the spectral network
shown in Fig. 1, adds 53 annotations with a single modification on
the next iteration, and finally adds 6 annotations with two modifi-
cations on the final iteration. Fig. 2 illustrates this iterative propa-
gation on the Lens data set with the modification network for
peptide MDVTIQHPWFK. We remark that the existing peptide
identification tools have difficulties in identifying and validating
peptides with multiple modifications. Modification networks open
up the possibility of reliably identifying such heavily modified
peptides (which may be common in heavily modified proteins
involved in cell signaling like the IKK complex) via cross-validation
with other modified peptides as exemplified in Fig. 2.

Overall, the spectral networks analysis of the Lens data set
found all but one of the modification types previously identified
by blind database search and provided evidence for six previ-
ously undetected modifications types (see Table 1). The only
modification listed by Tsur et al. (7) and not rediscovered here
was again deamidation on N,Q, for the same reasons described
above for the IKK� data set.

Two of the six putative modifications were recently identified in
cataractous lenses by other groups (22, 23), thus reinforcing our

First propagation

Second propagation

Third propagation

Peptide annotations:

From database
+16 +16

+16

+42M+16DVTIQHPW+44FK

+28 +16

+16 +28

+42M-48DVTIQHPWFK

-64

+42MDVTIQHPWFK

+42M+16DVTIQHPW+16FK +42MDVTIQHPW+44FK

+42M+16DVTIQHPWFK +42MDVTIQHPW+16FK

a b

Fig. 2. Discovery of modifications by using spectral networks. (a) Histogram of absolute parent mass differences for all detected spectral pairs on the IKK� data
set; the y axis represents the number of spectral pairs with a given difference in parent mass. For clarity, we only show the mass range 1–100 Da. The peaks at
masses 71, 87, and 99 Da correspond to amino acid masses, and the peaks at masses 14, 16, 18, 22, 28, 32, and 53 Da correspond to known modifications that
were also found by Tsur et al. (7) using blind database search. The peak at mass 34 Da corresponds to a putative modification that remains unexplained to date.
(b) Modification network for peptide MDVTIQHPWFK from the Lens data set. The shaded node was annotated as peptide � 42MDVTIQHPWFK by database search
of the tag VTIQHP; the remaining nodes were annotated by iterative propagation. On each propagation, the source peptide annotation is combined with the
modification determined by the spectral product to yield a new peptide annotation (different modifications are shown as edges with different colors).
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predictions. One more modification was previously reported as a
loss of methane sulfenic acid on the same site (24). The discovered
N-terminal modification with an offset of 57 Da is potentially
interesting: it occurs only on two semitryptic peptides whose
nontryptic ends were previously reported as degraded N terminii of
�B1-crystallins (25), thus also reinforcing our predictions. More-
over, given that all protein N terminii are expected to be acetylated
(as has generally been observed), this could hypothetically corre-
spond to a previously undetected in vivo modification of the
degraded N terminii. Note that this 57-Da offset would normally be
attributed to a common experimental artifact caused by the cysteine
alkylation (26). However, the fact that this 57 Da is not observed on

any other peptides, and the lack of corroborating peptide fragmen-
tation evidence (i.e., characteristic loss of 57 Da from precursor
mass), suggest that this modification is a localized event that could
warrant further investigation. As an additional confirmation step,
we modified the traditional database search parameters to consider
all our discovered putative modifications and observed a complete
agreement with our proposed annotations with large Xcorr and
�Cn scores.

It should be noted that all of these putative modification types
occur on peptides that had been identified previously in this data
set (7, 8). However, most of these modifications are rare in that
they occur only at specific sites and thus tend to have low spectral

a b c

d e

Modification
site

Modification
mass

80

Fig. 3. Spectral products for terminal and internal modifications. (a) Spectral product for the theoretical spectra of the peptides TETMA and TETMAFR (all points
at the intersections between the vertical and horizontal lines). The blue circles correspond to matching b ions in the two spectra; the red circles correspond to
matching y ions. The blue and red circles are located on the blue and red diagonals. (b) Spectral product for uninterpreted spectra of the peptides TETMA and
TETMAFR. The two diagonals in the spectral product matrix still reveal the points at which peaks from the spectrum at the top match peaks from the spectrum
on the left. (c) Spectra S1,2

b and S1,2
y defined by the blue and red diagonals. (d) Spectral product for uninterpreted spectra with one internal modification. The top

spectrum corresponds to an unmodified peptide, and the left-side spectrum corresponds to a modified peptide. In these cases it is not appropriate to construct
Si,j

b /S i,j
y by simply selecting peaks on the diagonals. (e) The algorithm described in the text allows for modifications to occur in the middle of the peptide and

separates the overlapping series of b and y ions (blue and red diagonals, respectively). The peaks selected from each spectrum by the blue/red diagonals are shown
in the corresponding color.

