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We study the performance of stochastic local search algorithms for
random instances of the K-satisfiability (K-SAT) problem. We
present a stochastic local search algorithm, ChainSAT, which moves
in the energy landscape of a problem instance by never going
upwards in energy. ChainSAT is a focused algorithm in the sense
that it focuses on variables occurring in unsatisfied clauses. We
show by extensive numerical investigations that ChainSAT and
other focused algorithms solve large K-SAT instances almost surely
in linear time, up to high clause-to-variable ratios �; for example,
for K � 4 we observe linear-time performance well beyond the
recently postulated clustering and condensation transitions in the
solution space. The performance of ChainSAT is a surprise given
that by design the algorithm gets trapped into the first local energy
minimum it encounters, yet no such minima are encountered. We
also study the geometry of the solution space as accessed by
stochastic local search algorithms.

geometry of solutions � local search � performance � random K-SAT

Constraint satisfaction problems (CSPs) are the industrial,
commercial, and often very large-scale analogues of popular

leisure-time pursuits such as the Sudoku puzzle. They can be
formulated abstractly in terms of N variables x1, x2,…, xN and M
constraints, where each variable xi takes a value in a finite set,
and each constraint forbids certain combinations of values to the
variables. The classical example of a worst-case intractable (1)
constraint satisfaction problem is the K-satisfiability (K-SAT)
problem (2), where each variable takes a Boolean value (either
0 or 1), and each constraint is a clause over K variables
disallowing one out of the 2K possible combinations of values. An
instance of K-SAT can also be interpreted directly as a spin
system of statistical physics. Each constraint equals to a K-spin
interaction in a Hamiltonian, and thus spins represent the
original variables; ground states of the Hamiltonian at zero
energy correspond to the solutions, that is, assignments of values
to the variables that satisfy all of the clauses (3).

It was first observed in the context of K-SAT, and then in the
context of several other CSPs (4), that ensembles of random
CSPs have a ‘‘phase transition,’’ a sharp change in the likelihood
to be solvable (5). Empirically, algorithms have been observed to
fail or have difficulties in the immediate neighborhood of such
phase-transition points, a fact that has given rise to a large
literature (4). Large unstructured CSPs are solved either by
general-purpose deterministic methods, of which the archetypal
example is the Davis–Putnam–Logemann–Loveland (DPLL)
algorithm (6) or using more tailored algorithms, such as the
Survey Propagation (SP) algorithm (7) motivated by spin glass
theory, or variants of stochastic local search techniques (8–10).

Stochastic local search (SLS) methods are competitive on
some of the largest and least-structured problems of interest
(11), in particular on random K-SAT instances, which are
constructed by selecting independently and uniformly at random
M clauses over the N variables, where the parameter controlling

the satisfiability of an instance is � � M/N, the ratio of clauses
to variables. SLS algorithms work by making successive random
changes to a trial configuration (assignment of values to the
variables) based on information about a local neighborhood in
the set of all possible configurations. Their modern history starts
with the celebrated simulated annealing algorithm of Kirk-
patrick, Gelatt, and Vecchi (12). From the perspective of K-SAT,
the next fundamental step forward was an algorithm of Papad-
imitriou (13), now often called RandomWalkSAT, which intro-
duced the notion of focusing the random moves to rectify broken
constraints. RandomWalkSAT has been shown, by simulation
and theoretical arguments, to solve the paradigmatic case of
random 3-satisfiability up to about � � 2.7 clauses per variable,
almost surely in time linear in N (14, 15). A subsequent influ-
ential development occurred with Selman, Kautz, and Cohen’s
WalkSAT algorithm (16), which mixes focused random and
greedy moves for better performance. We have previously shown
that WalkSAT and several other stochastic local search heuristics
work almost surely in linear time, up to at least � � 4.21 clauses
per variable (17–19). In comparison, the satisfiability/
unsatisfiability threshold of random 3-satisfiability is believed to
be at � � 4.267 clauses per variable (20).

The present work carries out a systematic empirical study of
random K-SAT for K � 4, and we also present extensive data for
K � 5 and K � 6. Our motivation for this study is 3-fold.

