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As genome sequencing outstrips the rate of high-quality, low-
throughput biochemical and genetic experimentation, accurate
annotation of protein function becomes a bottleneck in the
progress of the biomolecular sciences. Most gene products are now
annotated by homology, in which an experimentally determined
function is applied to a similar sequence. This procedure becomes
error-prone between more divergent sequences and can contam-
inate biomolecular databases. Here, we propose a computational
method of assignment of function, termed Generalized Functional
Linkages (GFL), that combines nonhomology-based methods with
other types of data. Functional linkages describe pairwise relation-
ships between proteins that work together to perform a biological
task. GFL provides a Bayesian framework thatimproves annotation
by arbitrating a competition among biological process annotations
to best describe the target protein. GFL addresses the unequal
strengths of functional linkages among proteins, the quality of
existing annotations, and the similarity among them while incor-
porating available knowledge about the cellular location or indi-
vidual molecular function of the target protein. We demonstrate
GFL with functional linkages defined by an algorithm known as
zorch that quantifies connectivity in protein-protein interaction
networks. Even when using proteins linked only by indirect or
high-throughput interactions, GFL predicts the biological processes
of many proteins in Saccharomyces cerevisiae, improving the
accuracy of annotation by 20% over majority voting.

Gene Ontology | protein annotation | protein function | protein—protein
interactions | zorch

ncreased automation in gene sequencing and protein structure
determination has brought biomolecular sciences to the point
at which no function is known for most of the sequences
determined and for many of the structures. To fill this void of
knowledge, a function is often transferred to the target protein
from one that has a similar sequence. This process has difficulties
that can lead to errors in annotation (1): function diverges with
sequence, it can be difficult to distinguish among paralogs, and
proteins with multiple domains present puzzles when the ho-
molog contains only some domains in common with the target.
Here, we describe an alternative approach to protein anno-
tation that describes the function of a protein by the context of
its functional linkages-metabolic, signaling, and structural-to
other proteins. Functional linkages not only provide evidence of
function where no homology to experimentally characterized
proteins has been found, it retrieves a complementary type of
function that concerns the larger biological role or process of a
protein rather than its specific biochemical activity (2). In this
view, the function of the target protein is defined by information
available on all of the functions of the linked proteins (3-7).
The methods of annotation from functional linkages are less
mature than those based on homology. Functional linkages are
typically defined by algorithms that use abundant data: genome
sequences underlie functional linkages generated by phyloge-
netic profiles and operon predictions, whereas others use high-
throughput experiments such as gene-expression or protein—
protein interactions. These methods share the idea that if linked
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proteins contribute to a larger biological function, the “guilt by
association” principle can be applied to transfer annotations
from one protein to another (for a review, see ref. 8).

Several issues arise when integrating pairwise functional link-
ages extracted from high-throughput data. The typical response
to noisy data is to use restrictive thresholds, but we work from
the principle that we can improve both the accuracy and
coverage of annotation if we use all available information while
controlling sources of error. We hope to improve the prediction
of the target by combining many linked proteins, but to include
less reliable links, we must appropriately weigh the contribution
of each. Depending on the method defining the functional
linkage, some annotations may be more useful than others: e.g.,
linkages defined by protein interactions may work well to predict
functions performed by protein complexes. We should integrate
the annotations of the linked proteins in a manner that accounts
for their similarity and explicitly address error in annotations and
the limitations in our description of protein function. Finally, we
need to incorporate other forms of knowledge about the target
protein, such as its cellular component (CC) or molecular
function (MF) annotations, to provide a unified description of its
biological process (BP).