Table 1. Putative modifications identified by spectral networks on the Lens data set

Location Modification mass, Da Type Putative annotation Comment Reference

M �48 Neutral loss Loss of methane sulfenic acid Reported on the same site 24
W 4 PTM Kynurenine Reported in cataractous lenses 22
S 30/73 Unknown Unknown
W 32 PTM Formylkynurenine Reported in cataractous lenses 23
N terminus 57 Unknown Carboxyamidomethylation Possible chemical artifact 26
N terminus 229/271 Unknown Unknown

All of these modifications occur on peptides that were previously identified in this sample. However, most of these modifications are rare in that they occur
only on specific sites and thus tend to have low spectral counts. Two of these modifications can be explained as artifacts, two are known to occur in the context
of lens, and two remain unexplained to date (see Discussion). Spectral networks and annotated MS/MS spectra figures supporting these modifications can be
found in SI Appendix B. Our approach identified all previously found modifications except deamidation on N,Q (7).
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counts, which is the major reason why they are hard to detect
through blind database search. By independently comparing
each MS/MS spectrum against a database, blind database search
generates many false-positives that are usually filtered by re-
quiring a minimum number of occurrences of each modification.
Although successful in detecting multiple-site modifications, this
approach leads to difficulties in the detection of single-site and
less-common modifications.

The spectral networks approach remedies this limitation of blind
database search by being more selective in the assignment of
modified peptide annotations. Spectral pairs provide additional
evidence that two spectra were derived from the same peptide (in
the form of correlated ion peaks and intensities) and thus add
significance to otherwise difficult spectrum identifications. As
illustrated in Fig. 2, this increased sensitivity is particularly evi-
denced on modification networks by the grouping of multiple
spectra from different modification states of the same peptide. SI
Appendix B contains supporting evidence for all the modifications
listed in Table 1, in the form of modification networks and
annotated MS/MS spectra.

Discussion
We have demonstrated the utility of spectral networks for the
identification of proteins and modifications. The key idea of our
approach is that correlations between MS/MS spectra of mod-
ified and unmodified peptides allow one to greatly reduce noise
in individual MS/MS spectra, thus making de novo interpreta-
tions so reliable that they can substitute for the time-consuming
matching of spectra against databases. We have also shown how
the correlated spectral content on modification networks can
provide consistent evidence to support the identification of rare
modifications and highly modified peptides. Our spectral net-
works software is freely available from www-cse.ucsd.edu/
groups/bioinformatics/software.html. A current limitation of our
approach is its restricted applicability to spectra with parent
charges 1 and 2; two further algorithmic developments are
necessary to allow for the integration of spectra with higher
parent charges into spectral networks. First, although spectral
alignment works for two spectra of precursor charge 3 (or
higher), it generally does not work for comparison of a spectrum
of precursor charge 1 or 2 with a spectrum of precursor charge
3. The main reason is that spectra of higher precursor charge
tend to generate b and y ions of higher charge that do not align
to the singly charged variants predominant in spectra of precur-
sor charge 1 or 2. Second, even if two spectra with parent mass
3 (or higher) are aligned, reliable de novo algorithms for
interpreting multicharged spectra are still unknown.

Tandem mass spectra are inherently noisy, and mass spectrom-
etrists have long been trying to reduce the noise and achieve reliable
de novo interpretations by advancing both instrumentation and
experimental protocols. In particular, Zubarev and colleagues (27)
recently demonstrated the power of using both collision-induced
dissociation and electron capture dissociation spectra. We empha-
size that, in contrast to our approach, this technique, as well as the
recent approach described in Frank et al. (28), require special
instrumentation or highly accurate Fourier transform MS. Another
approach for reducing the complexity of spectra involves stable
isotope labeling (29). However, the impact of this approach (for
peptide identification) has been restricted, in part by the cost of the
isotope and the high mass resolution required. Alternative end-
labeling chemical modification approaches have disadvantages such
as low yield, complicated reaction conditions, and unpredictable
changes in ionization and fragmentation. As a result, the impact of
these important techniques is mainly in protein quantification
rather than identification (29). The key difference between our
approach and labeling techniques is that, instead of trying to
introduce a specific modification in a controlled fashion, we take
advantage of multiple modifications naturally present in the sample.