Testing the Limits of Local Search. It has been empirically observed
for K � 3 that many SLS algorithms have a linear-time regime,
which extends to the immediate vicinity of the phase transition
point (17–19). Thus, a similar investigation for higher K is
warranted.

Structure of the Space of Solutions. Recent rigorous results and
nonrigorous predictions from spin-glass theory suggest that the
structure of the space of solutions of a random K-SAT instance
undergoes various qualitative changes for K � 4, the implications
of which to the performance of algorithms should be investi-
gated.

Mézard, Mora, and Zecchina (21) have shown rigorously that
for K � 8, the space of solutions of random K-SAT breaks into
multiple clusters separated by extensive Hamming distance. (The
Hamming distance of two Boolean vectors of length N is the
number positions in which the vectors differ divided by N.) In
more precise terms, an instance of K-SAT is x-satisfiable if it has
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a pair of solutions with normalized Hamming distance 0 � x �
1. Mézard, Mora, and Zecchina (21) show that, for K � 8, there
exists an interval (a, b), 0 � a � b � 1/2, such that, with high
probability as N3�, a random instance ceases to be x-satisfiable
for all x � (a, b) at a smaller value of � before it ceases to be
x-satisfiable for some x � [b, 1/2].

For K � 4, we see no evidence of gaps in the empirical
x-satisfiability spectrum in the linear-time regime of SLS algo-
rithms, which includes the predicted spin-glass theoretic clus-
tering points. In light of the rigorous results for K � 8, this
suggests that the cases K � 4 and K � 8 may be qualitatively
different. Moreover, we observe that recently predicted spin-
glass-theoretic clustering thresholds [Krzakala et al. (22)] have
no impact on algorithm performance. This puts forth the ques-
tion whether the energy landscape of random K-SAT for small
K is in some regard more elementary than has been previously
believed.

Structure of the Energy Landscape. In the context of random
K-SAT, it is folklore that SLS algorithms appear to benefit from
circumspect descent in energy, that is, from a conservative policy
of lowering the number of clauses not satisfied by the trial
configuration. To explore this issue further, we introduce a SLS
algorithm which we call ChainSAT. It is based on four ideas: (i)
focusing, (ii) easing difficult-to-satisfy constraints by so-called
chaining moves, (iii) restraining the rate of descent, and (iv)
never going upward in energy; that is, the number of unsatisfied
clauses is a nonincreasing function of the sequence of trial
configurations traversed by the algorithm.

By design, ChainSAT cannot escape from a local minimum of
energy in the energy landscape. Yet, empirically, ChainSAT is
able to find (for the K � 4, 5, 6 studied here) a solution, almost
surely in linear time, up to values of � reached by SLS algorithms
that are allowed to go up in energy, such as the Focused
Metropolis Search (19). This observation further supports the
position that random K-SAT for small K may be more elemen-
tary than has been previously believed.

Results
Experiments with Focused Metropolis Search. The Focused Metrop-
olis Search (FMS) algorithm (19) is given in pseudocode as
follows:

1: S � random assignment of values to the variables
2: while S is not a solution do
3: C � a clause not satisfied by S selected uniformly at

random
4: V � a variable in C selected uniformly at random
5: �E � change in number of unsatisfied clauses if V is

f lipped in S
7: if �E � 0 then
8: f lip V in S
9: else

10: with probability ��E

11: f lip V in S
12: end with
13: end if
14: end while

This section documents our experiments aimed at charting the
empirical linear-time region of FMS on random K-SAT for K � 4.

FMS Performance. In Fig. 1, we present empirical evidence that
FMS almost surely runs in time linear in N for instances of
random K-satisfiability at K � 4 and � � 9.6. That the curves
get steeper with increasing N implies concentration of solution
times, or that above- and below-average solution times get rarer
with increasing N. Note that the scaling implies performance

almost surely linear in N and demonstrates that the linear-time
regime of FMS extends beyond the predicted (22) spin-glass
theoretic ‘‘dynamical’’ and ‘‘condensation’’ transitions points.