Our method, Generalized Functional Linkages (GFL), deals
with these challenges by balancing pairwise functional linkages
and additional information about the target through a Bayesian
framework (Fig. 1) that treats protein function as distributions
over BP of the Gene Ontology (GO) (9). To test GFL, we
defined functional linkages by quantifying protein connectivity
in the Database of Interacting Proteins (DIP) (10) with zorch
(Fig. 2), the result of an algorithm modified from the field of
cognitive sciences (11). We show that GFL successfully combines
the functional linkages from many linked proteins that are
moderately connected to a target protein of interest through
indirect (i.e., >1 edge away) and high-throughput interactions,
improving upon majority voting while extending annotation
through the DIP network to proteins of unknown function.

Results

Defining Functional Linkages by Network Connectivity with Zorch. A
unit of zorch was placed on the target protein and allowed to
propagate throughout the protein—protein interaction network
of Saccharomyces cerevisiae in DIP, decaying as it traveled over
edges. The total amount of zorch that passed through a node
quantified the network connectivity to the target. Edge decay
rates were optimized separately for protein—protein interactions
described by small scale experiments (i.e., those in DIP core) and
high-throughput experiments. Links between protein pairs
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Fig.1. Overview of GFL. GFL integrates priorinformation with linked proteins to determine whether each hypothesis, or Gene Ontology (GO) biological process
(BP) annotation, best describes the target protein. Existing cellular component (CC) or molecular function (MF) annotations of the target, and negative results,
modify a uniform prior probability distribution. The likelihood controls the influence of each linked protein over the prior distribution according to the strength
of its functional linkage (here measured by zorch) and the confidence in its ‘known’ annotations. The matrix shows the relationship between protein function
and functional linkages used by the likelihood: warmer colors denote the increased probability of observing proteins with similar GO biological process
annotations when highly connected with zorch. After all linked proteins have contributed, the resulting posterior distribution provides a probabilistic description
of the biological process of the target protein. This distribution can be used to link new targets, or can be summarized as naive Bayes classifiers that group similar
GO terms.

shown to interact by small-scale experiments were removed so  fined by counting observations between specific BP at various
that these were not used to predict each other’s function. linkage levels. Next, target proteins enter GFL with any existing

GFL predicts functions by combining functionally linked  MF or CC that has already been ascribed. These annotations are
proteins by training on protein pairs that have been given a  converted to a prior distribution over BP by Bayesian processes
linkage score with an external method: here we used zorch. A~ uninformed by functional linkages. As each linked protein
GFL likelihood that describes the probability of observing any ~ updates the distribution, all BP hypotheses compete through the
BP in a protein at various linkage scores, given another BP as a hkehhooq to descrlb(_a the.blologlcal process of the_target_. More
hypothesis for the target protein, was constructed by first strongly linked proteins with more reliable annotations will have
counting observations of linked proteins at discretized linkage =~ MOT¢ influence over the prior. After the final update, the
scores and a GO similarity metric (12). This general relationship posterior distribution over most specific BP annotations is the

between functional linkages and annotation similarity was re- re.sulting description of function: th§se probabilities are com-
bined at more general BP or classifiers so that predictions to

similar annotations support each other.

X Evaluation of GFL. We predicted the functions of known target
proteins with existing BP that are supported by more reliable
forms of evidence: direct experimental assay (GO evidence code
IDA), traceable author statement (TAS), inferred by curator
(IC), inferred by genetic interaction (IGI), or inferred by mo-
lecular phenotype (IMP). Although we consider annotations
inferred by interacting proteins (IPI) reliable, we did not use
these to avoid circularity with zorch. Of 4,012 proteins meeting
these requirements, 3,433 were linked by zorch to at least 1
annotated protein, representing the entire set of known proteins
we evaluated.

