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A central problem in science is deciding among competing explana-
tions of data containing random errors. We argue that assessing the
‘‘complexity’’ of explanations is essential to a theoretically well-
founded model selection procedure. We formulate model complexity
in terms of the geometry of the space of probability distributions.
Geometric complexity provides a clear intuitive understanding of
several extant notions of model complexity. This approach allows us
to reconceptualize the model selection problem as one of counting
explanations that lie close to the ‘‘truth.’’ We demonstrate the
usefulness of the approach by applying it to the recovery of models
in psychophysics.

How does one decide among competing explanations of data,
given limited observations? This problem of model selection is

at the core of progress in science. It is particularly vexing in the
statistical sciences, where sources of error are diverse and hard to
control. For example, in psychology experiments, the participants
are themselves a serious source of uncontrolled random variation.
Choosing between candidate models that purport to describe
underlying regularities about human behavior given noisy data is
correspondingly problematic. Over the decades, scientists have used
various statistical tools to select among alternative models of data
but have lacked a clear theoretical framework for understanding
model selection. The purpose of this article is to alert scientists to
the importance of accounting for complexity when choosing among
models and to provide a geometric formulation of complexity. Not
only does a geometric approach recast model selection in a more
intuitive and meaningful light, but it also provides insight into the
relations among conventional statistical techniques and the inher-
ent tradeoffs between model performance and complexity.

Statistical Model Selection: Issues and Problems. From a statistical
standpoint, the data are a sample generated from a true but
unknown probability distribution, which is the regularity underlying
the data. A statistical model is a parametric family of probability
distributions defined on random variables Y, representing experi-
mental data. Repeated measurement of Y yields some empirical
distribution of observed values yi, which is presumed to tend to some
truth t(yi) that the experiment seeks to uncover. The truth is
statistically modeled in terms of a parameter vector u, and a
family of distributions f(yiuu), which may not actually include the
truth t. The scientist seeks to construct the best model of t within
the family f.

This paradigm can model many different experimental situations.
For example, some random variables may be controlled by the
experimentalist, who sets the value of these quantities (X) and
measures the distribution on the remaining Y. In this case, we speak
of a dependent variable Y and an independent variable X, and the
experiment probes the set of conditional distributions Pr(YuX). If
the scientist selects X according to the distribution Pr(X), the joint
distribution Pr(Y, X) 5 Pr(YuX) Pr(X) is the truth the experiment
seeks, which can be modeled as above. In some circumstances, Y has
a deterministic component as a function of X and a fixed random
error piece. In that case, it is convenient to write the observed value
of the dependent variable as yi 5 h(u, xi) 1 ei (i 5 1, . . . , N). Here
h(u, xi) is the mean of yi given a particular value (xi) of an

independent variable X, u is the parameter vector of the model, ei
is an ‘‘error’’ that is distributed with zero mean, and N is the sample
size.‡ We will study a general formalism for statistical inference of
truths t(yi) with parametric model families f(yi, u) and will illustrate
our results with examples containing dependent and independent
variables.

The goal of statistical model selection is straightforward: given a
set of observations (data) corrupted by noise, select from a set of
competing explanations the model that best captures the data’s
regularities. Achieving this goal is not straightforward because of
the difficulty in reconciling two desirable yet conflicting properties
of a good model: generalizability and goodness of fit.

Goodness of fit refers to how well a model fits a particular
pattern of observed data. It is measured by comparing predicted
outcomes of a model, with optimized parameter values, against
the observed data. For example, the mean squared error (MSE)
discrepancy measure is often used. Generalizability refers to how
well a model, inferred on the basis of a set of observed data,
predicts the statistics of new, as yet unseen, samples. In other
words, suppose the model is fitted to the initial set of data. If the
model—instantiated with the parameter values fitted to the
initial set of data—also gives a good fit to future data samples
drawn from the same underlying distribution or regularity, we
say that it generalizes well. It can be difficult to define what this
means formally, and many different but related measures of
generalizability appear in the literature. Sometimes one directly
measures proximity of an inferred model to a known truth by
using a metric on the space of distributions (see, e.g., ref. 1 and
references therein). When a true distribution t exists, gener-
alizability may be defined in terms of a discrepancy measure
Err(DatauModel),§ as the expected error in predicting future
data given the inferred model: EtErr(DatauModel). Another
notion of generalizability, used in the information theoretic
literature, relates the length of codes obtained for data by
using the sample statistics predicted by an inferred model [see,
e.g., the seminal paper of Rissanen (2)], to be discussed below.
All these methods of assessing generalizability are different,
yet related: all measure prediction of future data statistics but
yield somewhat different quantitative convergence rates to the
best model. In the practical examples studied here, we will
simply estimate generalizability by comparing inferred models,
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with parameter values fitted to initial data, to additional
samples drawn randomly from a known truth. The best gen-
eralizing model is the one with the best fits to the additional
data.

