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By using the 1.6 million single-nucleotide polymorphism (SNP)
genotype data set from Perlegen Sciences [Hinds, D. A., Stuve, L. L.,
Nilsen, G. B., Halperin, E., Eskin, E., Ballinger, D. G., Frazer, K. A. &
Cox, D. R. (2005) Science 307, 1072–1079], a probabilistic search for
the landscape exhibited by positive Darwinian selection was con-
ducted. By sorting each high-frequency allele by homozygosity, we
search for the expected decay of adjacent SNP linkage disequilib-
rium (LD) at recently selected alleles, eliminating the need for
inferring haplotype. We designate this approach the LD decay
(LDD) test. By these criteria, 1.6% of Perlegen SNPs were found to
exhibit the genetic architecture of selection. These results were
confirmed on an independently generated data set of 1.0 million
SNP genotypes (International Human Haplotype Map Phase I
freeze). Simulation studies indicate that the LDD test, at the
megabase scale used, effectively distinguishes selection from other
causes of extensive LD, such as inversions, population bottlenecks,
and admixture. The �1,800 genes identified by the LDD test were
clustered according to Gene Ontology (GO) categories. Based on
overrepresentation analysis, several predominant biological
themes are common in these selected alleles, including host–
pathogen interactions, reproduction, DNA metabolism�cell cycle,
protein metabolism, and neuronal function.

balancing selection � Bayesian probabilistic modeling � common
disorders � human evolution � single nucleotide polymorphism

Human genotype information on an unprecedented scale is
now available for analysis, because of both privately and

publicly funded research efforts [Perlegen Sciences (1) and the
International Haplotype Map (HapMap) project (2), respec-
tively]. These data sets provide a global map of human variability
by using single-nucleotide polymorphisms (SNPs) as markers.
The major stated reason for generating such data is to define a
core set of haplotypes useful for genome association studies (1,
2). Driving this haplotype search is the hypothesis that common
DNA variants underlie many common disorders and that these
high frequency variants can be identified either directly or by
means of linkage disequilibrium (LD) to nearby SNPs (3, 4). It
has been proposed that these ‘‘disease’’ variants reached poly-
morphic frequency either by chance (5) or through selection for
related phenotypes (6–8) and now predispose to disease because
of recent environmental�genetic factors (4, 6). Defining ‘‘func-
tional’’ SNP variants among the millions present in human DNA,
however, remains an ongoing challenge.

The contemporary human genome is likely the result of a
complex history of many different genomic�population events,
including ancient and recent selection. Uncovering evidence for
selection is one approach to defining functional human DNA
variation. To date, studies have focused largely on specific
genomic regions (6, 9–13) and suggested that recent selection
among humans may be common (14). Extending such studies to
the entire genome is a challenging undertaking. Most traditional
population genetics tests for selection (15, 16) rely predomi-
nately on observing either deviations in local heterozygosity (17)
or unusually high singleton pairwise differences within a given
sample (18). For example, in Tajima’s D and Fu and Li’s D and

F test statistics, positive scores are indicative of unusually high
heterozygosity within the data set. Additionally, these tests
usually do not take distance between variable sites into consid-
eration and rely heavily on statistics obtained from rare muta-
tional events. The selection criterion for the Perlegen and
HapMap genotyping efforts, however, was the high heterozy-
gosity and equal spacing of SNPs (1, 2). Hence, these data sets
have high ascertainment bias. Using tests that rely on heterozy-
gosity and frequency of rare mutations to infer selection on such
biased data sets should be largely meaningless.

Although most tests are insensitive to all but extreme examples
of selection (1, 2, 8, 10, 19), relatively sensitive tests for positive
selection have been developed recently, based on the probability of
seeing two random chromosomes from the sample that share the
same haplotype (6, 8, 9, 20–22). For example, in the first example
of this type of analysis, Serre et al. (20) surveyed polymorphic sites
closely linked to the �F508 allele of CFTR. This analysis calculated
an allele age of 3,000 years for the �F508 mutation, suggesting that
the high frequency of this allele in European ancestry populations
might be explained by heterozygote advantage. Recently, Sabeti
and colleagues (10) used this approach to confirm selection at two
well characterized genes (G6PD and TNFSF5). Their method uses
computationally estimated haplotypes, however, making global
chromosomal scans a daunting computational task. In addition, this
approach does not consider the expected decay of LD surrounding
a selected allele, in contrast to the method presented in this work.