We estimated prediction accuracy with 10-fold cross-
validation (Fig. 3), in which we separated known targets into 10
randomly selected test sets. For each set we recalculated all
probabilities used by GFL without the benefit of the targets in
the set. We then annotated each target, scoring the prediction a
success if our single most probable annotation matched at least
1 of the existing target annotations. Although we used the most
detailed GO annotations as hypotheses for the BP of a target
Fig. 2.  Zorch quantifies connectivity to the target. An initial unit of zorch prOteln,. we (.:0mb1ned the resulting p.robablllty of the detailed
flowed from the target SWE1 throughout the protein-protein interaction ~ annotations into 206 general annotations, or naive Bayes clas-
network. Protein interactions identified by reliable small-scale experiments in sifiers, before judging (13). Accuracy was calculated as the
DIP core (wide edges) allowed more flow than those from high-throughput ~ number of correctly annotated targets divided by the total
experiments (narrow edges). Highly connected proteins accumulated more targets attempted. The predicted targets were ranked by the
zorch (large nodes). Prot'eins shown to interact with SWI.E1 with edgesinDIP  mavimum posterior probability of their assigned annotation. As
core were removed to rigorously evaluate GFL annotation (diamonds). De- shown in Fig. 3, ranking by the posterior probability reflects the

spite the influence of many linked proteins with different functions (blue .. . . .
A ; accuracy of the prediction, allowing us to estimate the confi-
transport, green cytoskeleton organization, purple other), GFL combined . .
dence in our annotations.

prior information, the MF kinase activity of SWE1, with zorch-linked proteins
involved in the cell cycle (red and orange), to successfully predict a correct
biological process: regulation of cyclin-dependent protein kinase activity.  Accuracy Improves with Prior Information. Incorporating molecular
Voting failed for SWE1. function (MF) or cellular component annotations (CC) of the
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Fig. 3. GFL increases accuracy over voting and improves with informative
priors. Predicted targets were ranked according to their maximum posterior
probability: those with probability concentrated on fewer annotations were
more often correct. A prior inferred using CC, MF, or both, produced more
accurate predictions than a uniform prior, especially when predicting more
difficult targets. Coverage was measured over the 3,433 proteins with high-
quality annotation (excluding those inferred by protein interaction). The
mean and standard deviations of predictions were generated by 10-fold
cross-validation in which the assayed targets had no influence upon the
predictive model; however, gains from priors cannot be considered as cross-
validated as MF and CC correlate with BP. Random predictions were generated
by shuffling target proteins within the protein interaction network and with
uniform priors.

target as Bayesian priors to GFL improved the accuracy, espe-
cially at higher levels of coverage (Fig. 3). MF priors were more
helpful than those derived from CC, whereas priors that included
both types of annotations produced the most accurate predic-
tions; however, such gains should not be considered the results
of cross-validation, because incorporation of the priors adds
information that correlates with the BP of the targets. With or
without informative priors, GFL performed better than a ma-
jority voting method (Methods, Voting), obtaining more than a
20% gain in accuracy as coverage increased to include protein
targets that were more difficult to annotate correctly. GFL
increased accuracy at least 5-fold over results obtained by
randomly shuffling the target proteins within the DIP interac-
tion network.

Predicting Unannotated Proteins. To estimate the accuracy of
predicting yeast proteins without BP, we first grouped them by
their GFL posteriors and whether they had other annotations
(CC or MF). We then calibrated the accuracy for these groups
with the results of 10-fold cross validation [supporting informa-
tion (SI) Fig. S1], which predicts that GFL annotated 150 of
these proteins of unknown function with =50% accuracy using
DIP and zorch. For known proteins, short lists of 2 or 3 predicted
BP fared better with a relaxed evaluation that required that at
least 1 of these annotations were correct: the same is expected
for the unknown group (Fig. S1). For predictions of annotated
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Fig.4. Linking many proteins improves annotation. For each target protein,
we found the linked protein with the maximum probablity of successfully
predicting the target annotation when used alone. We used the probability of
success for this protein (based on its zorch and annotation) as a benchmark to
test the effect of integrating many proteins less strongly linked to the target.
GFL achieved the greatest accuracy at the lowest stringency threshold, which
used all linked proteins (threshold at 0% of benchmark). Independently,
targets that were linked by zorch to more proteins were predicted more
accurately (black vs. white inner bars). Error bars show 1 standard deviation
above and below the mean using a uniform prior.

proteins, see our web site (www.doe-mbi.ucla.edu/services/
GFL).