For K � 3, it has already been established that the FMS
algorithm has an ‘‘operating window’’ in terms of the adjustable
‘‘temperature’’ parameter � (19). For too-large values of �, the
linearity (in N) is destroyed due to too-large fluctuations that
keep the algorithm from reaching low energies and the solution.
For too small values of �, the algorithm becomes ‘‘too greedy,’’
leading to a divergence of solution times. Thus, to obtain
performance linear in N, it is necessary to carefully optimize the
parameter �. Such an optimization for K � 4 (the details of
which we omit for reasons of space; compare ref. 19) reveals that
the operating window for � � 9.60 is at least 0.292 � � � 0.294.
In the experiments, we have chosen � � 0.293.

Experiments on x-Satisfiability Using FMS. Our experimental setup
to investigate x-satisfiability is as follows. For given values of �
and N, we first generate a random K-SAT instance and find one
reference solution of this instance using FMS. Then, using FMS,
we search for other solutions in the same instance. The initial
configuration S for FMS is selected uniformly at random from
the set of all configurations having a given Hamming distance to
the reference solution. When FMS finds a solution, we record
the distance x of the solution found to the reference solution.

Our experiments on random K-SAT for K � 4 did not reveal
any gaps in the x-satisfiability spectrum, even for � � 9.6, beyond
the predicted spin-glass theoretic ‘‘dynamical’’ and ‘‘condensa-
tion’’ transitions points (22). In particular, Fig. 2 gives empirical
evidence that solutions are found at all distances smaller than the
typical distance of solutions found by FMS. This is in contrast to
the numerical results of Battaglia et al. (23) for a balanced
version of K � 5.

Here, it should be pointed out that the solutions found by
stochastic local search need not be typical solutions in the space
of all solutions; there can be other solutions that are not reached
by FMS or other algorithms. Evidence of this is reflected in the
‘‘whiteness’’ status of solutions (19, 24); all of the solutions found
in our experiments were completely white, that is, they do not
have locally frozen variables (25). One can, of course, imagine
that a ‘‘typical solution’’ is not white under the circumstances
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Fig. 1. Cumulative distributions of solution times normalized by the number
of variables N for the Focused Metropolis Search algorithm (19) on instances
of random K-satisfiability at K � 4 and � � 9.6. The vertical axis indicates the
fraction of 1001 random instances solved within a given running time, mea-
sured in flips / N on the horizontal axis. (Inset) Here, we present the scaling of
the algorithm as � increases (with N � 100000). The ‘‘temperature’’ parameter
of FMS is set to � � 0.293.
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examined here, but, as noted, there is no evidence of the
existence of such (compare ref. 26). Fig. 3 summarizes the results
of a scaling analysis with increasing N over five random instances
and reference solutions. The distance distributions appear to
converge to some specific curve without vertical sections, the
absence of which suggests that the x-satisfiability spectrum has
no gaps below the typical distance of solutions found by FMS in
the limit of infinite N.

Fig. 4 summarizes the results of a scaling analysis with
increasing �. We see that the typical distance between solutions
found by FMS decreases with increasing �, and that no clear gaps
are apparent in the distance data.

Experiments with ChainSAT. A heuristic that never moves up in
energy is here shown to solve random K-satisfiability problems,

almost surely in time linear in N, for K � 4, 5, 6. Our heuristic,
ChainSAT, is given in pseudocode as follows:

1: S � random assignment of values to the variables
2: chaining � FALSE
3: while S is not a solution do
4: if not chaining then
5: C � a clause not satisfied by S selected uniformly at

random
6: V � a variable in C selected u.a.r.
8: end if
9: �E � change in number of unsatisfied clauses if V is

f lipped in S
10: chaining � FALSE
11: if �E � 0 then
12: f lip V in S
13: else if �E � 0
14: with probability p1
15: f lip V in S
16: end with
17: else
18: with probability 1 � p2
19: C � a clause satisfied only by V selected u.a.r.
20: V� � a variable in C other than V selected u.a.r.
21: V � V�
22: chaining � TRUE
23: end with
24: end if
25: end while

The algorithm (i) never increases the energy of the current
configuration S and (ii) exercises circumspection in decreasing
the energy. In particular, moves that decrease the energy are
taken only sporadically compared with equienergetic and chain-
ing moves. The latter are designed to alleviate critically satisfied
constraints by proceeding in ‘‘chains’’ of variable-clause-variable
until a variable is found that can be flipped without increase in
energy. Focusing is used for the nonchaining moves. The struc-
ture of ChainSAT has the basic idea of helping to flip a variable
to satisfy an original broken constraint.