Our spectral networks approach allows one to decode these mod-
ifications (without knowing in advance what they are) and thus
provides a computational (rather than instrumentation-based)
solution to the problem of MS/MS spectra identification.

Materials and Methods
Data Sets. We describe our algorithm by using MS/MS spectra from
human IKK� and lens proteins, two particularly challenging sam-
ples for PTM analysis. The IKK� data set consists of 45,500 spectra
acquired from a digestion of the inhibitor of IKK� protein by
multiple proteases, thereby producing overlapping peptides. [Spec-
tra were acquired on a ThermoFinnigan (San Jose, CA) LTQ mass
spectrometer.] The IKK� complex represents an ideal test case for
algorithms that search for PTM peptides. Until recently, phospho-
rylations were the only known PTMs in IKK, which is insufficient
to explain all mechanisms of signaling and activation/inactivation of
IKK by �200 different stimuli. Revealing the combinatorial code
responsible for PTM-controlled signaling in IKK remains an open
problem. Previous analyses of this IKK� data set resulted in 11,760
identified spectra and 1,154 annotated peptides (4, 7). This IKK�
sample presents an excellent test case for our protocol because 77%
of all peptides in this sample have spectral pairs.

The Lens data set (13) consists of 27,154 MS/MS spectra from a
trypsin digestion of lenses from a 93-yr-old male (spectra were
obtained on a ThermoFinnigan LCQ Classic ion trap mass spec-
trometer). This data set was studied extensively (7, 8, 13), resulting
in the identification of 416 unmodified peptides and 450 modified
peptides. Furthermore, 318 unmodified peptides had spectral pairs
and 343 modified peptides had an unmodified version in the sample.

Spectral Pairs. Peptides P1 and P2 form a peptide pair if either (i) P1
differs from P2 by a single modification/mutation or (ii) P1 is either
a prefix or suffix of P2.� Two spectra form a spectral pair if their
corresponding peptides are paired. Although the peptides that give
rise to a spectral pair are not known in advance, we show below that
spectral pairs can be detected with high confidence by using
uninterpreted spectra.

Our approach for detecting spectral pairs is similar in spirit to the
blind search for modified peptides first described by Pevzner et al.
(17) and further developed by Tsur et al. (7). Hansen et al. (30) and
Tang et al. (31) have alternatively proposed enumeration-
and preindexing-based approaches to blind database search, and
Savitski et al. (19) recently complemented blind database search by
taking into account the retention time. It should be noted that the
retention time analysis imposes the constraint that both spectra
must come from the same sample, whereas our approach seamlessly
enables detection of spectral pairs from multiple MS/MS sample
runs (e.g., different cell states or diseased/healthy tissue samples).

For two spectra S1 and S2, the spectral product of S1 and S2 is the
set of points (x, y) in 2D for every x � S1 and y � S2 (where S1 and
S2 are represented as sets of masses). Fig. 3a shows the spectral
product for the theoretical spectra of two peptides. The similarity
between the two spectra is revealed by two diagonals in the spectral
product: one is formed by matching b ions (blue) and the other by
matching y ions (red).

Fig. 3 b and d shows pairs of uninterpreted spectra, denoted
S1 and S2, and their spectral product. Although the ‘‘colors’’ of
the peaks are not known, in this case we still take the liberty of
naming one diagonal ‘‘blue’’ and the other ‘‘red.’’ One can use

�Condition (ii) can be viewed as a variation of condition (i) if one considers extending a
peptide by a few residues as a single ‘‘mutation’’ (such variations are common in MS/MS
samples). More generally, peptides P1 and P2 form a peptide pair if either (i) P1 is a
modified/mutated version of P2 or (ii) P1 and P2 overlap. Although our techniques also work
for this generalization, we decided to limit our analysis to simple peptide pairs, as
described above. We found that such simple pairs alone allow one to interpret most
spectra. Adding pairs of spectra that have more subtle similarities further increases the
number of spectral pairs but slows down the algorithm.
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circles (matching peak masses) on the blue diagonal to transform
the original spectrum S1 into spectrum S 1,2

b (Fig. 3c) with a much
smaller number of peaks (a peak in S1 is retained in S 1,2

b only if
it generates a circle on the blue diagonal). Similarly, one can
transform S1 into a spectrum S 1,2