Accuracy of Different Functional Classes. Because functional link-
ages can be defined by different types of data, e.g., protein—
protein interactions, gene expression, or genome context, it
should be expected that different methods will perform better on
proteins involved in some biological processes (13). Functional
linkages defined by zorch performed well on processes per-
formed by protein complexes such as the spliceosome and
proteasome but less well on cellular respiration or most meta-
bolic pathways (Table S1), likely because these generally rely on
fewer stable protein—protein interactions (5). Other well-
predicted BP were those involved in the cell cycle, transport, and
cytoskeleton, whereas cell wall organization and regulation of
translation fared relatively poorly.

Accuracy Improves with More Linked Proteins. To assay whether
GFL could successfully integrate weaker functional linkages, we
compared predicting each target using large numbers of linked
proteins with using fewer of the best proteins. For each target we
removed linked proteins based on the probability that they yield
correct annotations when used individually. Best results were
obtained by using the full complement of linked proteins (Fig. 4).
Reducing the number of proteins to fewer than 10 markedly
decreased accuracy, demonstrating that GFL improves annota-
tion by including lower quality functional linkages. Targets that
began with more zorch-linked proteins were also more likely to
be predicted correctly: the top one-third ranked targets had >50
linked proteins on average.

Estimating the Error Rate in Linked Protein Annotations. The GO
consortium couples their annotations with codes that classify
the evidence used to infer them. GFL uses these evidence
codes to estimate the uncertainty in the ‘known’ annotations
of the linked proteins. We devised an indirect method for
making quantitative estimates of reliability. We first selected
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target proteins with annotations supported by those evidence
codes we considered most reliable: those inferred by direct
assay and traceable author statement. We then made isolated
predictions of the annotations of these gold standard targets
using individual linked proteins with annotations supported by
each evidence class. We assumed that a prediction failed for
1 of 2 reasons: the annotation of the linked protein was correct,
but the inference failed to assign an appropriate function to the
target, or the annotation of the linked protein was incorrect;
the possibility of both was ignored. A baseline failure rate was
estimated by finding the accuracy of predicting a gold standard
target annotation with a gold standard linked protein anno-
tation.

We estimated the confidence in each evidence class by divid-
ing by the baseline rate, which provided the following ranking:
(best first) molecular phenotype, genetic interaction, sequence
similarity, reviewed computational analysis, and expression pro-
file (Table S2). Because we derived functional linkages from a
protein interaction network, we expect that this test is biased in
favor of annotations inferred from protein—protein interactions.
For other classes we made the assumption that the baseline rate
was independent of the type of supporting evidence. Using the
derived confidence values as input to GFL, rather than treating
annotations equally, improved the results slightly but signifi-
cantly (T test P value 0.001), resulting in the correct annotation
of an additional 38 proteins.

Discussion

Examples of Proteins of Unknown Biological Process. We note a few
promising examples among our predictions of yeast proteins
(Table S3). Protein YDR387C has not been experimentally
characterized, but by sequence similarity had been annotated, at
the time of our data collection at SGD, with the MF permease
activity, generating a BP prior that favored vitamin transport and
biotin biosynthetic process. Although 6 proteins were linked to
the target, 5 of these had the lowest level of zorch we accepted.
The single highly connected protein was annotated with post-
translational protein targeting to membrane, whereas the 5
weakly linked proteins contained this BP and peptide phero-
mone export, filamentous growth, cytosol to ER transport,
transport, and hexose transport. Recent phylogenetic sequence
analysis has shown that YDR387C is a member of the sugar
transporter family (14), which supports the second of our ranked
posteriors, hexose transport, with 41% of the probability, a
prediction that relied on the integration of prior knowledge with
weakly linked proteins: neither functional linkages nor an infer-
ence from MF reproduced this result individually. The most
probable posterior, posttranslational targeting to protein mem-
brane, with 57%, might reflect a passive rather than active role
of the target.

