
Education of a model student
Timothy P. Novikoffa, Jon M. Kleinbergb,1, and Steven H. Strogatza

aCenter for Applied Mathematics, and bDepartment of Computer Science, Cornell University, Ithaca, NY 14853

Edited by Charles S. Peskin, New York University, New York, NY, and approved December 12, 2011 (received for review July 3, 2011)

A dilemma faced by teachers, and increasingly by designers of
educational software, is the trade-off between teaching new ma-
terial and reviewing what has already been taught. Complicating
matters, review is useful only if it is neither too soon nor too late.
Moreover, different students need to review at different rates. We
present a mathematical model that captures these issues in idea-
lized form. The student’s needs are modeled as constraints on the
schedule according to which educational material and review are
spaced over time. Our results include algorithms to construct
schedules that adhere to various spacing constraints, and bounds
on the rate at which new material can be introduced under these
schedules.

asymptotic analysis ∣ scheduling

In his 2009 speech to the National Academy of Sciences, Presi-
dent Barack Obama exhorted the audience to imagine some of

the things that could be made possible by a commitment to scien-
tific research, including the invention of “learning software as
effective as a private tutor” (1). This paper is a modest step in
that direction.

An important challenge for the design of educational software
is to incorporate the results of empirical research on how people
learn. Such research endeavors to provide principles for how to
choose what is taught, how to present it, and how to sequence the
material. Ultimately, educational software will require mechan-
isms for managing the constraints that arise when these principles
are applied in different settings.

Here we develop and analyze an idealized mathematical model
for incorporating a fundamental class of such constraints into
educational software—constraints arising from the importance
of timing and review in the presentation of new material. For
example, software for building vocabulary must determine when
to introduce new words that the student has not yet learned, and
when to review words whose definitions the student has success-
fully recalled in the past. The issue is similar to that faced by a
high school math teacher deciding how often to schedule lessons
that involve trigonometry, or by a piano teacher who needs to
decide how much time a student should devote to practicing
scales while also learning to play new pieces.

The study of the importance of timing with respect to review
dates to at least 1885 (2). The notion that it is better to spread
studying over time instead of doing it all at once is called the spa-
cing effect. In 1988, Dempster noted that “the spacing effect is
one of the most studied phenomena in the 100-year history of
learning research” (3). As Balota et al. point out in their review
(4), “spacing effects occur across domains (e.g., learning percep-
tual motor tasks vs. learning lists of words), across species (e.g.,
rats, pigeons, and humans), across age groups and individuals
with different memory impairments, and across retention inter-
vals of seconds to months.” See refs. 5 and 6 for reviews. For
further results and background, see refs. 7–9. For work on ex-
ploiting the spacing effect to build vocabulary (in humans), see
refs. 10–13.

Review is an important part of the learning process, but the
extent to which review is needed varies by student. Some students
need to review early and often, whereas others can learn a lot
without any review at all. Personalized educational software of

the future could fit a model to the user and then schedule review
in a way that is tailored to the model.

With such educational software in mind, we envision a system
in which the software designer can specify a schedule for the in-
troduction of new material, together with a schedule by which the
review of existing material is spaced over time. What we find,
however, is that the resulting scheduling problems are mathema-
tically subtle: Existing techniques do not handle scheduling pro-
blems with spacing constraints of this type.

Our main contribution is to develop an approach for reasoning
about the feasibility of schedules under spacing constraints. We
begin by introducing a stylized mathematical model for the con-
straints that arise from the spacing effect, and then consider the
design of schedules that incorporate these constraints.

Models
Roughly speaking, we model the introduction and review of ma-
terial as a sequence of abstract educational units, and we model
the needs of the student using two sequences, fakg and fbkg:
After an educational unit has been introduced, the “ideal” time
for the student to see it for the ðkþ 1Þst time is between ak and bk
time steps after seeing it for the kth time. We also model various
educational outcomes that the designer of educational software
may seek to achieve. The details are given below.

The Educational Process. We imagine the underlying educational
software as implementing a process that presents a sequence
of abstract educational units which could represent facts such
as the definitions of vocabulary words, concepts such as trigono-
metric identities, or skills such as playing a scale on the piano. For
example, the sequence u1, u2, u3, u1, u4;…, indicates that educa-
tional unit u1 was introduced at the first time step and reviewed
at the fourth time step. This sequence defines the schedule ac-
cording to which the units will be presented. We also allow
our schedules to contain blanks, or time steps in which no educa-
tional unit is presented; thus, an arbitrary schedule will have each
entry equal to either an educational unit or a blank.

This model is highly idealized. It ignores possible relationships
between units, such as the etymological (and potentially ped-
agogically useful) connection between the vocabulary words
“neophyte” and “neologism,” for example, or the dependence of
trigonometry on more basic concepts in geometry. It also treats
all units as equal. Thus it does not capture, for example, that an
experienced pianist may benefit more from practicing a scale than
practicing Twinkle Twinkle Little Star.

The real-life educational process is nuanced, complex, and
context dependent. Future work in building models for educa-
tional software may introduce more complexity to this model,
or simply reduce scope and model more specific situations. Here,

Author contributions: T.P.N., J.M.K., and S.H.S. designed research, performed research,
analyzed data, and wrote the paper.