Here, we construct a probabilistic model, based on our prior
experimental approach (6, 8), designated the LD decay (LDD) test.
The method relies only on high-heterozygosity SNPs for analysis,
exactly the type of data obtained in the Perlegen and HapMap
efforts (1, 2). This ‘‘first-pass’’ analysis uncovers a surprising num-
ber of alleles with the fingerprint of recent positive selection, in
contrast to other global approaches using less-sensitive methods (1,
2). We outline several predominant biological themes among genes
detected with this strategy and suggest that selection for alleles in
these categories accompanied the major ‘‘out of Africa’’ population
expansion of humankind and�or the radical shift from hunter–
gatherer to agricultural societies (23–26).

Materials and Methods
The G6PD V202M data set was obtained from Sabeti et al. (10).
The Perlegen data set was obtained from Hinds et al. (1), and the
HapMap data set (2) was obtained from the Phase 1 freeze. Details
of our computational approach are described in Results, with
additional information in Supporting Text and Figs. 6–8, which are
published as supporting information on the PNAS web site.
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Results
We developed a simple computational approach to distinguish
large differences in LD surrounding a given SNP pair based on
our prior experimental approach (6, 8). By examining individuals
homozygous for a given SNP, the fraction of inferred recombi-
nant chromosomes (FRC) at adjacent polymorphisms can be
directly computed without the need to infer haplotype (8). We
use the expected increase with distance in FRC surrounding a
selected allele to identify such alleles. Importantly, the method
is insensitive to local recombination rate, because local rate will
influence the extent of LD surrounding both alleles, while the
method looks for LD differences between alleles.

As two well characterized examples, the patterns of FRCs
surrounding the selected alleles DRD4 7R, a dopamine receptor
(6, 8), and G6PD V202M, a variant conferring malaria resistance
in African populations (9, 10), are strong indicators of selection
(Fig. 1). The new allele attained a high population frequency yet
still retained a strong local LD block in comparison with the
alternative allele. More importantly, the progressive decay of this
strong LD with distance from the selected allele is further
evidence of selection acting on such sites. One observes this

pattern because the number of possible meiotic recombinations
not eliminating the advantageous allele increases as a function of
distance from the selected site. The overall ‘‘rate’’ of LDD is
influenced by the intraallelic coalescence time of the inferred
selection and local recombination rate. For example, the G6PD
V202M variant exhibits LDD similar to DRD4 7R, although the
decay is 14 times slower (Fig. 1). This result is consistent,
however, with the calculated 5- to 10-fold younger allele age of
G6PD V202M and the 2- to 4-fold increase in recombination rate
at the DRD4 locus (6, 8–10).

Although the analytical concept of defining recent allele age
(and hence implied selection) based on this predicted exponen-
tial decay of LD is well established (6, 8, 20–22), little mention
of the approach is found in the population genetics literature
(16). Although this expected LDD can be approximated by
various linear or exponential curves (depending on the assump-
tions made regarding recombination), we used a standard sig-
moidal curve, consistent with prior work on allele age calcula-
tions (6, 8, 20–22) and the acknowledgment that inferred
recombination has a maximum value of 0.5 (Fig. 1). Given the
current SNP database depth, however, any reasonable approx-
imation to the expected LDD yields comparable results (data not
shown). Obviously, further work can refine this analytical ap-
proach if warranted, as experimental data (and the accuracy of
inferred FRC) increases.

A simplified example of our computational approach is shown
in Fig. 2, and details are presented in Supporting Text and Figs.
6–8. First, each SNP (S) is sorted by homozygous common and
minor alleles, and heterozygous individuals are discarded. This
method allows the direct measure of adjacent inferred FRC
without the need to infer haplotype (8). All adjacent SNP
markers within �500 Kb are binned according to the separation
distance from site S (Fig. 2 A, arrowhead). For each neighboring
site, we then compute its inferred FRC (8), assuming the S
variant arose on a single chromosome (haplotype). The distance
away from S and each associated FRC is then recorded as a value
pair into a list for S (Fig. 2B). From this list, average log
likelihood (ALnLH) is computed based on the sum of the square
of the differences between the input model and the actual data,
with uniform prior and a deviation function to account for
experimental and recombination variation. This process is then
repeated for all sites, using a ‘‘sliding-window’’ of 1 Mb (con-
taining 150–300 SNPs).