Another example, protein YAL027W, lacked both BP and
MF, although its green fluorescent fusion protein had been
observed in the nucleus (15). Integration of the prior with 25
predictors divided the posterior among G;/S transition of mitotic
cell cycle (63%) and response to DNA damage stimulus (33%).
SGD reports that unpublished research suggests that it works
with Rad1/Rad10 endonuclease to resolve DNA recombination
intermediates. High throughput affinity capture methods iden-
tified many protein interactions to YALO27W (16, 17); the 2 that
received the highest zorch were Radl and Radl0, which also
function in microhomology-mediated end joining, a form of
DNA repair that is thought to be especially important during G;

(13).

Priors Incorporate Additional Knowledge. We tested priors based
on the CC and MF of the target protein (Fig. 3). Some BP
become more likely with this additional information, because
certain biological processes are carried out in defined cellular
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locations, and biological processes coordinate groups of pro-
teins with specific molecular functions. For example, if the
target protein has the MF kinase activity, the 2 most likely BP
leaves for fungi become, with a 35-fold increase in probability,
peptidyl-histidine phosphorylation and 2-component signal
transduction system (phosphorelay); each still accounts for
little more than 2 percent of the total prior probability,
however, and functional linkages are needed to further reduce
the uncertainty (Fig. 2). The prior also provides an opportunity
to add other independent knowledge about the target. If the
GO “not” qualifier is used, we set the prior probability to zero
for that annotation. Individual researchers may have their own
unpublished negative results or clues not present in the public
databases, and GFL could integrate these through the prior as
well.

We Make Several Choices to Use GO Annotations as Bayesian Hypoth-
eses. The GO consortium provides a system of annotation
noteworthy for its detail, use of multiple inheritance, and
evidence codes. A protein can be annotated at varying degrees
of specificity on the GO hierarchy, but our hypotheses are
described by a probability distribution over all BP and one
cannot be a more general form of another. Thus, we use only the
most specific annotations (i.e., leaves) as hypotheses as the best
description of the target protein. If a primary annotation, by
which we mean a preexisting annotation of the protein, is general
(i.e., not a leaf), we posit that with additional knowledge, it would
have been replaced with 1 of its more specific leaves, assuming
an appropriate leaf existed in GO. Thus, we treat primary
annotations as probability distributions over their leaves, based
on the frequency of annotated proteins within fully sequenced
fungal organisms. To account for the possibility that no GO leaf
exists to describe the protein in more specific detail, either
because biology has not yet described the function, or because of
choices made in the structure of the ontology, we created an
additional leaf that represents a conditional unknown for each
primary annotation. These conditional unknowns are given an
estimate of the probability that the primary annotation, but none
of its existing leaves, is correct. In this manner each primary GO
annotation is represented as a set of mutually exclusive hypoth-
eses, and the function of a protein is described as a collection of
distributions over these hypotheses, 1 distribution for each
primary annotation.

Measuring GO Similarity. We extended a popular, information-
content GO metric to measure the functional similarity be-
tween annotated proteins (12). This method considers 2
annotations more similar if their most specific ancestor is
found less frequently in an applicable reference set of anno-
tated proteins. To extend the metric of functional similarity to
2 proteins, we used the nearest distance between any of their
annotations. Although proteins might be considered more
similar if they shared more than 1 similar annotation, much
more data would be needed to make such extensive compar-
isons robust; otherwise, adding dissimilar pairs of annotations
to a metric would likely confound the relationship between
proteins engaged in at least 1 shared task. We note that our
method of representing the uncertainty in primary annotations
as distributions over leaves partly addresses the lack of support
for multiple inheritance in this GO metric: normally, 2 terms
are not considered more similar because they share children.
Using the expected similarity between their 2 leaf distribu-
tions, however, provides that annotations that share children
become more similar.