Conflict of interest statement: T.P.N. is the owner of a small, wholly owned company,
Flash of Genius, LLC, that sells educational software.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.
1To whom correspondence should be addressed. E-mail: kleinber@cs.cornell.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1109863109/-/DCSupplemental.

1868–1873 ∣ PNAS ∣ February 7, 2012 ∣ vol. 109 ∣ no. 6 www.pnas.org/cgi/doi/10.1073/pnas.1109863109

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental


in the interest of generality as well as mathematical tractability,
we use this very simple model of the general educational process
in order to create a formalism that captures spacing constraints
and their role in reviewing material after it has been introduced.

Spacing Constraints. A large body of empirical work in learning
research has studied the expanding nature of optimal review.
For example, when students first learn a new vocabulary word,
they must review it soon or else they likely lose the ability to cor-
rectly recall the definition. If they do review it before forgetting it,
they will then generally be able to go longer than before without
needing review. By repeatedly reviewing, the student “builds up”
the ability to go longer and longer without seeing the word while
maintaining the ability to recall its definition. However, reviewing
a word too soon after studying it can reduce the benefit of the
review. These are the principles of the well-established theory
of expanded retrieval; see ref. 4 for a review specifically on
expanded retrieval. More generally, see refs. 3–13.

We want a simple formalism that captures the need to review
an educational unit on a schedule that “expands” the spacing
between successive viewings. We wish to leave the exact rate of
expansion under the control of the software designer, motivated
by the goal of creating different schedules for different students.
We thus imagine that the designer of the software specifies a set
of spacing constraints, consisting of an infinite sequence of or-
dered pairs ða1;b1Þ, ða2;b2Þ;…;ðak;bkÞ;…, where ak ≤ bk are posi-
tive integers for all k. Intuitively, the idea is that, for each
educational unit ui in the schedule, the designer wants the gap
in the schedule between the kth and ðkþ 1Þst occurrences of
ui to have length in the closed interval ½ak;bk�. The fact that a
student can go longer between occurrences as they gain familiar-
ity with the educational unit is represented by the assumption that
the numbers ak and bk are weakly increasing: We impose the re-
quirement that ak ≤ akþ1 and bk ≤ bkþ1 for all k.

Thus, our key definition is that a schedule satisfies a set of spa-
cing constraints if, for each ui in the schedule, the ðkþ 1Þst occur-
rence of ui in the schedule comes between ak and bk positions
(inclusive) after the kth occurrence. Roughly speaking, the num-
bers bk model how long the student can retain learned material.
The numbers ak model how long a student should wait before
review is beneficial, capturing the notion that there is an ideal
time to review. If review is done too early, it is less beneficial.
If it is done too late, the student will forget the material in
the interim.

This model is, by design, a simplification of spacing constraints
and their role in learning. A more nuanced model might allow
for “blurry” boundaries for the intervals ½ak;bk�, in which there
is a numerical penalty for missing the interval by a small amount.
Another refinement would be to allow the model to discriminate
between educational units to reflect that some things are easier
to learn than others. However, our simple model captures the
essence of the phenomenon we are investigating, and will allow
for mathematical analysis that elucidates the mechanics of
scheduling review in an optimal way.

Educational Goals. We consider two natural goals for the designer
of the educational software. The mission of the software could be
to teach students in such a way that they grow their knowledge
without bound, never forgetting anything along the way; a sort
of “lifelong learning” approach to education. Alternatively, the
mission could simply be to get students familiar with a certain
set of educational units by a particular point in time, regardless
of whether they are destined to forget what they learned quickly
thereafter; something like the studying technique known as
“cramming.” We address both goals in this paper.

We model the first goal by saying that a schedule exhibits in-
finite perfect learning with respect to some spacing constraints if
(i) it satisfies the spacing constraints, and (ii) it contains infinitely

many educational units, each of which occurs infinitely often.
Thus if the constraints represented the needs of a student, then
with such a schedule the student would, over the course of the
infinite sequence, learn an infinite set of educational units with-
out ever forgetting anything.

For the second goal we consider a finite sequence, represent-
ing the presentation of material up to a test or performance. For
a positive integer n, we say that the sequence is a cramming se-
quence, and exhibits bounded learning of order n, if (i) it satisfies
the spacing constraints, and (ii) it contains at least n distinct edu-
cational units such that, if a unit occurs a total of k times in the
sequence, then its last occurrence is within bk positions of the
end of the sequence. Condition (ii) captures the requirement that
the student should still be able to recall all of the n educational
units at the end of the sequence, which was the whole point of
cramming. Note that, although the spacing constraints have been
respected up to the end of the finite sequence, there is no guar-
antee that the sequence could be extended while continuing to
satisfy the spacing constraints.

With respect to infinite perfect learning, we will be interested
in the rate at which the student would learn if taught according to
the schedule. To this end, we define the introduction time func-
tion: For a given schedule of educational units, let tn denote the
position in the schedule of the first occurrence of the nth distinct
educational unit. Thus the slower the growth of tn, the faster new
educational units are being introduced.