On average, the distance between each SNP in the Perlegen data
set is 2 kb (1). These data were generated by genotyping 71
unrelated individuals from 3 populations: 24 European Americans,

Fig. 1. LD patterns surrounding DRD4 7R and G6PD V202M. The observed
FRC, associated with a minor allele under selection (DRD4 7R and G6PD
V202M), are plotted vs. distance. FRC is calculated assuming the selected
variant arose on a single chromosome (haplotype) (8). The indicated logistic
function curves are approximated as sigmoidal, indicating the increasing
decay of LD with distance with maximum assumed value of 0.5. Only sites in
one direction from the selected allele are shown. The proximal region of the
DRD4 7R data are shown at increased resolution in Inset. The approximate
current Perlegen (1) data set detection limit (gray) is indicated.

Fig. 2. Probabilistic method for finding unusual genetic architectures. (A) Binning on major�minor alleles. Each individual is sorted based on homozygosity
at the major or minor allele at site S (arrowhead). (B) Compute fraction of adjacent recombinant chromosomes. The distance (d1–d3) and FRC for each
neighboring SNP is then computed and stored. This list is then used to compute the ALnLH for each site (see text). Using only homozygous individuals for the
computation eliminates the need to infer haplotypes.

136 � www.pnas.org�cgi�doi�10.1073�pnas.0509691102 Wang et al.



23 African Americans, and 24 Han Chinese from the Los Angeles
area. Because there are relatively few individuals in each popula-
tion, the total Perlegen data set was initially analyzed. Approxi-
mately 68% of the 1,586,383 Perlegen sites have minor allele
frequency of �10%. Approximately 49% of the total sites have
homozygous minor allele individuals of �5%, which we take as our
cut-off for analysis (�0.22 allele frequency). If the homozygous
minor allele is population specific in the Perlegen data set, this
cut-off represents an allele frequency of �38% in that population.

The LDD test can be used with many a priori combinations of
inferred recombination�coalescence parameters. For this initial
analysis, we broadly sampled the range of potential selected
allele LDD defined by the nongray area in Fig. 1, �1 SD from
the genome average (see Supporting Text and Figs. 6–8). This
cut-off excludes some well documented selected alleles such as
the telomeric gene DRD4 7R, which have allelic frequencies
below our cut-off and�or are in regions with too few neighboring
SNPs currently typed in the database to stringently distinguish
such alleles from background. The LDD test can be applied in
such regions by high density SNP-typing�resequencing (6, 8).

For the purpose of this analysis, then, we define ‘‘recently’’
selected alleles, which include a number of loci such as PTC (12)
and LCT (13) in addition to G6PD (Fig. 1), as ones that can be
distinguished given the Perlegen resolution, coalescent time, and
local recombination frequency, as well as their high (�0.22)
allele frequency. Although ‘‘hotspots’’ for recombination likely
occur in human DNA, the large-scale (megabase) variation in
recombination frequency in most nontelomeric euchromatic
regions does not vary beyond 2- to 4-fold (1, 2, 27). Selected
alleles detected with our approach, therefore, should have
estimated coalescent times up to 10,000 years in areas of high
recombination to �40,000 years (the upper Paleolithic; ref. 23)
in areas of low recombination (21).

We set a detection threshold at an ALnLH of �2.6 SD (�99.5th

percentile) from the genome average, or 0.61 for the Perlegen data

set (see Supporting Text and Figs. 6–8). The calculated genomewide
Perlegen ALnLH scores exhibit an average of 0.043, but with a SD
of 0.22. Hence, an ALnLH of 0.61 represents a highly unusual
genetic architecture. In total, 25,386 (1.6%) of the 1.6 million
Perlegen SNPs met these criteria. Because of the extensive LD
detected by this analysis, many adjacent SNPs are calculated with
high ALnLH values. Interestingly, �29% of these SNP clusters
show signs of selection in individuals from all three Perlegen
populations (European, African, and Asian American) and �78%
in at least two populations. It is important to note that ‘‘absence’’
in a particular population using the LDD test is only a reflection
that homozygous minor allele individuals are not observed in the
sample. A display of regions of inferred selection along all chro-
mosomes for the Perlegen (PLG) data set is shown in Fig. 3; see also
Fig. 9, which is published as supporting information on the PNAS
web site.