The ChainSAT algorithm has two adjustable parameters, one
(p1) for controlling the rate of descent (by accepting energy-
lowering flips) and another (p2) for limiting the length of the
chains to avoid looping. In our experiments, we let p � p1 � p2.
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Fig. 2. Investigation of x-satisfiability using FMS initialized with a random
configuration at a given Hamming distance from a reference solution. One
reference solution and one instance of random K-SAT at K � 4, � � 9.6, and
N � 200000. The horizontal axis displays the normalized Hamming distance of
the initial configuration to the reference solution. The vertical axis displays the
normalized Hamming distance of the solution found to the reference solu-
tion. All plotted 1601 searches produced a solution, and no gaps are visible in
the vertical axis, suggesting asymptotic x-satisfiability for x � 0.37. The
temperature parameter of FMS is set to � � 0.293.
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Fig. 3. Scaling of x-satisfiability data obtained using FMS on random K-SAT
with increasing N. The parameters K � 4, � � 9.6, and � � 0.293 are fixed.
The plotted 10- and 90-percentile curves are calculated from five random
instances and reference solutions for each N � 50000, 100000, 200000, with a
moving window size of 0.004 in the horizontal axis. The distances appear to
converge close to the 90-percentile curves.
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Fig. 4. Scaling of x-satisfiability data obtained using FMS on random K-SAT
with increasing �. The parameters K � 4, N � 100000, and � � 0.293 are fixed.
One random instance and one reference solution for each � � 8.0, 9.0, 9.45;
see Fig. 2 for � � 9.6. The value � � 9.45 is between the predicted locations
of the dynamical and the condensation transition points (22). No clear gap in
distances is discernible in any of the cases.
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ChainSAT Performance. In Fig. 5, we present empirical evidence
that ChainSAT almost surely runs in time linear in N for random
K-satisfiability problems with K � 4, 5, 6. That the curves get
steeper with increasing N implies concentration of solution
times, or that above-and below-average solution times get rarer
with N. Because the algorithm never goes uphill in the energy
landscape, local energy minima cannot be an obstruction to
finding solutions, at least in the region of the energy landscape
visited by this algorithm. On the other hand, when ChainSAT
fails to find a solution in linear time, this can also result from
simply getting lost; in particular, the fraction of moves that lower
the energy over those that keep it constant may dwindle to zero.

Fig. 6 illustrates the sensitivity of ChainSAT to the choice of
the parameter p as N is increased on random K-satisfiability
problems with K � 4. We observe that as p decreases, the
solution times concentrate more rapidly about the mean with
increasing N. Furthermore, the mean solution time scales
roughly as 1 / p when p is decreased.

Whiteness. To provide a further empirical analysis of ChainSAT,
we next present Fig. 7. This is discussed not in terms of solution
times and the range of � achievable with a bit of tuning, but in
terms of two quantities: (i) the average chain length lchain during
the course of finding a solution and (ii) the average whiteness
depth (AWD). In more precise terms, the average chain length is
lchain � f / m�1, where f is the total number of iterations of the main
loop of ChainSAT and m is the number of times the if-statement
controlled by the chaining flag in the main loop is executed.