We will be considering questions of the following nature. Gi-
ven spacing constraints fðak;bkÞg, does there exist a schedule that
exhibits infinite perfect learning, or bounded learning, with re-
spect to the constraints? If so, how can we construct such sche-
dules? And when such a schedule exists, what rate of learning
(as measured by the sequence t1;t2;…) is achievable? These
are fundamental problems that would be faced by an educational
software designer seeking to incorporate spacing constraints in
the design of the underlying algorithms. As we will see, despite
the simply stated formulation of these questions, the combinator-
ial challenges that they lead to quickly become quite intricate.

Results
The spacing constraints are described by two infinite sequences
of parameters, fakg and fbkg. In this section, we describe how
choices for these parameters affect the rate at which new educa-
tional units can be introduced into the schedule and how sche-
dules can be tailored to particular parameter regimes and
educational goals.

Overview of Results. We begin by examining the first main issue
of this paper: the trade-off between (i) the rate at which bk grows
as a function of k and (ii) the rate at which tn grows as a function
of n. Informally, if bk grows relatively slowly, then a lot of time
must be spent on review rather than on introducing new units,
and hence tn must grow more quickly, corresponding to slower
learning. It is clear that tn ≥ n for any schedule, because even
without review we can only introduce one educational unit per
time step. With these considerations in mind, we investigate
the following pair of questions that explore the two sides of
the trade-off. First, is there a set of spacing constraints for which
tn is close to this trivial bound, growing nearly linearly in n? Sec-
ond, as we require bk to grow slower as a function of k, it becomes
more difficult to achieve infinite perfect learning. Is there a set of
spacing constraints for which infinite perfect learning is possible,
and for which bk grows as a polynomial function of k? We answer
both of these questions in the affirmative.

In The Recap Method, we describe a set of spacing constraints
for which a schedule can be constructed that exhibits infinite
perfect learning, and where the rate of learning is relatively quick.
In the schedule we construct, tn grows as Θðn log nÞ, and in fact
tn ≤ n · ð⌊ log2 n⌋þ 1Þ. Recalling that we must have tn ≥ n for all

Novikoff et al. PNAS ∣ February 7, 2012 ∣ vol. 109 ∣ no. 6 ∣ 1869

CO
M
PU

TE
R
SC

IE
N
CE

S



n for any schedule, we see that the recap schedule achieves in-
finite perfect learning with only a modest increase on this
bound—that is, with a relatively small amount of review. In
the SI Text, we show how to construct a schedule where tn grows
at a rate that, in some sense, can be as close to linear as desired. In
Superlinearity of the Introduction Time Function, we show that
there can be no schedule whatsoever such that tn grows as OðnÞ.

In The Slow Flashcard Schedule, we show a set of spacing
constraints for which ak and bk grow polynomially in k and for
which infinite perfect learning is possible. With these spacing
constraints based on much smaller ak and bk, the schedule we
construct has a slower rate of learning; tn is bounded below by
Ωðn2Þ and bounded above by Oðn3Þ, in contrast to the schedule
from The Recap Method for which the introduction time function
grows as Θðn log nÞ. The gap between the quadratic lower bound
and the cubic upper bound is an interesting open question; we
give numerical evidence that in fact the lower bound may be tight,
and that tn grows as Oðn2Þ. Much of this analysis is done in the
SI Text.

Following these results, we turn to the second main issue in this
paper, which is to identify general possibility and impossibility
results for satisfying classes of spacing constraints. We first show,
in Flexible Students, that the difficulty in achieving infinite perfect
learning stems, in a sense, from the fact that the numbers ak are
growing: Specifically, we show that for any spacing constraints in
which ak ¼ 1 and bk → ∞, it is possible to construct a schedule
that exhibits infinite perfect learning. The construction intro-
duced here demonstrates a general method that can be adapted
to many sets of spacing constraints with ak > 1 as well.

Thus far, we have only considered spacing constraints that
allow for the construction of schedules that exhibit infinite per-
fect learning. In The Finicky Slow Student, we show that there ex-
ist spacing constraints for which no schedule can exhibit infinite
perfect learning. In particular, we build this impossibility result
from an extreme case, where ak ¼ bk ¼ f ðkÞ and f ðkÞ is a function
that grows slowly in k. These constraints represent a setting in
which the student insists on reviewing material on an extremely
precise and plodding schedule, with no room for error.

The difficulty in constructing a schedule for such a set of con-
straints is that as the knowledge base—the number of educational
units introduced—grows, so does the need to review, and so the
potential for scheduling conflicts increases. The slower the stu-
dent [the slower the growth of f ðkÞ], the fewer educational units
can be put on the back burner, so to speak, while the student
focuses on new units. The more finicky the student (the smaller
the windows bk − ak), the less wiggle room there is in scheduling
review.

All of these points match with intuition. Students who don’t
need to review much and aren’t too picky about when the review
needs to happen can be taught a lot, and fast. But students who
need a lot of review and who only derive benefit from very well-
timed review will be more difficult to teach. The educational
mantra is “every child can learn,” but designers of personalized
educational software may find that scheduling the educational
process for some students is, at the least, more difficult for some
than for others.