A central goal of statistical inference is to select the model that
generalizes best and thus gives the best description of the underlying
regularity. However, the very features of a model that improve
goodness of fit to observed data can decrease generalizability (see,
e.g., ref. 3). The following example illustrates this relationship.

Goodness of fit and generalizability are influenced by the
number of parameters and the model’s functional form (how the
parameters are combined in the model equation). Together they
contribute to a model’s complexity, a concept that connotes the
flexibility inherent in a model that enables it to fit diverse
patterns of data. In Table 1, we compare the ability of three
models to fit two data samples generated by one of the models
(M1). Each model’s parameters are chosen to give the best fit to
the first sample. With these parameters fixed, generalizability is
assessed by fitting to the second sample.

The first row of Table 1 shows each model’s mean fit to data
drawn from M1, M2 and M3, with two more parameters than M1,
always fit the data better than M1 itself. The improved fit relative
to M1 (the true model) occurs because the two extra parameters in
M2 and M3 allow them to absorb random error in the data. The
latter models have therefore overfitted the data beyond what is
necessary to capture the underlying truth. Furthermore, M3 fits
better than M2. This improvement must be due to functional form,
because these two models differ only in how parameters and data
are combined in the model equation.

Results in the second row of Table 1 demonstrate that poor
generalizability is the cost of overfitting a specific data sample. Not
only are MSEs now greater for M2 and M3 than for M1, but both
models provide the best fit to the second sample much less often
than M1.

This example illustrates that the best-fitting model does not
necessarily generalize the best. The trademark of a good model
selection procedure is its ability to satisfy these two opposing goals.
We desire a model that is complex enough to describe the data
sample accurately but without overfitting and thus losing general-
izability. To this end, a quantitative measure of complexity must
account for both the number of parameters and the functional form
of a model. In other words, we would like an analytic realization of
Occam’s Razor.

Previous Approaches to Measuring Model Complexity. The over-
arching goal of many model selection approaches has been the
estimation of a model’s generalizability (for a review, see ref. 4).
Some representative methods used for inference of parametric
models are the Akaike Information Criterion [AIC, (5)], the
Bayesian Information Criterion [BIC, (6)] and Rissanen’s Stochas-
tic Complexity [SC, (2, 7)]:

AIC 5 22 ln f~yuû! 1 2k

BIC 5 22 ln f~yuû! 1 k ln N

SC 5 2ln f~yuû! 1
k
2

ln N

Here y 5 (y1, . . . , yN) is a data sample of size N, ln f(yuû) is the
maximized logarithm likelihood of the data y given the model, û is
the maximum likelihood parameter estimate, and k is the number
of parameters. The first term, which is similar across criteria,
represents lack of fit to the data sample. The remaining term
represents model complexity. The model minimizing one of these
criteria is expected to generalize best and should be chosen.

For very small sample sizes, these model selection criteria may
require careful interpretation and application. Originally, all of
them were derived as approximations, for large sample sizes, of
more general quantities that are hard to compute but more readily
applicable to inference from small samples. For example, in a later
section, we will show that SC arises as an asymptotic approximation
to the likelihood that a parametric family contains the truth, given
an observed collection of data. Therefore, for very small sample
sizes, the complete likelihood should guide model selection.