As an example of representative data, Fig. 4 shows the local
genetic architecture centered at a 25-kb region defining the pro-
moter of the Reticulon gene (RTN1) on chromosome 14 (Online
Mendelian Inheritance in Man accession no. 600865) (29). This
gene encodes a neuroendocrine-specific protein thought to affect
cellular amyloid-� and the formation of amyloid plaques in Alz-
heimer’s disease (30). The randomness for neighboring recombi-
nant chromosomes for the major RTN1 allele at this site exemplifies
the genome average, with little long-range LD. In contrast, the
minor RTN1 allele at this site closely matches the LDD model (Fig.
4). The large LD block around Perlegen SNP rs9323357 and its
disproportionately high allelic frequency (35%) suggests a possible
recent selective event at the RTN1 locus.

Although the Perlegen data set (1) has high SNP resolution,
population depth is limited. The recently released HapMap data
set (Phase I freeze) (2), conversely, has fewer SNPs (1.0 million)
but deeper population coverage: 90 European ancestry (CEU),
90 African (Yoruba) ancestry (YRI), 45 Han Chinese (CHB),
and 45 Japanese (JPT) individuals. This data set allows for an

Fig. 3. Darwin’s fingerprint. The global landscape (black lines) of recent inferred Darwinian selection for the Perlegen (PLG) and HapMap (CEU, CHB, JPT, and
YRI) data sets is shown, aligned along chromosomes and genes (blue lines). A larger version of this figure is available as Fig. 9, and higher-resolution analysis
can be obtained from the authors for display on the University of California at Santa Cruz Genome Browser (28).
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independent confirmation of our results. In addition, the greater
depth of the HapMap data set allows better definition of
potential population-specific selective events, which account for
only 22% of the Perlegen clusters.

Calculations of ALnLH were conducted separately on all four
HapMap populations, again using a cut-off of �2.6 SD (�99.5th

percentile) from the genome average (ranging from 0.51 to 0.71
for YRI and CEU populations, respectively). Merging all four
HapMap populations yielded a total of 20,786 SNPs with evi-
dence of selection, similar to the Perlegen data set. Inferred
selection for the four HapMap populations is shown in Figs. 3
and 9. Because there is only partial overlap between SNPs used
by the Perlegen and HapMap efforts, both data sets were aligned
along the Human Genome (hg17) sequence (28), using a 10-kb
window for assigning regions. Encouragingly, there is a 77%
(YRI) to 96% [Han Chinese (CHB)] overlap between the
inferred selected regions identified by the Perlegen and HapMap

data sets. For example, the RTN1 promoter region originally
identified in the Perlegen data set shows evidence for selection
in all four HapMap populations (Fig. 4). Interestingly, the LDD
at this locus is greater in the YRI population, as expected for an
older population that has not undergone the severe recent
bottlenecks (31, 32) inferred for Asian and European popula-
tions. In general, regions of inferred selection that are found in
all populations exhibit this African-specific faster LDD.

The genomic distribution of inferred selection using the LDD
test is in general random, with no bias toward or against other
unusual genomic regions such as segmental duplications or
inversions (33, 34) (Fig. 3). Although inversions can suppress
recombination and produce large LD blocks, large (�100 kb)
inversions are not common in human DNA, do not produce a
gradual LDD as observed for selected alleles, and would not
eliminate recombination at the high frequency of alleles re-
ported in this work. For example, a recently reported large
chromosome 17 inversion (34) produces a distinct pattern of flat
LD clearly distinguishable from the alleles identified in this work
(data not shown). The few inferred inversions detected by our
analysis are not excluded, because their high frequency implies
that selection may be maintaining them in the population (34).