In Cramming, we show that every student can cram. More
precisely, we show that, for any set of spacing constraints and
any n, it is possible to construct a finite sequence that exhibits
bounded learning of order n. Consistent with the discussion that
accompanied the definition of bounded learning earlier, the con-
struction assures nothing about whether the sequence can be
extended beyond this moment of “expertise” at its end.

Finally, also in Cramming, we explore the question of how
much can be crammed in a given amount of time. Given a set
of spacing constraints and a finite number T, we derive a nontri-
vial upper bound on those n for which bounded learning of order
n is possible using only T time steps.

The Recap Method.Here we explore spacing constraints that allow
for infinite perfect learning with a rapid learning rate—that is,
where the introduction time function, tn, grows slowly.

Consider the spacing constraints ak ¼ 2k and bk ¼ 2k−1ðkþ 1Þ.
A schedule that allows for infinite perfect learning with respect to
these spacing constraints can be described as follows. To find the
first ðkþ 1Þ · 2k entries of the schedule, consider a depth-first
postorder traversal of a full binary tree of depth k with 2k leaves
labeled u1, u2;…;u2k from left to right. (A depth-first postorder
traversal of a tree is a particular order for visiting the nodes of a
tree, defined as follows. Starting at the root v of the tree, the
depth-first postorder traversal is first applied recursively to each
subtree below v one at a time; after all these traversals are done,
then the root v is declared to be visited.) Begin with an empty
sequence. Every time a leaf is visited, append the sequence with
the corresponding educational unit. Every time a nonleaf node is
visited, append the sequence with the units corresponding to all
of the descendant leaves, in left-to-right order. The resulting
sequence gives the first ðkþ 1Þ · 2k entries in the schedule.

Thus, using k ¼ 2 we have that the first 12 entries of the sche-
dule are u1;u2;u1;u2;u3;u4;u3;u4;u1;u2;u3;u4. We call this schedule
“the recap schedule” because it incorporates periodic review of
everything that has been learned so far, like a teacher saying
“okay, let’s recap.”

In this schedule, the number of time steps between the kth and
ðkþ 1Þst occurrence of any particular unit is always between 2k

and 2k−1ðkþ 1Þ, with both bounds actually achieved for each
k. This fact—along with the fact that infinitely many units occur
infinitely often due to properties of depth-first traversals—estab-
lishes that the recap schedule allows for infinite perfect learning
with respect to the given spacing constraints. Calculations which
establish these facts are shown in the SI Text.

Further calculations, also shown in the SI Text, establish that tn
grows as Θðn log nÞ in this schedule. More precisely,

1

2
· n · ð⌊ log2 n⌋þ 1Þ ≤ tn ≤ n · ð⌊ log2 n⌋þ 1Þ:

By generalizing the construction of the schedule, using a more
general class of trees, we can show that, for a large class of func-
tions rðnÞ, schedules can be constructed that exhibit infinite per-
fect learning for which tn grows as Θðn · r−1ðnÞÞ. The class
includes functions rðnÞ that grow arbitrarily fast, and so in that
sense we can create schedules for which tn grows at a rate that
is as close to linear as desired. The downside of these schedules
is that they require increasingly lax spacing constraints as the
growth rate of tn approaches linearity: The schedules that we
construct for which tn grows as Θðn · r−1ðnÞÞ require bk, as well
as bk − ak, to grow as Θðk · rðkÞÞ. Calculations which establish
these facts, too, are shown in the SI Text.

Superlinearity of the Introduction Time Function. Although our con-
structions are able to achieve introduction times tn that grow
arbitrarily close to linearly in n, we can also show that an actual
linear rate of growth is not achievable: For schedules that exhibit
infinite perfect learning, the introduction time function tn must be
superlinear. More precisely, we show that, for any schedule that
exhibits infinite perfect learning with respect to any spacing con-
straints fðak;bkÞg, there cannot be a constant c such that tn ≤ cn
for all n.

To prove this statement, we consider an arbitrary set of spacing
constraints fðak;bkÞg and an arbitrary schedule that exhibits infi-
nite perfect learning with respect to these constraints, and assume
for the sake of contradiction that there is a constant c such that
tn ≤ cn for all n. Let b̂k ¼ ∑k

j¼1 bj and let n0 be any integer such

that n0 > b̂cþ1. By our assumption, at least n0 educational units
have been introduced by the time step cn0. In general, for any

1870 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1109863109 Novikoff et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT


schedule that exhibits infinite perfect learning, any unit that has
been introduced by time step t will have occurred k times by time
step tþ b̂k, by the definition of b̂k. Thus at least n0 units will have
occurred cþ 1 times by time step cn0 þ b̂cþ1. So cn0 þ b̂cþ1 ≥
ðcþ 1Þn0 because each time step corresponds to at most one edu-
cational unit. Subtracting cn0 from both sides, we have that
b̂cþ1 ≥ n0, which contradicts our choice of n0. Thus, there cannot
be a constant c such that tn ≤ cn for all n.

