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Which network structures favor the rapid spread of new ideas,
behaviors, or technologies? This question has been studied exten-
sively using epidemic models. Here we consider a complementary
point of view and consider scenarios where the individuals’ beha-
vior is the result of a strategic choice among competing alterna-
tives. In particular, we study models that are based on the
dynamics of coordination games. Classical results in game theory
studying this model provide a simple condition for a new action
or innovation to become widespread in the network. The present
paper characterizes the rate of convergence as a function of the
structure of the interaction network. The resulting predictions
differ strongly from the ones provided by epidemic models. In
particular, it appears that innovation spreads much more slowly
on well-connected network structures dominated by long-range
links than in low-dimensional ones dominated, for example, by
geographic proximity.

Markov chain ∣ convergence times ∣ game dynamics

A great variety of social or technological innovations spread in
a population through the network of individual interactions.

The dynamics of this process results in the formation of new
norms and institutions and has been an important subject of study
in sociology and economics (1, 2).

More recently, there has been a surge of interest in this subject
because of the rapid growth and popularity of online social inter-
action. By providing new means for communication and interac-
tion, the Internet has become a unique environment for the
emergence and spread of innovations. At the same time, the
Internet has changed the structure of the underlying network
of interactions by allowing individuals to interact independently
of their physical proximity.

Does the structure of online social networks favor the spread
of all innovations? What is the impact of the structure of a social
network on the spread of innovations? The present paper tries to
address these questions.

Epidemic vs. Game-Theoretic Models
In the last few years, a considerable effort has been devoted to
the study epidemic or independent cascade models on networks
(3). The underlying assumption of these models is that people
adopt a new behavior when they come in contact with others
who have already adopted it. In other words, innovations spread
much like epidemics.

The key predictions of such models are easy to grasp intui-
tively: (i) Innovations spread quickly in highly connected net-
works; (ii) long-range links are highly beneficial and facilitate
such spreading; (iii) high-degree nodes (hubs) are the gateway
for successful spreading.

The focus of this paper is on game-theoretic models that are
based on the notion of utility maximization rather than exposure
(2). The basic hypothesis here is that, when adopting a new
behavior, each individual makes a rational choice to maximize
his or her payoff in a coordination game. In these models, players
adopt a new behavior when enough of their neighbors in the so-
cial network have adopted it; that is, innovations spread because
there is an incentive to conform.

In this paper, we will show that the key predictions of game-
theoretic models are antithetic to the ones of epidemic models:

(i) Innovations spread quickly in locally connected networks; (ii)
geographic (or more general finite-dimensional) structures favor
such spreading; (iii) high-degree nodes slow down the diffusion
process.

In summary, game-theoretic models lead to strikingly different
conclusions from epidemic ones. This difference strongly suggests
that assuming that diffusion of viruses, technologies, or new
political or social beliefs have the same “viral” behavior may
be misleading (4).

It also provides a rigorous evidence that the aggregate beha-
vior of the diffusion is indeed very sensitive to the mechanism of
interaction between individuals.† This intuition can be quite
important when it comes to making predictions about the success
of new technologies or behaviors or developing algorithms for
spreading or containing them.

Model and Description of the Results
We represent the social network by a graph in which each node
represents an agent in the system. Each agent or player has to
make a choice between two alternatives. The payoff of each of
the two choices for the agent increases with the number of neigh-
bors who are adopting the same choice.

The above model captures situations in which there is an incen-
tive for individuals to make the same choices as their immediate
friends or neighbors. This may happen when making a decision
between two alternative operating systems (e.g., Windows versus
Linux), choosing cell phone providers (AT&T versus Verizon), or
even political parties (Republican versus Democratic).

We use a very simple dynamics for the evolution of play.
Agents revise their strategies asynchronously. Each time they
choose, with probability close to 1, the strategy with the best
payoff, given the current behavior of their neighbors. Such noisy
best-response dynamics have been studied extensively as a simple
model for the emergence of technologies and social norms
(2, 5–7). The main result in this line of work can be summarized
as follows: The combination of random experimentation (noise)
and the myopic attempts of players to increase their utility (best
response) drives the system toward a particular equilibrium in
which all players take the same action. The analysis also offers
a simple condition (known as risk dominance) that determines
whether an innovation introduced in the network will eventually
become widespread.