Barron and Cover have shown that a large class of such Minimum
Complexity Density Estimation (MCD) methods are consistent (1)
(i.e., if the true model lies in the model space, it is recovered in the
limit of large sample sizes). This provides a strong indication that
these methods, at least asymptotically, generalize well. In the
present context, define a model selection criterion MCD 5 2ln
f(yuû) 1 L(f), where L(f) is any reasonable measure of the com-
plexity of the model family f, including Kolmogorov complexity (the
length of the shortest computer program required to describe f on
a universal Turing machine) (1, 8). The only restriction on the set
{L(f)} for the models under consideration is that its elements must
satisfy certain inequalities (1).¶ Our purpose in this article is to
discuss the choice of L(f), the measure of model complexity. AIC,
BIC, and SC are the most commonly used selection methods, but
they include only the number of parameters (k) and the sample size
(N). This seems inadequate because, as illustrated in Table 1, the
functional form of a model is also pertinent to its generalizability.
SC (9) improves on this shortcoming. However, it fails to meet the
crucial requirement of being invariant under reparametrization of
the model, a condition that any meaningfully interpretable measure
of complexity must satisfy. From a statistical standpoint, the
parameters simply index the collection of distributions a model
describes; thus, the choice of parametrization should be irrel-
evant (10).

One way of determining a good complexity measure L(f) is the
Minimum Description Length principle (MDL), which states that
the best model for describing a set of data is the one that permits
the greatest compression of the data description. This idea origi-
nated in algorithmic coding theory (8, 11, 12) with the notion that
the existence of underlying regularities governing a collection of
data necessarily implies redundancy in the information gained from
successive observations (see ref. 13 for a review). That is, the more
we compress data by extracting redundancy from it, the more we
learn about underlying regularities (see, for example, refs. 14
and 15).

With this in mind, Rissanen has proposed the following reparam-
etrization-invariant modification of his SC criterion (16):

MDL 5 2ln f~yuû! 1
k
2

lnS N
2p

D 1 ln E duÎdet I~u!.

¶These guarantee that L( f ) can be interpreted as the number of bits required to describe
f using some code.

Table 1. Goodness of fit and generalizability of models differing
in complexity

Model M1 (true model) M2 M3

Goodness of fit 4.28 (0%) 3.84 (25%) 3.67 (75%)
Generalizability 5.37 (59%) 5.62 (23%) 5.78 (18%)

Mean squared error (MSE) of the fit of each model to the data and the
percentage of samples in which the particular model fitted the data best (in
parentheses). The three models were as follows: M1: y 5 u0 1 u1x 1 error,
M2: y 5 u0 1 u1xu2 1 u3 exp(x) 1 error, and M3: y 5 u0 1 u1x 1 u2x2 1

u3x3 1 error. The error was normally distributed with a mean of zero and a
standard deviation of 5. One thousand pairs of samples were generated from
the model M1 using (u0 5 1, u1 5 2) on the same 10 points for x, which ranged
from 0.1 to 4.6 in increments of 0.5.
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Here Iij(u) is the Fisher Information matrix, defined as the expec-
tation value Iij(u) 5 2Eu[2ln f(yuu)yuiuj] evaluated in the distri-
bution indexed by u with a sample of size 1. The last two terms in
MDL should be seen as the intrinsic complexity of the model family
f. Rissanen proves that as N grows large, MDL is the length in bits
of the shortest possible code describing data generated by a model
lying within the family f. This suggests that the model that minimizes
MDL uncovers the greatest amount of underlying regularity in the
data. As such, the models it selects should perform well under any
reasonable measure of generalizability, including the expected-
future-error criterion discussed earlier. The same MDL criterion
arises as an asymptotic approximation to the Bayesian posterior
probability of a model given the data, for a special form of the
parameter prior density (17). Hence, MDL minimization corre-
sponds to maximization of the posterior probability within a
Bayesian framework.