The Slow Flashcard Schedule. One can describe the construction
of the recap schedule without using depth-first traversals or full
binary trees, but rather using a deck of flashcards. Doing so will
shed some light on the recap schedule, and will also serve as a
useful jumping-off point for discussing the very different schedule
which is the focus of this section. So we begin our discussion here
by revisiting the recap schedule.

Imagine a deck of flashcards, with the kth card corresponding
to an educational unit uk. Thus the top card corresponds to u1,
the next card corresponds to u2, etc. Then we construct a sche-
dule as follows. At every step, we present to the student the edu-
cational unit corresponding to the top card, and then reinsert the
card into position 2k, where k is the number of times we have
presented the educational unit corresponding to that card, up to
and including this latest time step. Thus first we present u1, then
we remove it from the deck and reinsert it into position 2 in the
deck. Then we present u2, then remove it and reinsert it into posi-
tion 2 in the deck. Then u1 is again on top and so we present it for
a second time and then remove it and reinsert it into position
22 ¼ 4. This process produces the recap schedule.

In this section, we consider a schedule that is much more dif-
ficult to describe explicitly than the recap schedule, but whose
construction can similarly be described in terms of a deck of flash-
cards. Instead of reinserting into position 2k as above, though, we
reinsert into position kþ 1. Carefully applying this rule shows the
first few entries of the schedule to be u1;u2;u1;u2;u3;u1;u3;u2;
u4;u3. Of all schedules that can be constructed with a similar
flashcard-reinsertion scheme using some strictly increasing rein-
sertion function rðkÞ with rð1Þ > 1, it is this schedule, constructed
using rðkÞ ¼ kþ 1, which progresses through the deck the slow-
est. For this reason, we call this schedule “the slow flashcard
schedule.”

In the SI Text, we show that the slow flashcard schedule exhibits
infinite perfect learning with respect to the spacing constraints
with ðak;bkÞ ¼ ðk;k2Þ. Thus the slow flashcard schedule provides
a dramatic alternative to the recap schedule. Whereas bk and
bk − ak both grew exponentially in k in the recap schedule, here
they grow quadratically and yet still allow for infinite perfect
learning.

Numerical simulations shown in the SI Text suggest that this
schedule in fact exhibits infinite perfect learning even with re-
spect to the much tighter spacing constraints with ðak;bkÞ ¼
ðk;2kÞ. If that is the case, the contrast with the recap schedule
would be even more stark.

The trade-off for this slow growth in bk is the speed at which
the knowledge base grows. Whereas tn, the time needed for the
knowledge base to achieve size n, grew as Θðn log nÞ in the recap
schedule, here it is bounded below by Ωðn2Þ. A proof of this fact
can be found in the SI Text, along with numerical evidence that it
in fact grows as Θðn2Þ.

The spacing constraints in The Recap Method and The Slow
Flashcard Schedule are tailored to allow for existence proofs that
certain bounds on tn, bk, and bk − ak can be achieved in the
context of infinite perfect learning. The methods used to describe
the schedules, though, suggest general principles for how to con-
struct schedules with desirable properties. Moreover, we note
that the schedules constructed are relevant to any set of spacing
constraints that are more relaxed than the given ones: If a

schedule exhibits infinite perfect learning with respect to spacing
constraints fðak;bkÞg, then it also exhibits infinite perfect learning
with respect to fða0k;b0kÞg when a0k ≤ ak and b0k ≥ bk for all k.

In the next section, Flexible Students, we begin with a general
class of students and build schedules tailored to each individual
student in the class.

Flexible Students. What if the student did not need to wait at all
in order to derive benefit from studying? In other words, what if
ak ¼ 1 for all k? In this case, we can use a technique for construct-
ing schedules that we call “hold-build”: sequencing the educa-
tional units that are known to the student in a “holding
pattern” so that they meet the spacing constraints, while showing
new educational units in quick repetition (thereby “building”
them up). The only assumptions that are needed for the construc-
tion, besides ak ≡ 1, are that b1 ≥ 2 and that bk → ∞. (Note that
bk is already required to be weakly increasing.)

We define the sequence HBm to be the infinite sequence that
starts with um, contains um in every other entry, and cycles
through units u1;…;um−1 in the remaining entries. So, for exam-
ple,

HB2 ¼ u2;u1;u2;u1;u2;u1;…

HB3 ¼ u3;u1;u3;u2;u3;u1;u3;u2;u3;u1;…

HB4 ¼ u4;u1;u4;u2;u4;u3;u4;u1;u4;u2;u4;…

Now, consider an arbitrary set of spacing constraints such that
ak ≡ 1, b1 ≥ 2, and bk → ∞. For ease of discussion, we say that an
educational unit is at level k when it has been shown exactly k
times. We construct the schedule that assures infinite perfect
learning as follows.

First, present unit u1. Then present units according to HB2. So
far so good; so long as units are presented according to HB2, we
know the spacing constraints will be met, because bk ≥ 2 for all k.
Meanwhile, the levels for u1 and u2 can be built up without
bound.

Continue HB2 as long as necessary until it is feasible to move
on to HB3. In other words, show enough of HB2 so that if the
schedule up to that point were followed by an indefinite run
ofHB3, then the spacing constraints would be met. This condition
is guaranteed to be true after a finite number of time steps
because bk → ∞ and HB2 is periodic.