The present paper characterizes the rate of convergence for
such dynamics in terms of explicit graph-theoretic quantities.
Suppose a superior (risk-dominant) technology is introduced
as a new alternative. How long does it take until it becomes wide-
spread in the network?
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Our characterization is expressed in terms of quantities that we
name tilted cutwidth and tilted cut of the graph. We refer the
reader to the following sections for exact definition of these quan-
tities. Roughly speaking, the two quantities are duals of each
other: The former characterization is derived by calculating the
most likely path to the equilibrium and implies an upper bound on
the convergence time; the latter corresponds to a bottleneck in
the space of configurations and provides a lower bound.

The proof uses an argument similar to (8–10) to relate hitting
time to the spectrum of a suitable transition matrix. The conver-
gence time is then estimated in terms of the most likely path from
the worst-case initial configuration. A key contribution of this pa-
per consists in proving that there exists a monotone increasing
path with this property. This indicates that the risk-dominant
strategy indeed spreads through the network, i.e., an increasing
subset of players adopt it over time.

The above results allow us to estimate the convergence time
for well-known models for the structure of social networks. This
is done by relating the convergence time to the underlying dimen-
sion of the graph. For example, if the interaction graph can be
embedded on a low-dimensional space, the dynamics converges
in a very short time. On the other hand, random graphs or power-
law networks are inherently high-dimensional objects, and the
convergence may take a time as large as exponential in the num-
ber of nodes. As we mentioned earlier, epidemics have the
opposite behavior. They spread much more rapidly on random
or power-law networks.

Related Work
Kandori et al. (5) studied the noisy best-response dynamics and
showed that it converges to an equilibrium in which every agent
takes the same strategy. The strategy adopted by all the players
was named by Harsanyi and Selten (7) as risk-dominant (see next
section for a definition).

The role of graph structure and its interplay with convergence
times was first emphasized by Ellison (11). In his pioneering
work, Ellison considered two types of structures for the interac-
tion network: a complete graph and a one-dimensional network
obtained by placing individuals on a cycle and connecting all pairs
of distance smaller than some given constant. Ellison proved that,
on the first type of graph structure, convergence to the risk-domi-
nant equilibrium is extremely slow (exponential in the number of
players) and for practical purposes, not observable. On the con-
trary, convergence is relatively fast on linear network and the
risk-dominant equilibrium is an important predictive concept
in this case. Based on this observation, Ellison concludes that
when the interaction is global, the outcome is determined by his-
toric factors. In contrast, when players “interact with small sets of
neighbors,” evolutionary forces may determine the outcome.

Even though this result has received a lot of attention in the
economic theory [for example, see detailed expositions in books
by Fudenberg and Levine (12) and by Young (2)], the conclusion
of ref. 11 has remained rather imprecise. The contribution of
the current paper is to precisely derive the graph quantity that
captures the rate of convergence. Our results make a different
prediction on models of social networks that are well-connected
but sparse. We also show how to interpret Ellison’s result by
defining a geometric embedding of graphs.

Most of our results are based on a reversible Markov chain
model for the dynamics. Blume (13) already studied the same
model, rederiving the results by Kandori et al. (5). In the last part
of this paper, we will also consider generalizations to a broad
family of nonreversible dynamics.

There is an extensive literature that motivates games and
evolutionary dynamics as appropriate models for the formation
of norms and social institutions. For example, see Young (6)
for historic evidence about the evolution of the rules of the road

as the dynamics of coordination games and to Skyrms (14) and
Young (2) on the formation and evolution of social structures.

Finally, we refer to the next two sections for a comparison with
related work within mathematical physics and Markov chain
Monte Carlo (MCMC) theory.

Definitions
A game is played in periods t ¼ 1;2;3;… among a set V of players,
with jV j ¼ n. The players interact on an undirected graph
G ¼ ðV;EÞ. Each player i ∈ V has two alternative strategies
denoted by xi ∈ fþ1; − 1g. The payoff matrix A is a 2 × 2-matrix
illustrated in Fig. 1. Note that the game is symmetric. The payoff
of player i is ∑j∈NðiÞAðxi;xjÞ, where NðiÞ is the set of neighbors of
vertex i.