y by using circles on the red
diagonal. The peak scores in both spectra S 1,2

b and S 1,2
y are

inherited from spectrum S1. Similarly, the spectrum S2 is trans-
formed into spectra S 2,1

b and S 2,1
y .††

Intuitively, if two spectra are unrelated, the blue and red diag-
onals represent random matches, and the number of circles ap-
pearing on these diagonals is small. Paired spectra, to the contrary,
are expected to have many circles on these diagonals. Although this
simple criterion (number of circles on the diagonals) would already
allow one to roughly distinguish paired spectra from unrelated
spectra, we describe below a more accurate spectral alignment test
for finding spectral pairs. See SI Appendix C and ref. 17 for the
advantages of spectral alignment over simpler spectral convolution
approaches similar to FFT cross-correlation analysis.

Fig. 3b illustrates case (ii) in the definition of spectral pairs. The
situation becomes less transparent in case (i), namely when mod-
ification/mutation occurs in the middle of the peptide (Fig. 3d). In
this case, both detecting spectral pairs (Si, Sj) and further processing
them into spectra S i, j

b and S i, j
y is rather complicated. In SI Appendix

D we describe the antisymmetric spectral alignment algorithm for
deriving virtual spectra Si, j from spectral pairs that also covers this
case of internal modifications/mutations.

For the sake of simplicity, the above description hides many
details that turn interpretation of spectral pairs into a rather
difficult algorithmic problem. The original algorithm from Pevzner
et al. (17) considered only b-b (or y-y) pairs of matching peaks and
was not able to consider all three types of matching peaks (b-b, y-y,
and b-y) when computing the spectral alignment. This complication
was addressed by Tsur et al. (7) for the case ‘‘spectrum vs. peptide’’
comparison. In spectral networks we face a more difficult case of
‘‘spectrum vs. spectrum’’ comparison‡‡ and take into account the
antisymmetric path condition (15, 33) that further complicates the
spectral alignment algorithm (even in the case of a single internal
modification).

Spectral Networks. The correlation score of spectra S1 and S2 is
defined as the total score of all peaks in spectra S1,2

b and S1,2
y :

score(S1, S2) � score(S1,2
b ) � score(S1,2

y ). Similarly, score(S2, S1) �
score(S2,1

b ) � score(S2,1
y ). We accept S1 and S2 as a putative spectral

pair if both the ratio [score(S1, S2)]/[score (S1)] and the ratio
[score(S2, S1)]/[score (S2)] exceed a predefined threshold (0.4 in the
examples below), where score(Si) is the summed score of all peaks
in Si. In addition, we assume that the correlation score between a
given spectrum S and any unrelated spectrum S� approximately
follows a Gaussian distribution. Thus, a correlation score is only
considered significant if the probability of this score appearing by
chance is 	0.05. The combined filtering efficiency of these criteria
allowed us to retain 78.4% of all correct spectral pairs at a precision
level of 95% and to find several different variants for most
unmodified peptides. The main reason why the remaining spectral
pairs were not detected by our alignment procedure was the change
in fragmentation patterns between these closely related peptides.
The spectral pairs that satisfy the tests above form the spectral
network on the set of all spectra (see Fig. 1 for an example). The
spectral network for the whole IKK� data set has 43 connected
components with 1,021 vertices and 1,569 edges. The small number
of connected components is not surprising because overlapping
peptides in this data set can be assembled into a small number of
contigs [an effect previously explored in the context of shotgun
protein sequencing (20)].

By reducing the number of noise peaks by a factor of 8, spectra
pairs provide a dramatic increase in signal-to-noise ratio (see SI
Table 2), even when compared with consensus spectra obtained
from clusters (20) (let alone individual spectra). Moreover, spectral
pairs provide a nearly perfect separation between b- and y-ion
ladders, the key condition for successful de novo reconstruction.

Spectral Stars. Even though for a single spectral pair (S1, S2) the
spectra S1,2

b and S1,2
y already have high signal-to-noise ratio, we show

that spectral stars allow one to further enrich the b- and y-ion
ladders. A spectral star consisting of spectral pairs (S1, S2), (S1, S3),
. . . , (S1, Sn) allows one to increase the signal-to-noise ratio by
considering 2(n � 1) spectra S 1, i

b and S 1, i
y for 2 � i � n. We combine

all these spectra into a star spectrum S*1, as in our clustering approach
(details provided in SI Appendix D).
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