MDL is within the class of inference schemes to which Barron
and Cover’s results on Minimum Complexity Density Estimation
apply (some work is necessary to cast the formalism of this paper
into the language of Propositions 1–4 in ref. 1). So MDL will
eventually recover the truth if it lies within a model family under
consideration. Proposition 4 of ref. 1 bounds the rate at which the
inferred model will converge to the truth. This translates into a
bound on the generalization error of the inferred model. When the
truth lies outside the considered models, analytical proofs regarding
generalization error are hard to obtain under general conditions.
However, for reasons presented below, one expects that MDL
nevertheless selects models that come ‘‘close’’ to the truth and
thereby generalize well.

MDL represents important progress in defining complexity and
tackling the model selection problem. In practice, however, com-
plexity has been conceptualized primarily as some combination of
the number of parameters in a model and its functional form. This
mode of thought can be misleading and can result in idiosyncratic
heuristic solutions to the model selection problem. In this paper, we
argue that various well-founded approaches to complexity such as
MDL and Bayesian model selection can be understood elegantly
and intuitively from a geometric perspective.

A Geometric Approach to Complexity
The Geometry of Parameter Manifolds. From a geometric perspec-
tive, a parametric model family of probability distributions forms a
Riemannian manifold embedded in the space of all distributions.
Every distribution is a point in this space, and the collection of
points created by varying the parameters of the model gives rise to
a hypersurface in which ‘‘similar’’ distributions are mapped to
‘‘nearby’’ points.i The small distance ds between points separated by
infinitesimal parameter differences du i is given by ds2 5
(i,j51

k gij(u)du i du j, where gij(u) is a Riemannian metric tensor. It has
been argued from a variety of perspectives (10, 17–24), that the
Fisher Information defined earlier is the natural metric on a
manifold of distributions, that is, gij(u) 5 Iij(u).

Earlier we described complexity as the characteristic of a model
that enables it to fit a wide range of data patterns. In the present
context, complexity should be that characteristic of a model that
enables it to describe a wide range of probability distributions.
Models that describe ‘‘more’’ distributions should be more complex.
In effect, the complexity of a model family f should relate to the
volume the associated manifold occupies in the space of distribu-
tions. The infinitesimal volume of the little cube formed by the dui

is given by dV [ Pi51
k dui=det I(u) [ du=det I(u) and is known

as the Riemannian volume element in differential geometry. The
volume of the model family f is then V(f) 5 * du=det I(u),
where we integrate over the entire parameter manifold. [We will
always cut off the ranges of parameters to ensure that V(f) is

finite. These ranges should be considered part of the functional
form of the model.] By construction, this volume is independent
of the parametrization.

To recap, if we accept the Fisher Information as the natural
metric on a parameter manifold, the volume V(f) can be seen as a
quantity related to model complexity. We will now explain the exact
nature of this relation by clarifying, (i) what we mean by the volume
of a family of distributions, and (ii) why the above dV is the ‘‘natural’’
volume integration measure on a model manifold.

Determining the volume measure dV requires counting the
distributions within the infinitesimal parameter volume Pidu i. In a
statistical context, two distributions are indistinguishable if it is
difficult to guess which of the two generated a typical large set of
data drawn from either. Because of the way a model family is
embedded in the space of distributions, two different parameter
values can index very similar distributions. Our goal is to devise a
measure of volume that counts only distinguishable distributions.

To achieve this goal, imagine playing an inference game: draw
data from one distribution, say up, in the model and ask how well
we can guess whether the data came from up rather than from a
nearby uq. Our ability to distinguish between these distributions
increases with the amount of available data. However, it is shown
in the Appendix that for any fixed amount of data there is a little
ellipsoid around up where the probability of error in the guessing
game is large. In other words, within this ellipsoid, distributions are
not very different in the statistical sense. To count distinguishable
distributions, we should cover the manifold with such ellipsoids,
counting one distribution for each ellipsoid. This discretizes the
parameter manifold to become a lattice. We then want to take the
limit of infinite sample size so that the ellipsoids of indistinguish-
ability shrink, and the associated lattice becomes finer, forming a
continuum in the limit. Taking this limit recovers a continuum
integration measure that counts only distinguishable distributions.
Strictly speaking, any finite coordinate volume will contain an
infinite number of distinguishable distributions. However, as shown
in the Appendix, the ratio of distinguishable distributions contained
in any two regions V1 and V2 is *V1

du=det I(u)y*V2
du=det I(u). It

will transpire that complexity is related to such ratios, which are
assessed using dV 5 du=det I(u) as the volume integration measure
on the parameter manifold (see refs. 10 and 17 for details).