There is a slight underrepresentation of detected selection in
high-recombination areas such as telomeric regions, as expected
given the particular parameters used for this initial screen. One
strikingly nonrandom distribution, however, is an �2-fold overrep-
resentation of such alleles on the X chromosome (Fig. 3; P ��
0.00001). Given that overall population recombination frequency
on the X chromosome is not significantly lower than the genome
average (27, 35), this result is consistent with the hypothesis that
alleles on the ‘‘haploid’’ X chromosome will be under stronger
selective pressure than those on diploid autosomes.

In addition to selection, are there other mechanisms that could
produce these unusual long-range genetic architectures? It is
commonly assumed that one summary statistic is often insuffi-
cient to unambiguously detect recent selection from other
population events (16, 36). Many population-genetics tests,
indeed, cannot distinguish selection from bottlenecks�
admixture. This lack of discrimination is because of both a lack
of acknowledgment of LD structure in these tests (as discussed
above) and the usual examination of small (��1 Mb) genomic
regions (16). Supporting Text describes permutations�
simulations of admixture and bottleneck models, using actual
Perlegen or HapMap data sets. These simulations were con-
ducted because prior population genetics simulations and co-
alescence models of population structure cannot be compared
directly with the highly biased Perlegen and HapMap SNP data
set, consisting largely of high-heterozygosity SNPs. These sim-
ulations indicate that the LDD test, at the megabase scale used,
appears to effectively distinguish between effects due to selec-
tion vs. demographic history. We conclude that inferred recent
Darwinian selection is the most likely explanation for these
unusual genomic architectures (Figs. 3 and 4).

The inferred selected SNPs were queried into the National
Center for Biotechnology Information SNP Database (dbSNP;
www.ncbi.nlm.nih.gov�entrez�query.fcgi?db�snp) Build 123 for
associated genes�exons within a 100-kb radius. A 100-kb radius was
chosen as a reasonable first-pass distance in which a SNP could
influence a gene’s expression�function, given current knowledge of
gene organization and regulation (33, 37). Approximately 35%
of the inferred selected SNPs were not within a 100-kb radius of
known genes and were not analyzed further. Whether this fraction
represents selection at noncoding regions or the inability to identify
all potential gene regions in the current HGP assembly is unclear.
In the Perlegen data set, inferred selected SNPs clustered in 1,799
genes (Fig. 3). Similar results were obtained with the HapMap data
sets. A total of 112 annotated genes showed evidence for selection
in both the Perlegen data set and all four HapMap populations (see

Fig. 4. Example of inferred selection at the Reticulon gene (RTN1), which
encodes a neuroendocrine-specific protein thought to affect the formation of
amyloid plaques in Alzheimer’s disease (29, 30). (A) Inferred selected SNPs in
the promoter region (red) are shown along with all annotated SNPs (black).
(B–D) The randomness for neighboring recombinant chromosomes for the
major RTN1 allele (blue) at this site exemplifies the genome average, with little
long-range LD. In contrast, the minor RTN1 allele (yellow) at this site closely
matches the LDD model for selection. The horizontal axis labels distance away
from each centered SNP, and the vertical axis is FRC (Fig. 1). (B) Perlegen data
set. (C) CEU HapMap data set. (D) African ancestry (YRI) HapMap data set. The
Asian HapMap data sets resemble the CEU architecture (data not shown). Note
the twofold horizontal axis scale change for the YRI display, reflecting the
more rapid LDD at this site in this population.

138 � www.pnas.org�cgi�doi�10.1073�pnas.0509691102 Wang et al.



Table 1, which is published as supporting information on the PNAS
web site).

We examined whether there are predominant biological
themes represented among these selected genes, using EASE for
the analysis of overrepresentation (26). Similar EASE results were
obtained for all populations. As an example, Fig. 5 shows EASE
values determined for the 407 HapMap CEU selected genes
classifiable under Gene Ontology (GO) Biological Process cat-
egories. These 870 overrepresented categories are �1% of the
total currently annotated GO categories.