We assume that the game defined by matrix A is a coordination
game, i.e., the players obtain a higher payoff from adopting the
same strategy as their opponents. More precisely, we have a > d
and b > c. Let NþðiÞ and N−ðiÞ be the set of neighbors of i adopt-
ing strategyþ1 and −1, respectively. The best strategy for a node i
is þ1 if ða − dÞNþðiÞ ≥ ðb − cÞN−ðiÞ and it is −1 otherwise. For
the convenience of notation, let us define h ¼ a−d−bþc

a−dþb−c and
hi ¼ hjNðiÞj where NðiÞ is the set of neighbors of i. In that case,
every node i has a threshold value hi such that the best strategy
given the actions of others or the best-response strategy can be
written as signðhi þ∑j∈NðiÞxjÞ.

We assume that a − b > d − c, so that hi > 0 for all i ∈ V with
nonzero degree. In other words, when the number of neighbors of
node i taking action þ1 is equal to the number of its neighbors
taking action −1, the best response for i is þ1. Harsanyi and
Selten (7) namedþ1 the “risk-dominant” action because it seems
to be the best strategy for a node that does not have any informa-
tion about its neighbors. Notice that it is possible for h to be
larger than 0 even though b > a. In other words, the risk-domi-
nant equilibrium is in general distinct from the “payoff-dominant
equilibrium,” the equilibrium in which all the players have the
maximum possible payoff.

We study noisy best-response dynamics in this environment. In
this dynamics, when the players revise their strategy they choose
the best response action with probability close to 1. Still, there is a
small chance that they choose the alternative strategy with infer-
ior payoff.

More formally, a noisy best-response dynamics is specified by a
one-parameter family of Markov chains Pβf⋯g indexed by β.
The parameter β ∈ Rþ determines how noisy is the dynamics,
with β ¼ ∞ corresponding to the noise-free or best-response
dynamics.

We assume that each node i updates its value at the arrival
times of an independent Poisson clock of rate 1. The probability
that node i takes action yi is proportional to eβyiðhiþ∑j∈NðiÞxjÞ. More
precisely, the conditional distribution of the new strategy is

pi;βðyijxNðiÞÞ ¼
eβyiðhiþΣ j∈NðiÞxjÞ

eβðhiþΣj∈NðiÞxjÞ þ e−βðhiþΣj∈NðiÞxjÞ : [1]

Note that this is equivalent to the best-response dynamics
yi ¼ signðhi þ∑j∈NðiÞxjÞ for β ¼ ∞. The above chain is called heat
bath or Glauber dynamics for the Ising model. It is also known as

a c

d b

Fig. 1. Payoff matrix of the coordination game.
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logit update rule, which is the standard model in the discrete
choice literature (16).

Let x ¼ fxi∶i ∈ Vg. The corresponding Markov chain is rever-
sible with the stationary distribution μβðxÞ ∝ expð−βHðxÞÞ where

HðxÞ ¼ − ∑
ði;jÞ∈E

xixj −∑
i∈V

hixi: [2]

For large β, the stationary distribution concentrates around the
all-(þ1) configuration. In other words, this dynamics predicts that
the þ1 equilibrium or the Harsanyi–Selten’s risk-dominant equi-
librium is the likely outcome of the play in the long run.

The above was observed in by Kandori et al. (5) and Young (6)
for a slightly different definition of noisy-best-response dynamics
(see sections below and in SI Appendix). Their result has been
studied and extended as a method for refining Nash equilibria
in games. Also, it has been used as a simple model for studying
formation of social norms and institutions and diffusion of tech-
nologies. See ref. 12 for the former and ref. 2 for an exposition of
the latter.

Our aim is to determine whether the convergence to this equi-
librium is fast. For example, suppose the behavior or technology
corresponding to action −1 is the widespread action in the
network. Now the technology or behavior þ1 is offered as an
alternative. Suppose a > b and c ¼ d ¼ 0 so the innovation cor-
responding to þ1 is clearly superior. The above dynamics predict
that the innovation corresponding to action þ1 will eventually
become widespread in the network. We are interested in charac-
terizing the networks on which this innovation spreads in a rea-
sonable time.

To this end, we let Tþ denote the hitting time or convergence
time to the all-ðþ1Þ configuration and define the typical hitting
time for þ1 as

τþðG; hÞ ¼ sup
x

infft ≥ 0∶Px
βfTþ ≥ tg ≤ e−1g: [3]

For the sake of brevity, we will often refer to this as the hitting
time and drop its arguments.