In summary, dV gauges the number of different distributions
indexed within an infinitesimal volume. (More precisely, dVy
* du=det I(u) measures the fraction of the distributions in the
parametric family that are contained in dV.) In effect, the indis-
tinguishable distributions have been ‘‘divided out’’ of the integra-
tion measure. This makes good sense in the context of measuring
complexity: if complexity is related to the volume of a model in the
space of distributions, the measure of volume should include only
different, or distinguishable, distributions, and not the artificial
coordinate volume.

We have built a notion of volume of a parameter manifold from
the continuum limit of a counting of probability distributions. It is
worth remembering that, whereas ‘‘counts’’ can be compared across
model families of different dimension, volumes cannot. As an
example, consider a model A with parameters {u1, u2}, having
ranges {0 # u1 # r}, {0 # u2 # r} and a Fisher Information equal
to the identity matrix. Consider a family B containing distributions
in family A with parameters {u1, 0}. Then the volume of model A
is VA 5 * du1 du2=det I 5 r2, whereas the volume of model B is
VB 5 r. For small r, VB is numerically greater than VA, although
every distribution in B is manifestly contained in A also. On the
other hand, if we discretize the parameters with a grain size of « ,
r, the numbers of lattice cells within A and B are NA 5 (ry«)2 and
NB 5 ry«, respectively. These may be meaningfully compared and,
for any r, NAyNB 5 ry« . 1, indicating that A always contains more
cells than B. Here r2y«2 and ry« are ratios of the total volumes of
A and B and the volumes of their discretized lattice cells. Similarly,
any ratio of volumes can be meaningfully compared across modelsiSee refs. 18 and 19 for an introduction to differential geometry in a statistical setting.
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of different dimension. As we will see below, complexity of a model,
from the MDL and Bayesian perspectives, is related to the ratio of
the total volume of the model to the volume occupied close to the
truth.

Inference and Geometry. A model containing many distributions
that come ‘‘close’’ to the truth that generated the data should give
a good description of it. Proximity to the truth is assessed in
probability theory by asking: What is the likelihood that the truth
lies in the model family f given the observed data y? The Bayesian
method for evaluating this likelihood uses the inversion rule:

Pr~ f u y! 5
Pr~ f !

Pr~ y!Edu w~u! f~yuu!, [1]

where Pr( f), Pr(y), and w(u) are the a priori probabilities of the
model family f, the data y, and the parameter value u, whereas f(yuu)
is the probability that the observed data were generated by the
model indexed by u. In the absence of prior knowledge, Bayesian
methods say that all model families and distributions should be
considered equally likely. This involves neglecting Pr( f ) and re-
quires the prior distribution w(u) to give equal weight to each
distinguishable distribution indexed by the model parameters.
Fortunately, we have solved the problem of counting distinguish-
able distributions and can set

du w~u! 5
duÎdet I~u!

* duÎdet I~u!
5

duÎdet I~u!

V~ f !
. [2]

Because Pr(y) is a fixed number, Bayesian analysis says that the most
likely model family given the data y is the one that maximizes

Pr~ f u y! 5
1

V~ f !EduÎdet I~u!eln f~yuu!. [3]

(Again, we have dropped the prior probability of f and y, which are
the same across models and therefore appear as irrelevant con-
stants.) We will show that choosing models with high Pr( fuy) is
essentially equivalent to an MDL model selection criterion and will
then interpret both methods from a geometric perspective.

As the number of data points N 5 u yu grows, the integrand in
Pr( fuy) becomes peaks sharply around the parameter û, which
maximizes the likelihood f(yuu). So, in the vicinity of û, the integrand
will be well approximated by a multivariate Gaussian with a
covariance matrix N Jij(û), where Jij(û) 5 2(1yN) [2ln f(yuu)y
uiuj]u5û.** (We have separated the factors of N in this way
because (1yN) ln f(yuu) approaches a finite limit as N3 `.) When
N is large, the Gaussian is very narrow, and the integral can be
performed to give Pr( fuy) ' f(yuû)(Vc( f )yV( f )). We have defined
(10, 17):

Vc~ f ! 5 S2p

N D ky2Îdet I~û!

det J~û!
.