Overall, the observed genes in overrepresented GO categories
are not random. For example, six functional categories constitute
82% of the HapMap CEU �log(EASE) scores of �0.65, represented
by color flags in Fig. 5. We have defined these more general
functional categories to include a number of individual GO cate-
gories associated with pathogen–host interaction, reproduction,
DNA metabolism�cell cycle, protein metabolism, and neuronal
function. We emphasize that many genes appear in multiple GO
categories, and hence exact classification is not possible. Neverthe-
less, the clustering of most high-scoring GO categories into one of
these generally defined functional categories is striking (Fig. 5). In
the 112 genes with evidence for selection in all populations (Table
1) the proportion of genes in each of these categories is as follows:
reproduction, 7%; host–pathogen interaction, 10%; cell cycle, 13%;
protein metabolism, 15%; neuronal function, 17%; and DNA
metabolism (including putative transcription factors), 21%.

Selection for alleles in some of these categories might be
anticipated, such as host–pathogen interaction and reproduc-
tion, given prior selection studies in humans and other organisms
(15, 38, 39). Pathogen defense has long been suspected to be
under constant evolutionary pressure. The beginning of agricul-
ture and animal domestication 10,000 years ago not only brought
domesticated animals close to humans but also established
permanent human settlements (24). Such shifts from a hunter–
gatherer nomadic lifestyle to agrarian societies likely facilitated
the wide spread of infectious agents (38, 40). Our results suggest
that human populations may have encountered many selective
events associated with pathogen–host interaction. Examples of
genes identified under host–pathogen interaction include CSF2,
CCNT2, DEFB118, STAB1, SP1, and Zap70, and under repro-
duction, BIRC6, CUGBP1, DLG3, HMGCR, STS, and XRN2.

The other overrepresented GO categories contain a number of
unexpected genes. For example, it has been suggested that changes

in organic compound metabolism may have been influenced by
increases in meat consumption by early humans (41). Overrepre-
sented genes in protein metabolism could be the result of this shift
in dietary composition and�or the profound changes associated
with a restricted agrarian diet (40). The large number of selected
genes under DNA metabolism is also unexpected. We suggest that
many of these selected alleles may be involved in the recent inferred
increase in longevity of humans (42). Modifications to our immune
system, increases in tumor suppression, and enhanced DNA repair
(Fig. 5) are likely molecular components of our unique primate
longevity. Some examples of selected genes in protein metabolism
include ADAMTS19–20, APEH, PLAU, HDAC8, UBR1, and
USP26, and under DNA metabolism CKN1, FANCC, RAD51C,
HDAC8, PDCD8, and SMC1L1.

One of the more intriguing categories overrepresented in in-
ferred selective events is neuronal function. We define this category
to include a diverse assortment of genes, including the serotonin
transporter (SLC6A4), glutamate and glycine receptors (GRM3,
GRM1, and GLRA2), olfactory receptors (OR4C13 and OR2B6),
synapse-associated proteins (RAPSN), and a number of brain-
expressed genes with largely unknown function (ASPM, RNT1; see
Fig. 4).

Discussion
It is well established that new mutations have a very high likelihood
of being lost within a few generations (43). This principle is the basis
of our probabilistic approach, which asserts that a high-frequency
allele with large LD is almost impossible to achieve by chance (Figs.
1–4). Further, by requiring that the pattern of LD exhibit an
expected decay with distance, other possible causes of long-range
LD (inversions, population admixture, and small bottlenecks) are
less likely to account for this anomalous genetic architecture (see
Supporting Text and Figs. 6–8). Finally, the clustering of identified
alleles into a few specific GO categories is distinctly nonrandom
(Fig. 5). Together, the evidence of this first-pass study shows many
promising regions with inferred recent Darwinian selection, which
undoubtedly will guide numerous future studies. Specifically, our
method identifies the region likely responsible for the inferred
selection, at or near the minima of calculated recombination (Figs.
3 and 4).

Although our approach searches for the fingerprint of directional
selection, it is important to note that many of the identified alleles
may be part of a balancing selection allelic system (8, 14). Although
it is common to distinguish between directional and balancing
selection, in actuality all balancing selection alleles, unless they are
ancient, must also have the fingerprint of a directional component
[i.e., one of the alleles must be a ‘‘younger’’ variant (8)]. Even
modestly selected alleles (s � 0.05) will become fixed in as little as
200 generations. Such selection would not be detected with the
LDD test, because the locus is no longer polymorphic. Indeed, the
observation that many of these alleles are found in most examined
populations (Fig. 4), yet have not reached fixation, argues for
balanced selection. Obviously, only further work directed at specific
alleles can clarify the nature and mode of the selection acting at the
loci described in this work.