The AWD is related to the result of the so-called whitening
procedure (24), described in pseudocode as follows:

1: initially all clauses and variables are unmarked (non-white)
2: mark (whiten) every clause that is unsatisfied
3: mark (whiten) every clause that has more than one true literal

4: D � 0
5: repeat
6: mark (whiten) any unmarked variables that appear as

satisfying literals only in marked clauses
7: if all the variables are marked then
8: declare that S is completely white
9: halt

10: end if
11: if no new variables were marked in this iteration then
12: declare that S has a core
13: halt
14: end if
15: mark (whiten) any unmarked clauses that contain at

least one marked variable
16: D � D � 1
17: end repeat
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Fig. 5. Cumulative distributions of solution times normalized by number of
variables N for the ChainSAT algorithm on random K-satisfiability instances at
K � 4 and � � 9.55. The vertical axis indicates the fraction of 1001 random
input instances solved within a given running time, measured in flips / N on
the horizontal axis. (Inset) Here, we present the scaling of the algorithm for
K � 4, 5, 6 at N � 100000 with increasing �; the values of �(K) in the
horizontal axis have been normalized with �sat(K), which has the population
dynamics estimated values �sat (4) � 9.931, �sat (5) � 21.117, and �sat (6) �

43.37 (20). The parameters of ChainSAT have been chosen to be small enough
to work at least up to the predicted ‘‘dynamical transition’’ (22): we have set
p1 � p2 � 0.0001 (K � 4), 0.0002 (K � 5), and 0.0005 (K � 6).
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The whitening algorithm is applied to the solution found when
ChainSAT terminates. The whiteness depth of a variable is
defined as the value of D in the whitening procedure at the time
the variable gets marked (whitened); the value is infinite if the
variable never gets marked (whitened) during the whitening
procedure. The AWD of a solution is the average of the
whiteness depths of the variables. See ref. 19 for an empirical
discussion of whitening in the context of random K-SAT for K �
3. The key observation here is that the solutions found by
ChainSAT all have a finite AWD. This in loose terms means that
there is ‘‘slack’’ in the solution.

Based on Fig. 7, it is clear that increasing the value of � has
the same effect for K � 4, 5, 6: the average chain length lchain
increases and so does the AWD. Note that the ratio AWD / lchain
increases with �.

Discussion
We have here shown empirically that local search heuristics can
be designed to avoid traps and ‘‘freezing’’ in random K-
satisfiability, with solution times scaling linearly in N. This
requires that circumspection is exercised; too greedy a descent
causes the studied algorithms to fail for reasons unclear. A
physics-inspired interpretation is that during a run the algorithm
has to ‘‘equilibrate’’ on a constant energy surface.

In terms of the parameter �, it is the pertinent question as to
how far the ‘‘easy’’ region from which one finds these solutions
extends. For small K, it may be possible that this is true all the
way to the satisfiability/unsatisfiability transition point. The
empirical evidence we have here presented points toward a
divergence of the prefactor of the linear scaling in problem size
well below �sat. Furthermore, this divergence is stronger for
higher values of K. For large values of K, the absence of traps
may, however, in any case be considered unlikely, as the rigorous
techniques used to show clustering of solutions for K � 8 (21)
can also be used to show that there exist pairs of distant solutions

separated by an extensive energy barrier from each other. This
suggests also the existence of local minima separated by exten-
sive barriers. On the other hand, our present results for small K
give no evidence in this direction. In particular, for K � 4, we
have shown empirically that the energy landscapes can be
navigated with simple randomized heuristics beyond all so far
predicted transition points, apart from the satisfiability/
unsatisfiability transition itself.

Our experiments also strongly suggest that the space of
solutions for K � 4 at least up to � � 9.6 does not break into
multiple clusters separated by extensive distance. All of the
solutions found have ‘‘slack,’’ in the sense that they have a finite
AWD. Is there an efficient way to find solutions that are not
‘‘white’’ in this sense; put otherwise, is the existence of ‘‘white’’
solutions necessary for ‘‘easy’’ solvability?

The observed success of ChainSAT adds evidence to the
long-held belief in computer science that high-dimensional
search spaces rarely have true local minima. This presents a
contrast with the common practice to attribute the effectiveness
of methods such as simulated annealing to the method’s ability
to make ‘‘uphill’’ moves. Our experiments suggest that ‘‘hori-
zontal’’ moves (�E � 0) are equally attributable.

All these observations present further questions about the
structure of the energy landscape, the solution space, and the
workings of algorithms for random CSPs. They also leave us with
challenges and constraints to theoretical attempts to understand
these, including approaches from the physics of spin glasses.
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