Thus, once enough of HB2 has been shown, we show as much
of HB3 as necessary until we can afford to move on to HB4. Then
we show as much ofHB4 as necessary until we can afford to move
on to HB5, and we continue building the schedule like this inde-
finitely.

The schedule formed by concatenating hold-build patterns in
this way assures infinite perfect learning, and it applies to any set
of spacing constraints with ak ≡ 1, b1 ≥ 2, and bk → ∞. Thus we
actually have a class of spacing constraints where infinite perfect
learning is possible and yet bk can grow arbitrarily slowly. The
trade-off for an exceedingly slow-growing bk will again be
a fast-growing tn, corresponding to a slow rate of learning. The
exact rate will depend on the exact rate of growth of bk.

To give a concrete example of this hold-build construction and
an accompanying calculation of tn, we can consider the simple
case where bk ¼ kþ 1. (Note that, because we only require that
bk be weakly increasing, there are much slower-growing choices
for bk than this one.) Then, by carrying out the construction
above, we have that the sequence is

u1;u2;u1;u2;u1;u2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
HB2

;u3;u1;u3;u2;u3;u1;u3;u2;u3|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HB3

;u4;u1;…|fflfflfflffl{zfflfflfflffl}
HB4

Novikoff et al. PNAS ∣ February 7, 2012 ∣ vol. 109 ∣ no. 6 ∣ 1871

CO
M
PU

TE
R
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT


with 4k − 3 time steps spent in HBk for every k. Thus, because ui
will be introduced one time step after finishing the HBi−1 part of
the schedule, we have that

tn ¼ 1þ
�
∑
n−1

k¼2

ð4k − 3Þ
�
þ 1 ¼ 2n2 − 5nþ 4.

The idea behind the hold-build construction, namely the meth-
od of putting some units in a holding pattern while others are
being “built up,” could readily be used to construct schedules
assuring infinite perfect learning for many sets of spacing con-
straints with ak > 1 as well (or spacing constraints with b1 ¼ 1,
for that matter). It is a tool that can be used to tailor educational
processes to model students in general.

The Finicky Slow Student.We now give a set of spacing constraints
fðak;bkÞg for which no schedule can exhibit infinite perfect learn-
ing. They are simply the constraints defined by ak ¼ bk ¼ k. We
call this set of constraints “the finicky slow student” because bk −
ak is so small, and because bk grows so slowly as a function of k.
We show that no schedule can exhibit infinite perfect learning
with respect to the finicky slow student.

Suppose, for the sake of contradiction, that there were a sche-
dule that exhibited infinite perfect learning with respect to the
finicky slow student. We say that a schedule incorporates educa-
tional unit ui if the unit occurs infinitely many times, and if the
sequence of occurrences satisfies the spacing constraints. Thus,
given the particulars of the finicky slow student, if a unit ui is in-
corporated, and if it first occurs at step τ, then it must also occur
at steps τ þ 1, τ þ 3, τ þ 6, τ þ 10;….

By assumption, the schedule incorporates infinitely many edu-
cational units. We can assume, without loss of generality, that
educational unit u1 is incorporated and that its first occurrence
is at time step τ0 ¼ 0. (Letting time start at zero here allows
for cleaner calculations.) Then we know that u1 also occurs at
precisely the steps τ1, τ2, τ3;…, where τi ¼ ∑i

k¼1 ak. It will be suf-
ficient to show that no other unit can be incorporated without
creating a scheduling conflict—in other words, without needing
to eventually be scheduled at a step of the form τi.

Suppose another unit, call it u2, were incorporated, with its
first occurrence at step s0. Then we know that u2 must also occur
at precisely the steps s1, s2, s3;…, where si ¼ s0 þ∑i

k¼1 ak.
We show that there must be some step common to both se-

quences fsig and fτig. Thus we will have a contradiction because,
at most, one educational unit can appear in each entry of the
schedule.

We begin by noting that si − τi ¼ s0 for all i, and that siþ1 − si ¼
τiþ1 − τi ¼ aiþ1 for all i. Now choose k large enough so that
τkþ1 − τk > s0. Then τkþ1 > τk þ s0 ¼ sk. Thus for sufficiently
large k, we have that τkþ1 > sk. Now letm be the smallest number
such that τmþ1 > sm. We know m ≥ 1, because τ0 ¼ 0 and τ1 ¼ 1
by construction. We claim that τm ¼ sm−1.

If τm > sm−1, then m would not be the smallest number such
that τmþ1 > sm (because then m − 1 would also qualify), so
τm≯sm−1.

If τm < sm−1, then we have that τm < sm−1 < sm < τmþ1, which
implies that sm − sm−1 ≤ τmþ1 − τm − 2, because all si and τi are
integer valued. Thus am ≤ amþ1 − 2, so amþ1 − am ≥ 2, which is
not possible because akþ1 − ak ¼ 1 for all k. So τm≮sm−1.

Thus we have that τm ¼ sm−1, which is a contradiction, of
course, because only one educational unit can be scheduled
for any given time step. Thus no schedule can exhibit infinite
perfect learning with respect to the finicky slow student; in fact,
the finicky slow student does not even allow for the incorporation
of more than one educational unit.