It is intriguing that a significant fraction of inferred selected
alleles are found in most of the examined populations (Fig. 4).
Although the calculated intraallelic coalescence time for many of
these alleles in European and Asian ancestry populations is similar,
the same allele exhibits a more rapid LDD, and hence a longer
coalescence time in African ancestry populations. The model that
best explains these data is the ongoing balanced selection for these
alleles for at least the last 40,000–50,000 years after the out-of-
Africa expansion (14). In African populations, these alleles exhibit
faster LDD, reflecting the original coalescence. In European and
Asian populations, ongoing selection ‘‘reset’’ the LD ‘‘clock’’ on the
few chromosomes containing the selected variant during the in-
ferred bottlenecks generating these populations.

Fig. 5. Overrepresented GO categories are not random and represent six
biological themes. A total of 407 HapMap CEU selected genes are classifiable
under Biological Process GO categories. For these classified genes, 870 bio-
logical themes with positive EASE values were identified, as indicated. Six
functional categories constitute 82% of the �log(EASE) scores of �0.65, indi-
cated by colored flags. Each flag is color-coded for one of these specific
categories, namely pathogen–host interaction, reproduction, DNA metabo-
lism (including putative transcription factors), cell cycle, protein metabolism,
and neuronal function.

Wang et al. PNAS � January 3, 2006 � vol. 103 � no. 1 � 139

CO
M

PU
TE

R
SC

IE
N

CE
S

G
EN

ET
IC

S



Although our studies have confirmed previously known selected
alleles (such as LCT; ref. 13) and have uncovered hundreds of
putative newly selected alleles (Fig. 3), there are a few related
caveats that deserve mention. First, although the populations used
likely represent a reasonable sample of humankind, they are not
without bias. As one example, many of the Centre d’Etude du
Polymorphisme Humain (CEPH) families used in the HapMap
Project (2) originated from Utah, where polygamous marriages
were common a number of generations ago. Significant homozy-
gous regions in CEPH families have been observed (44), although
these haplotype blocks, as expected, are significantly larger than
detected in this study (see Supporting Text and Figs. 6–8).

A second concern is that although ancient (�50,000 years)
population bottlenecks or admixture would produce LD blocks
much smaller than those observed in this study (32), more recent
undetected admixture might contribute to these results. The ex-
treme bottleneck�admixture models simulated in this study (see
Supporting Text and Figs. 6–8), however, indicate that this concern
is unlikely, again because of our probabilistic model’s reliance on
the distinct pattern of LD loss with distance. Further, for the alleles
found across all populations (Table 1), it is difficult to see what type
of recent admixture could produce such a result. We conclude that
few of the observed anomalous architectures could be the result of
undetected population stratification. Nevertheless, we caution that
any particular site identified in this study not be assumed to be
unambiguously the result of selection without further confirmatory
studies. Likewise, although the number of inferred selected alleles
uncovered in this study is large (Fig. 3), it should not be considered
a complete list, but rather a first-pass analysis given the current data
sets (1, 2) and the particular method of analysis.

In conclusion, we have introduced a simple probabilistic method
to detect unusual genetic architectures associated with recent
selection that does not require haplotype information. It is, there-
fore, suitable for large chromosomal scans with large population
samples. Homo sapiens have undoubtedly undergone strong recent
selection for many different phenotypes, including but certainly not
limited to the general categories we have defined in this work (Fig.
5). Such inferred selective events are not rare (Fig. 3). The numbers
obtained, however, are similar to estimated numbers obtained for
artificial selection (by humans) on the maize genome (45). Given
that most of these selective events likely occurred in the last
10,000–40,000 years, a time of major population expansion out of
Africa followed by regional shifts from hunter–gatherer to agrarian
societies, it is tempting to speculate that gene–culture interactions
directly or indirectly shaped our genomic architecture (46, 47). As
such, we suggest that such recently selected alleles may provide
useful ‘‘markers’’ for investigating the evolutionary migrations of
our species, as an adjunct to studies using neutral markers. We also
propose that many of these alleles, because of their high prevalence
and recent selection, should be considered likely ‘‘functional can-
didates’’ for association with human variability and the common
disorders afflicting humankind.
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