Notice that τþðG; hÞ conveys to a very strong notion of conver-
gence: It is the typical time at which all the agents adopt the new
strategy. In practice, the behavior of a vanishing fraction of agents
is often unobservable. It is therefore important to consider weak-
er notions as well and ask what is the typical time τδðG; hÞ such a
fraction ð1 − δÞ of the agents (say, 90% of them) adopts the new
strategy. Most of our results prove to be robust with respect to
these modifications.

Relations with Markov Chain Monte Carlo Theory
The reversible Markov chain studied in this paper coincides with
the Glauber dynamics for the Ising model and is arguably one of
the most studied Markov chains of the same type. Among the few
general results, Berger et al. (17) proved an upper bound on the
mixing time for h ¼ 0 in terms of the cutwidth of the graph. Their
proof is based on a simple but elegant canonical path argument.
Because of our very motivation, we must consider h > 0. It is
important to stress that this seemingly innocuous modification
leads to a dramatically different behavior. As an example, for
a graph with a d-dimensional embedding (see below for defini-
tions and analysis), the mixing time is expfΘðnðd−1Þ∕dÞg for
h ¼ 0, while for any h > 0 is expected to be polynomial. This
difference is not captured by the approach of ref. 17: Adapting
the canonical path argument to the case h > 0 leads to an upper
bound of order expfΘðnðd−1Þ∕dÞg. We will see below that the
correct behavior is instead captured by our approach.

There is another important difference with respect to the
MCMC literature. As in ref. 5 and subsequent papers in the social
science literature, we focus on the small-noise (β → ∞) limit. In

particular, our estimates of the convergence time will take the
form τþðG; hÞ ¼ expfβΓ�ðGÞ þ oðβÞg. The constant Γ�ðGÞ will
then be estimated for large graphs. In particular, even if
Γ�ðGÞ is upper bounded by a constant, the oðβÞ term can hide
n-dependent factors.

The same point of view (namely studying Glauber dynamics in
the β → ∞ limit) has been explored within mathematical physics
to understand “metastability.” This line of research has led to
sharp estimates of the convergence time (more precisely, of
the constant Γ�ðGÞ) when the graph is a two- or three-dimen-
sional grid (18–20).

Finally, Ising models with heterogeneous magnetic fields hi
have been intensively studied in statistical physics. However, in
that context it is common to assume random his with symmetric
distribution. This changes dramatically the model behavior with
respect to our model, whereby hi ≥ 0 for all i.

Main Results: Specific Graph Families
The main result of this paper is the derivation of graph theoretical
quantities that capture the low-noise behavior of the hitting time.
In order to build intuition, we will start with some familiar and
natural models of social networks:

Random graphs. A random k-regular graph is a graph chosen
uniformly at random from the set of graphs in which the degree
of every vertex is k. A random graph with a fixed degree sequence
is defined similarly. Random graphs with a given degree distribu-
tion (and in particular power-law) are standard models for the
structure of social networks, World Wide Web, and the Internet.

Another popular class of models for the structure of social
networks are preferential-attachment models. In this context, a
graph is generated by adding the nodes sequentially. Every
new node attaches to d existing vertices, and the probability of
attaching to an existing vertex is proportional to its current
degree. It has been shown that the degree distribution of graphs
in this model converges to power-law.

d-dimensional networks.We say that the graphG is embeddable in
d dimensions or is a d-dimensional range-K graph if one can
associate to each of its vertices i ∈ V a position ξi ∈ Rd such that,
(i) ði;jÞ ∈ E implies dEuclðξi;ξjÞ ≤ K (here dEuclð⋯Þ denotes
Euclidean distance); (ii) any cube of volume v contains at most
2v vertices.

This is a simple model for networks in which social interaction
is restricted by some underlying geometry such as physical
proximity or closeness of interests.

Small-World Networks. These network models are studied exten-
sively, especially for understanding the small-world phenomenon.
The vertices of this graph are those of a d-dimensional grid of side
n1∕d. Two vertices i and j are connected by a “short-range” edge if
they are nearest neighbors. Further, each vertex i is connected to
k other vertices jð1Þ;…;jðkÞ drawn independently with distribution
PiðjÞ ¼ CðnÞji − jj−r . We call these edges long-range links.