GO Evidence Codes Yield Confidence in Existing Annotations. Incor-

porating the confidence in an annotation allows linked proteins
with higher quality annotations to have a greater impact on the

PNAS | November 18,2008 | vol. 105 | no.46 | 17703

COMPUTER SCIENCES

BIOCHEMISTRY


http://www.pnas.org/content/vol0/issue2008/images/data/0809583105/DCSupplemental/ST2pdf
http://www.pnas.org/content/vol0/issue2008/images/data/0809583105/DCSupplemental/ST3.xls

Lo L

P

1\

=y

prediction, whereas larger expected error dilutes the degree to
which the likelihood can favor 1 hypothesis over another. Other
Bayesian methods have used confidence in GO evidence codes
(19), but we are not aware of another that quantitatively
estimates them. Our broad assay reflects the expectation that
small-scale laboratory experiments provide the best inferences
of protein function (19), but further corroboration of the con-
fidence values (Table S2) with other types of functional linkages
is needed. Annotations supported by the GO code “inferred by
unreviewed electronic annotation” (IEA) had not been incor-
porated by the Saccharomyces Genome Database (SGD) (20) at
the time of our data collection.

Likelihood Combines High-Dimensional and Uncertain Data. The
likelihood is the probability of the data given the hypothesis;
here, the data include the annotations and evidence codes of
1 linked protein and the functional linkage to the target. For
each BP hypothesis, we focus the likelihood on the most
supportive data: that BP of the linked protein that is expected
to be both correct and observed (see Methods). This strategy
departs from a typical Bayesian procedure, because it allows
uncertainty in the data to translate differentially to each
hypothesis. We first use the GO structure to guide a prior
count of linked proteins at their nearest BP GO distance,
representing the general relationship between the functional
linkage and BP similarity, and then add counts of specific pairs
of BP. If an annotation is poorly represented, the prior count
will dominate the likelihood, and strongly linked proteins will
predict similar annotations with a typical “guilt-by associa-
tion” principle; with more data, the likelihood can accommo-
date specific relations between BP and the particular func-
tional linkage. Because the general relationship is robust, the
balance between performance on known targets and overfit-
ting can be controlled by the size of the prior count. GFL can
predict BP not already found in the target organism: here, we
emphasize discovery over recall of known functions by creating
the prior from all BP annotating any fungal protein.

Posterior Represents Protein Function as a Probability Distribution.
The result of GFL is a distribution over BP expressing the
probability that each is the best description of the target. As
a distribution, the hypotheses are mutually exclusive, allowing
simple combination of probabilities at general classifiers with-
out the typical need for further methodology (21). We can
draw multiple annotations from this distribution to describe
>1 BP, but the posterior does not guide us on how many to
choose. Currently GFL uses a naive Bayesian process by
assuming the linked proteins provide independent data.
Breaking this assumption leads to amassing probabilities very
close to 1 on a single annotation when many linked proteins
with similar annotations are used, limiting the use of the
posterior as a guide to the true confidence in our predictions.
Fortunately, the ranked order of probabilities reflects the
accuracy of the prediction (Fig. 3), so we calibrate our
expected outcome accordingly (Fig. S1).

Comparison with Other Methods. Recently, a landmark collabora-
tive effort to predict mouse gene annotations introduced and
evaluated a number of approaches that employ functional link-
age or gene association data (22). Our method is substantially
different from these in the manner we apply Bayes’ theorem to
arbitrate competition among all hypotheses and our likelihood’s
use of the GO graph structure to leverage the relationship
between functional linkages and functional similarity. We also
introduce the use of MF and CC priors, and in addition, show
how uncertainty in existing annotations and incompleteness in
the GO can be addressed. Herein we have used only 1 type of
functional linkage, but we expect that, like other methods (3, 5-7,
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22, 23), GFL will improve using multiple types. We believe that
the rigor and flexibility of GFL provides a comprehensive
framework that will benefit from data accumulating from high-
throughput experiments.