This proof holds not only for the spacing constraints
ak ¼ bk ¼ k, but for any spacing constraints such that ak ¼ bk ¼

f ðkÞ, where f ðkÞ is an integer sequence such that f ð1Þ ¼ 1,
f ðkþ 1Þ − f ðkÞ ∈ f0;1g, and f ðkÞ → ∞. The exact choice doesn’t
matter; the finickiness (ak ¼ bk) and the slowness [f ð1Þ ¼ 1 and
f ðkþ 1Þ − f ðkÞ ∈ f0;1g] are sufficient to carry out the proof as
written, but with the final argument using akþ1 − ak ≤ 1 instead
of akþ1 − ak ¼ 1.

Cramming. The focus up until now has been on infinite perfect
learning, but there could be less ambitious goals for a student.
We turn our attention now to cramming. At the end of this sec-
tion, we address the question of how much cramming can be done
in a given amount of time. We begin here with a positive result,
showing that for every positive integer n and every set of spacing
constraints with bk → ∞, there exists a sequence that achieves
bounded learning of order n.

We consider an arbitrary set of spacing constraints with
bk → ∞ and proceed by induction on n. It is clear that bounded
learning is possible for n ¼ 1; the sequence consisting simply
of u1 satisfies the definition.

Now, let Sn be a sequence of length Tn that achieves bounded
learning of order n. To complete the induction, we construct a
new sequence, Snþ1 of length Tnþ1, that achieves bounded learn-
ing of order nþ 1.

Recall from Flexible Students that the level of an educational
unit at time t in a sequence is the number of times it has appeared
prior to time t. The basic idea behind the construction of Snþ1 is to
start by building up the level of u1 until it is at a level m such that
bm > Tn. Then we use the next Tn steps to present units u2,
u3;…;unþ1 according to the sequence Sn. When that is done,
the time limit of bm has still not been reached for u1, and hence
the sequence satisfies the definition of bounded learning of
order nþ 1.

Formally, letm be the smallest integer such that bm > Tn. Then
present unit u1 at time t ¼ 0 and at times t ¼ ∑j

i¼1 ai for
j ¼ 1;2;…;m − 1. Present a blank in the sequence at every other
time step in between. Then, starting at time t ¼ 1þ∑m−1

i¼1 ai, pre-
sent units u2;u3;…;unþ1 according to the Tn elements of the se-
quence Sn. This sequence, through time Tnþ1 ¼ Tn þ∑m−1

i¼1 ai, is
our new sequence Snþ1. By construction it satisfies the conditions
of bounded learning of order nþ 1. By induction, then, bounded
learning of order n is possible for all positive integers n for any set
of spacing constraints with bk → ∞.

In the construction above, it is entirely possible that one or
more units would begin to violate the spacing constraints even
one time step later. Little is assured other than the educational
units having met the scheduling constraints up to a certain time
step. We call this sort of construction cramming because it pre-
sents the material with a particular target time in view and with-
out regard to the scheduling of material after this target time, like
a student cramming for a final exam who doesn’t worry about how
much will be retained after the test.

Condition (ii) of our definition of bounded learning models the
notion of studying up to a point in time and then being able to
remember everything that was studied for at least one more time
step, as if there were a quiz lasting one time step which would
occur in the time step immediately following the cramming se-
quence. We could similarly model the notion of a quiz that lasts
d time steps by requiring that if a unit’s last occurrence is s time
steps from the end of the sequence, and the unit occurs a total of
k times in the sequence, then sþ d must be less than or equal to
bk. We note that our results regarding cramming sequences could
be adapted to such an alternative model.

We turn now to the issue of how much can be crammed in a
given amount of time. Given a set of spacing constraints
fðak;bkÞg, and a positive integer T, we can put an upper bound
on the numbers n for which bounded learning of order n is pos-
sible in T time steps. If we let mðiÞ denote the smallest integer k
such that bk ≥ i, then it can be shown that n must satisfy

1872 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1109863109 Novikoff et al.



∑n
i¼1 mðiÞ ≤ T and

�
∑mðnÞ−1

j¼1 aj

�
þ n ≤ T. Each inequality impli-

citly bounds n from above. These bounds reflect the constraints
imposed by the limited number of time steps available, and the
notions that fakg and fbkg represent limitations on how fast the
level of an educational unit can be built up and how long educa-
tional units can be remembered. Details can be found in the
SI Text.

Despite the negative connotations associated with cramming,
the basic idea can actually be useful in a number of settings in real
life. A traveler may only care to learn a language enough to travel
in a foreign country just once, for example, or a performer may
only need to have a certain skill set on the day of a performance
and not necessarily after that. Perhaps educational software of
the future will have tunable parameters that allow the student
(or teacher or parent) to set the goal of the educational process.
This way the software may not only adapt to the natural abilities
of the students, but also to their personal goals.

Conclusion
The possibilities for future work seem limitless. A more complete
theory of infinite perfect learning could be one goal. Such a the-
ory would include more techniques for constructing educational
processes tailored to students, and a more complete theory relat-
ing ak and bk to the maximum rate at which the model student can
accrue knowledge.