These networks can be seen as hybrid models with short and
long-range links. Qualitatively, they are more similar to d-dimen-
sional graphs when r is large. On the other hand, when r is close to
zero the long-range edges form a random graph by themselves.
The following theorem gives the rate of convergence to the equi-
librium for the above network models:

Theorem 1. As β → ∞, the convergence time is τþðGÞ ¼
expf2βΓ�ðGÞ þ oðβÞg where

1. If G is a random k-regular graph with k ≥ 3, a random graphs
with a fixed degree sequence with minimum degree 3 or a
preferential-attachment graph with minimum degree 2, then
for h small enough, Γ�ðGÞ ¼ ΩðnÞ.
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2. If G is a d-dimensional graph with bounded range, then for all
h > 0, Γ�ðGÞ ¼ Oð1Þ.

3. If G is a small-world network with r ≥ d, and h is such that
maxihi ≤ k − d − 5∕2, then with high probability Γ�ðGÞ ¼
Ωðlog n∕ log log nÞ.

4. If G is a small-world network with r < d, and h is small enough,
then with high probability Γ�ðGÞ ¼ ΩðnÞ.
Figs. 2 and 3 illustrate points 3 and 4 by presenting numerical

estimates of convergence times for small-world networks in
d ¼ 1 and d ¼ 2 dimension. It is clear that τþ increases drama-
tically as r gets smaller and in particular when it crosses the
threshold r ¼ d. Also notice that the asymptotic (large β) char-
acterization offers the right qualitative picture already at values
as small as β ≈ 1.

Conclusions 1, 2, and 4 remain unchanged if the convergence
time is replaced by τδðGÞ [the typical time for a fraction ð1 − δÞ
of the agents to switch to þ1] provided δ is not too large. Con-
clusion 3 changes slightly: The exponent Γ� is reduced from
Ωðlog n∕ log log nÞ to Ωð1Þ.

In order to better understand the above theorem, it is instruc-
tive to consider the isoperimetric function of the above networks.
For a graph G ¼ ðV;EÞ, and any integer ℓ ∈ f1;…;ng this quan-
tity is defined as

ϕðG;ℓÞ ¼ min
jSj¼ℓ

cutðS;V \ SÞ
jSj ; [4]

where n ¼ jV j. Random regular graphs of degree k ≥ 3, random
graphs with a fixed degree sequence with minimum degree 3, and
random graphs in preferential-attachment model with minimum
degree 2 are known to have isoperimetric numbers bounded away
from 0 by a constant (21, 22) as long as ℓ ≤ n∕2. In other words, it
is known that there exists an α > 0 such that with high probability,
for every set S with jSj ≤ n∕2, cutðS;V \ SÞ ≥ αjSj. Such families
of graphs are also called constant expanders or in short ex-
panders.

Now consider a two-dimensional grid of side n1∕2 in which two
vertices i and j are connected by an edge if they are nearest neigh-
bors. In such a graph, a subset S defined by a subgrid of side k has
k2 vertices and only 4k edges in the cut between S and V \ S. In
other words, ϕðG;ℓÞ ≤ 4ℓ−1

2.
The basic intuition of the above theorem is that if the under-

lying interaction or social network is well-connected, i.e., it has
high expansion, then the þ1 action spreads very slowly in the
network. On the other hand, if expansion is low because the in-
teraction is restricted only to individuals that are geographically
close, then convergence to þ1 equilibrium is very fast. The next

lemma makes this intuition more concrete (here GU is the sub-
graph of G induced by the vertices in U ⊆ V ):

Lemma 2. Let G be a graph with maximum degree Δ. Assume that
there exist constants α and γ < 1 such that for any subset of vertices
U ⊆ V , and for any k ∈ f1;…;jUjg

ϕðGU ; kÞ ≤ αkγ−1: [5]

Then there exists constant A ¼ Aðα;γ;h;ΔÞ such that Γ�ðGÞ ≤ A.

Conversely, for a graph G with degree bounded by Δ, assume
there exists a subset U ⊆ V ðGÞ, such that for i ∈ U,
jNðiÞ ∩ ðV \ UÞj ≤ M, and the subgraph induced by U is a ðδ;λÞ
expander, i.e., for every k ≤ δjUj,

ϕðGU ; kÞ ≥ λ: [6]

Then Γ�ðGÞ ≥ ðλ − hΔ −MÞ⌊δjUj⌋.
In words, an upper bound on the isoperimetric function of the

graph and its subgraphs leads to an upper bound on the hitting
time. On the other hand, highly connected subgraphs that are
loosely connected to the rest of the graph can slow down the con-
vergence significantly.