Methods

Zorch. To quantify network connectivity between one protein and others, we
adapted the idea of zorch originally used to describe cognition (11). Although
we developed this use of zorch independently, it is similar to the Functional-
Flow algorithm (23), although simpler, because it does not attempt to make
functional predictions itself but only defines functional linkages based on
network connectivity (24). The algorithm is straightforward: a unit of zorch is
placed on the target protein and allowed to propagate throughout the DIP S.
cerevisiae protein interaction network, decaying as it travels over edges, so
that zorch passing through a node is equivalent to the zorch at the previous
node multiplied by a constant (e.g., one-half). Each path is calculated inde-
pendently so that zorch does not recombine but decreases at each step. Cycles
are allowed. After zorch falls below a threshold the path is terminated. The
result, a measure of network connectivity between target and other proteins,
is the total amount of zorch that passed through each node from all paths. To
limit the flow radiating from experimentally “’sticky" proteins, zorch passing
along high-throughput interactions is further reduced by multiplying by 1/n"
with r optimized as 0.2 and n as the number of interactions of a protein
observed only by high-throughput experiments.

Parameters were optimized by maximizing the area under the receiver-
operator characteristic (ROC) curve obtained by using zorch to predict pairs of
proteins that shared similar BP. The optimal decay rate for DIP core interac-
tions was 0.5 and 0.3 for high-throughput interactions. Zorch propagation
ended after reaching a minimum threshold of 0.25 units, amaximum of 3 steps
atthese decayrates. The optimal values were stable over all 10 cross-validation
sets used during simultaneous evaluation with GFL.

The Prior. CC and MF priors were inferred through a separate Bayesian process
using a uniform prior with any GO “‘not" qualifier annotations set to zero. The
needed likelihoods, the probability of a MF or CC given a BP, were obtained
by finding the maximum coannotation counts in any fully sequenced fungus.
We allowed a small contribution (up to a count of 2) for combinations of
protein annotations not found in a fully sequenced organism. Counts at
general annotations were redistributed to their leaves according to the
frequency of leaf annotations among fungal proteins. The same counting
method was used to construct the GO distance (12). In an attempt to limit
unwarranted performance gains, if we found a 1 to 1 correspondence with a
MF or CC to BP, we replaced the MF or CC with a more general annotation to
provide uncertainty in the BP prior and make evaluation using priors more
realistic.

Linked Proteins. We described the function(s) of a protein as a collection of
weighted distributions over BP (S/ Text, Materials and Methods). To model
uncertainty in existing annotations, each primary (existing) annotation gen-
erated a distribution over its leaves according to the counts used to calculate
the GO distances. To model error in primary annotation, each distribution was
weighted by confidence because of its evidence code. In addition, a uniform
distribution was weighted by the probability that all primary BP were incor-
rect. To model incompleteness in the ontology, each primary annotation
generated a conditional unknown annotation with probability estimated, as
a firstapproximation, by the fraction of times both a parent and child Interpro
accession mapped (25) to the same GO term. We used a prior count of 1so that
all annotations had some conditional unknown probability.

The Likelihood. We estimate the likelihood for each hypothesis using the
expected maximum normalized likelihood (S/ Text, Materials and Methods)
based on empirical counts. To describe the general relationship between the
linkage score (e.g., zorch) and function, we first counted each linked pair of
annotated proteinsin S. cerevisiae at their nearest discretized GO distance and
linkage score. For each pair of GO annotations, we corrected for the graph
structure of GO with the probability of choosing the BP from among all BP at
the linkage score and GO distance from the hypothesis. In a second step we
estimated the more specific relationship between each individual BP pair and
the linkage score by counting observations of the pairwise BP of linked
proteins, initializing these sparse counts with a prior count guided by the
general relationship found earlier.
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