Vc( f ) is essentially the volume of a small ellipsoid around û within
which the probability of the data f(yuu) is appreciable. Specifically,
Vc( f ) differs only by a numerical factor from the volume of a region
where f(yuu) $ l f(yuû) for any l close to 1. As such, it measures the
volume of distinguishable distributions in f that come close to the
truth, as measured by predicting the data y with good probability.
It is shown in refs. 10, 17, and 25 that there is a systematic expansion

2ln~Pr~ f u y!! 5 2ln f ~ yuû! 1 lnS V~ f !

Vc~ f !
D 1 O~1yN!,

where the omitted terms vanish as N3 `. The ratio Vc( f )yV( f )
penalizes models that occupy a small volume close to the truth
relative to the total volume of the model. The second term
expands to

C 5 lnS V~ f !

Vc~ f !D 5
k
2

lnS N
2pD

1 lnEduÎdet I~u! 1
1
2

lnSdet J~û!

det I~û!
D .

In Bayesian model selection, C functions as a penalty for complex-
ity. We will analyze the meaning of this complexity in geometric
terms and relate it to the classic stochastic complexity and MDL
model selection criteria of Rissanen.

The first and second terms in C are independent of the true
distribution as well as the data and therefore represent an intrinsic
property of the model family. We will call them the geometric
complexity of the model. The third term, which depends on the data,
measures the complexity of the description of data drawn from a
given true distribution, and so we call it the relative complexity. By
construction, both geometric and relative complexity are invariant
under reparametrization of the model. Moreover, if the true
distribution lies within the considered model family, J(û) ap-
proaches I(û) as N grows large, and consequently, ln(V( f )yVc( f ))
becomes equal to the complexity penalty in the MDL selection
criterion. This shows that as the sample size grows, the log of the
Bayesian posterior probability of a model family [2ln Pr( fuy)]
coincides with MDL when the truth lies in the model family.
Therefore, selecting the most probable model is essentially equiv-
alent to choosing the model that gives the MDL of the data, and the
Bayesian complexity C coincides with Rissanen’s modified SC.
Both are equal to the quantity we are calling geometric complexity.
In the calculation of the geometric complexity, the determinant of
the Fisher Information matrix can be singular, meaning that its
value becomes infinite at certain values of the parameter. When this
occurs, parameter ranges may have to be restricted to ensure that
the integral of the determinant remains finite.

Relative complexity is important when the truth lies outside the
model family and measures the robustness of the model (its
sensitivity to the precise choice of parameters) (10, 17). Note that
the first term in C increases logarithmically with sample size (N),
whereas the second and third terms are independent of N. This
means that as N grows large, the effects of complexity because of
functional form [I(u)] will gradually diminish compared with those
due to the number of parameters (k), thereby reducing the entire
complexity measure to that of BIC.

Finally, we arrive at an intuitive geometric interpretation of the
meaning of complexity in the MDL and Bayesian approaches to
model selection: ‘‘complexity’’ measures the ratio of the volume
occupied by distinguishable distributions in a model that come close
to the truth relative to the volume of the model as a whole.
Interpreting the relative volume ratio VyVc in terms of the actual
number of distributions contained within V and Vc requires care.
Strictly speaking, the volumes V and Vc each contain an infinite
number of distributions, but their finite ratio is interpreted as the
fraction of distributions lying close to the truth. Therefore, a
complex model is one with a small fraction of its distinguishable
probability distributions lying near the truth. It is natural that MDL
depends only on a volume ratio such as VyVc because these can be
compared across models with different numbers of parameters,
unlike the volumes themselves.