Given the above intuition, one can easily derive the proof of
Theorem 1, parts 1, 3, and 4, from the last lemma. As we said,
random graphs described in the statement of the theorem have
constant expansion with high probability (21, 22). This is also the
case for small-world networks with r < d (23). Small-world net-
works with r ≥ d contain small, highly connected regions of size
roughly Oðlog nÞ. In fact, the proof of this part of the theorem is
based on identifying an expander of this size in the graph.

For part 2 of Theorem 1 note that, roughly speaking, in net-
works with dimension d, the number of edges in the boundary of a
ball that contains v vertices is of order Oðv1−1∕dÞ. Therefore the
first part of Lemma 2 should give an intuition on why the con-
vergence time is fast. The actual proof is significantly less straight-
forward because we must control the isoperimetric function of
every subgraph of G (and there is no monotonicity with respect
to the graph). The proof is presented in SI Appendix.

Results for General Graphs
In the previous section, we assumed that hi ¼ hjNðiÞj. This choice
simplifies the statements but is not technically needed. In this
section, we will consider a generic graph G and generic values
of hi ≥ 0.

Given h ¼ fhi∶i ∈ Vg and U ⊆ V , we let jUjh ≡∑i∈Uhi. We
define the tilted cutwidth of G as

0
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2000

0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Fig. 2. Typical hitting time in a 1-dimensional small-world network as a func-
tion of the exponent r, determining the distribution of long-distance connec-
tions. Here n ¼ 103 and times are normalized by n. For each node we add
k ¼ 3 long distance connection. The payoff parameter is h ¼ 0.5, and the
three curves correspond, from bottom to top, to β ¼ 1.3, 1.4, 1.5.
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1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Fig. 3. As in Fig. 2 but for a small-world network in d ¼ 2 dimensions. Here
n ¼ 502, k ¼ 3, h ¼ 0.5 and, from bottom to top, β ¼ 0.65, 0.70, 0.75.
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ΓðG; hÞ≡ min
S: ∅→V

max
t≤n

½cutðSt;V \ StÞ − jStjh�: [7]

Here the min is taken over all linear orderings of the vertices
ið1Þ;…;iðnÞ, with St ≡ fið1Þ;…;iðtÞg. Note that if for all i,
hi ¼ 0, the above is equal to the cutwidth of the graph.

Given a collection of subsets of V , Ω ⊆ 2V such that ∅ ∈ Ω,
V∉Ω, we let ∂Ω be the collection of couples ðS;S∪figÞ such that
S ∈ Ω and S∪fig∉Ω. We then define the tilted cut of G as

ΔðG; hÞ≡max
Ω

min
ðS1 ;S2Þ∈∂Ω

max
i¼1;2

½cutðSi;V \ SiÞ − jSijh�; [8]

the maximum being taken over monotone sets Ω (i.e., such that
S ∈ Ω implies S0 ∈ Ω for all S0 ⊆ S).

Theorem 3. Given an induced subgraph F ⊆ G, let hF be defined
by hFi ¼ hi þ jNðiÞjG\F, where jNðiÞjG\F is the degree of i in
G \ F. For reversible asynchronous dynamics we have τþðG; hÞ ¼
expf2βΓ�ðG; hÞ þ oðβÞg, where

Γ�ðG; hÞ ¼ max
F⊆G

ΓðF; hFÞ ¼ max
F⊆G

ΔðF; hFÞ: [9]

Note that tilted cutwidth and tilted cut are dual quantities. The
former corresponds the maximum increase in the potential
function HðxÞ along the lowest path to the þ1 equilibrium.
The latter is the lowest value of potential function along the
highest separating set in the space of configurations. The above
theorem shows that tilted cut and cutwidth coincide for the “slow-
est” subgraph of G provided that the his are nonnegative. This
identity is highly nontrivial: For instance, the two expressions
in Eq. 9 do not coincide for all subgraphs F. The hitting time
is exponential in this graph parameter.

Monotonicity of the Optimal Path The linear ordering in Eq. 7 cor-
responds to an evolution path leading to the risk-dominant (all
þ1) equilibrium from a worst-case starting point. Characterizing
the optimal path provides insight on the typical process by which
the network converges to the þ1 equilibrium (20). For instance,
if all optimal paths include a certain configuration x, then the
network will pass through the state x on its way to the new equili-
brium, with probability converging to 1 as β → ∞.