A major goal should be a truly adaptive educational process:
one that adapts to the student in real time. For example, in this
paper we model the educational process as a sequence designed
to satisfy a set of constraints fixed in advance, but an alternate
approach would be to test the student’s knowledge throughout
the process, and for the schedule to be controlled by an online
algorithm that chooses the next unit based on the answers the
student has given. Such a system would model the process of a
teacher observing student progress before deciding what to teach
next.

Modeling this situation would be an exciting challenge. The
interaction between the two online algorithms, one modeling the
student and the other modeling the teacher, promises to be com-

plex and fascinating, and hopefully enlightening and useful to
future designers and engineers of educational software. There is
much opportunity here for mathematical modeling, theoretical
calculations, and numerical simulations that shed light on what
makes an effective teacher and how educational software can
adapt in real time to user behavior.

Another area for future work is the design and analysis of
models that are tailored to specific subjects. Perhaps a model in-
volving a network of educational units could be used to investi-
gate the phenomenon that it is often easier to learn a set of facts
that somehow “reinforce” each other than a set of unrelated
facts. Introducing relationships between educational units calls
for new models of the student’s reception of the units, which
in turn call for different educational processes.

Yet another avenue of research is empirical work. The techni-
ques and intuitions gained from theoretical work should be put to
use to create actual educational software. Then data from real
students can be collected and the process of using the data to
validate and refine the models can begin.

Finally, the mathematics of managing spacing constraints in
sequences could find additional applications beyond those con-
sidered above, for example, to task management in parallel pro-
cessing or the study of multitasking in humans.

The models presented in this paper are simple and theoretical.
Designers of educational software will likely need to implement
models and algorithms that are more complex and tailored to the
educational content being delivered. It is our hope that work on
simple theoretical models will provide the foundations of intui-
tion for designers of educational software, in much the same
way that algorithmic game theory does for engineers who work
in online ad auctions and other related fields.

With the current boom in educational software—not to men-
tion the humanoid robot teacher industry (14)—it is clear that the
time has come to develop a theory of algorithmic education.

ACKNOWLEDGMENTS. Research supported in part by an National Science
Foundation (NSF) Graduate Research Fellowship, The John D. and Catherine
T. MacArthur Foundation, a Google Research Grant, a Yahoo! Research
Alliance Grant, and NSF Grants CCF-0325453, BCS-0537606, IIS-0705774,
and CISE-0835706.

1. Obama B (April 27, 2009) Remarks by the President at the National Academy of Sciences
Annual Meeting. (Natl Acad Sci, Washington, DC), http://www.whitehouse.gov/the_
press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-
Meeting/.

2. Ebbinghaus H (1885)Memory: A Contribution to Experimental Psychology (Translated
from German)trans Bussenius RH (1913) (Teachers College at Columbia University,
New York).

3. Dempster F (1988) The spacing effect: A case study in the failure to apply the results of
psychological research. Am Psychol 43:627–634.

4. Balota DA, Ducheck JM, Logan JM (2007) Foundation of Remembering: Essays in Hon-
or of Henry L. Roediger III, ed JS Nairne (Psychology Press, New York), pp 83–105.

5. Cepeda NJ, Pashler H, Vul E, Wixted JT, Rohrer D (2006) Distributed practice in verbal
recall tasks: A review and quantitative synthesis. Psychol Bull 132:354–380.

6. Crowder RG (1976) Principles of Learning and Memory (Psychology Press, New York).
7. Roediger HI, III, Karpicke JD (2011) Successful Remembering and Successful Forgetting:

A Festschrift in Honor of Robert A. Bjork, ed AS Benjamin (Psychology Press, New
York), pp 23–48.

8. Melton AW (1970) Situation with respect to spacing of repetitions and memory. J Verb

Learn Verb Behav 9:596–606.

9. Bahrick HP, Bahrick LE, Bahrick AS, Bahrick AP (1993)Maintenance of foreign language

vocabulary and the spacing effect. Psychol Sci 4:316–321.

10. Landauer T, Bjork R (1978) Practical Aspects of Memory (Academic, New York), pp

625–632.

11. Pimsleur P (1967) A memory schedule. Mod Lang J 51:73–75.

12. Wozniak PA, Gorzelanczyk EJ (1994) Optimization of repetition spacing in the practice

of learning. Acta Neurobiol Exp 54:59–62.

13. Wolf G (2005) Want to remember everything you’ll ever learn? Surrender to this

algorithm. Wired(16.05).

14. Hyun E, Kim S, Jang S, Park S (2008) Comparative study of effects of language instruc-

tion program using intelligence robot and multimedia on linguistic ability of young

children. Robot and Human Interactive Communication 187–192.

Novikoff et al. PNAS ∣ February 7, 2012 ∣ vol. 109 ∣ no. 6 ∣ 1873

CO
M
PU

TE
R
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1109863109/-/DCSupplemental/pnas.1109863109_SI.pdf?targetid=STXT
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/
http://www.whitehouse.gov/the_press_office/Remarks-by-the-President-at-the-National-Academy-of-Sciences-Annual-Meeting/