Remarkably in Eq. 7 it is sufficient to optimize over linear or-
derings instead of generic paths in fþ1; − 1gV . This is suggestive
of the fact that the convergence to the risk-dominant equilibrium
is realized by a monotone process: The new þ1 strategy effec-
tively spreads as a new behavior is expected to spread. A similar
phenomenon was indeed proved in the case of two- and three-
dimensional grids (18, 24). Here we provide rigorous evidence
that it is indeed generic.

Figs. 4 and 5 illustrate the spread of the risk-dominant strategy
in two-dimensional small-world networks. The evolution of the

number of players adopting the new strategy is clearly monotone
(although nonmonotonicities on small time scales are observable
due to the modest value of β). Also, the qualitative behavior
changes significantly with the density of long-range connections.

Nonreversible and Synchronous Dynamics
So far, we have been focusing on asynchronous dynamics, and the
noise was introduced in such a way that the resulting chain was
reversible. Our next step is to demonstrate that our observations
are applicable to a wide range of noisy best-response dynamics.

We consider a general class of Markovian dynamics over
x ∈ fþ1; − 1gV . An element in this class is specified by
pi;βðyijxNðiÞÞ, with pi;βðþ1jxNðiÞÞ a nondecreasing function of the
number ∑j∈NðiÞxj. Further we assume that piðþ1jxNðiÞÞ ≤ e−2β

when hi þ∑j∈NðiÞxj < 0. Note that the synchronous Markov chain
studied in Kandori et al. (5) and Ellison (11) is a special case in
this class.

Denote the hitting time of all ðþ1Þ-configuration in graph G
with τþðG; hÞ as before.

Proposition 4.LetG ¼ ðV;EÞ be a k-regular graph of size n such that
for λ, δ > 0, every S ⊂ V , jSj ≤ δn has vertex expansion at least λ.
Then for any noisy-best-response dynamics defined above, there
exists a constant c ¼ cðλ;δ;kÞ such that τþðG; hÞ ≥ expfβcng as
long as λ > ð3k∕4Þ þ ðmaxihi∕2Þ.

Note that random regular graphs satisfy the condition of the
above proposition as long as his are small enough. This proposi-
tion can be proved by considering the evolution of one-dimen-
sional chain tracking the number of þ1 vertices.

Proposition 5. Let G be a d-dimensional grid of size n and constant
d ≥ 1. For any synchronous or asynchronous noisy-best-response
dynamics defined above, there exists constant c such that τþðG; hÞ ≤
expfβcg.

The above proposition can be proved by a simple coupling
argument very similar to that of Young (25).

Together, these two propositions show that for a large class
of noisy-best-response dynamics including the one considered
in (11), the isoperimetric constant of the network and more
precisely its tilted cutwidth capture the rate of convergence.

Concluding Remarks
One of the weaknesses of the Nash equilibrium for predicting
the outcome of a play is that even very simple games often have
several equilibria. The coordination game studied in this paper is
a very good example: Indeed, it is not hard to construct graphs
with an exponential number of equilibria.

One of the standard ways for dealing with this problem is to use
stability with respect to noise as a way to determine whether one
equilibrium is more likely than another (7). In our opinion, the

Fig. 4. Diffusion of the risk-dominant strategy in a small-world network with d ¼ 2, k ¼ 3, n ¼ 502 and mostly short-range connections, namely r ¼ 5. We use
β ¼ 0.75 and h ¼ 0.5. (Upper) Evolution of the number of nodes adopting the new strategy (in the inset, same curve with time axis starting at t ¼ 0). (Lower)
Configurations at times such that the number of nodes adopting the risk-dominant strategy is, from left to right, 125, 375, 625, 875, 1125, 1375, 1625, 1875
(indicated by squares in Upper).
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techniques developed for analyzing Markov chains in the last
two decades are quite potent for advancing this area and achiev-
ing a deeper understanding of game dynamics and equilibrium
selection.

The current paper focused on a particular game but presented
a robust characterization of the rate and the likely path of con-
vergence as a function of network structure. We see this as a first
step in developing algorithms for making predictions of play for
more generic games. Ideally, instead of singling out a particular
equilibrium, such predictions would be a stochastic function of
evolutionary dynamics, historic factors, and the length of the play.

As a final note, complete proofs of all the theorems and lem-
mas presented in this paper and a more extensive comparison
with results in the economics literature are available in SI
Appendix. A conference version of this paper was presented at
FOCS 2009.
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