Interestingly, the leading MDL penalty for model dimension,
(ky2) ln(N), has its geometrical origin in the scaling of volumes with
radius in different dimensions. Examination of the Bayesian pos-
terior shows that the integrand is appreciable in a region of
parameters around the maximum likelihood where uu 2 ûu is**Some technical conditions are required; see, e.g., ref. 25.
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O(1y=N). In k dimensions, the volume of such a region diminishes
as (1yN)ky2. The resulting scaling of Vc with N penalizes high
dimensionality. Higher dimensional models will generally contain
‘‘more’’ probability distributions and may therefore better fit sta-
tistical fluctuations in data. However, we are seeing here that better
fits are achieved at the cost of decreased robustness in the choice
of parameters; namely, the precision required in the parameters to
achieve a given degree of fit increases rapidly with dimensionality.
In this way, the simple scaling of volumes with radius in k dimen-
sions translates into a complexity penalty in the MDL and Bayesian
model selection methods. [The constant term (ky2)ln(2p) has its
origins in the details of the analysis and is less easy to explain
intuitively.]

A useful insight into the meaning of MDL is obtained by
rewriting the criterion as:

MDL 5 2lnS f~ yuû!

V~ f !yVc~ f !
D 1 d

5 2ln~‘‘normalized f ~yuû’’! 1 d,

where d [ 1
2
ln(det J(û)ydet I(û)) becomes negligible as N grows

large when the truth lies within the family f. This rewriting provides
a clearer picture of what MDL does in model selection. It selects the
model with the highest value of the maximized likelihood per the
relative ratio of distinguishable distributions [V( f )yVc( f )]. We might
call this the ‘‘normalized maximized likelihood.’’

Generalizability, MDL, and Geometry. Classic results in information
theory confirm the efficacy of MDL and Bayesian methods in
selecting models that predict well the statistics of later events in a
sequence of data. The Bayesian perspective described above shows
that the model preferred by Bayesian methods is the most likely
truth in the sense of probability theory (also see, e.g., THEOREM 1
in ref. 26). Concerning MDL, as the sample size increases, MDL is
guaranteed to eventually pick a model that is optimal in the sense
of minimizing the coding-theoretic description length of data drawn
from the truth (see THEOREM 1 in ref. 16). The ability to optimally
encode long sequences of data can be interpreted in terms of
generalizability, as forcefully argued by Rissanen in a classic paper
(2).†† Li and Vitányi (13) extensively discuss the relation between
short encoding and generalizability in Chapter 5 of their book,
albeit in an idealized setting. Barron and Cover’s results imply that
MDL and Bayesian methods are asymptotically consistent: given
enough data, they will converge to the truth if it is present within
the model families (1). (With a little work, our setup may be
translated into theirs.) This also implies that the (suitably defined)
generalization error of models selected by MDL and Bayesian
methods decreases as the sample size increases (see PROPOSITION
4 of ref. 1) when the truth lies in the model class. A related theorem,
where the generalization error is defined as the expected mean
squared prediction error made by the model inferred from the data
(with the expectation taken in the true distribution) is provided by
Li and Vitány (13) (THEOREM 5.2.1). However, their precise setup
is sufficiently different from ours that this particular theorem can
only suggest, not prove, that practical MDL methods generalize
well. The quest to prove similar strong theorems when the truth is
not a member of the model class and when the sample size is small‡‡

is a topic of active research by statisticians and information theo-
rists. It is expected that MDL and Bayesian methods will continue
to perform well even in these cases, because these information
theoretic criteria select models that contain a large relative volume
of distinguishable distributions lying close to the truth. One of these
distributions should be selected when fitting a model to a sample.
A second sample should also define an empirical distribution close
to the truth and therefore should be described well by the model§§,
i.e., the model generalizes well. A large VcyV implies that a large
fraction of the distributions indexed by the model will generalize
well in this manner. This suggests that statistical fluctuations in the
data leading to different choices of best-fitting model parameters
will have less effect on generalization performance for models with
large VcyV.

A geometric perspective has taught us that the size of a model
manifold in the space of distributions is what matters in measuring
a model’s complexity, not the apparent complications of its func-
tional form or the number of parameters. The latter two properties
of a model can be red herrings, as they are simply the apparatus by
which a collection of distributions defined by the model is indexed.
When examined individually, they can lead to an insufficient, even
misleading, understanding of complexity. Neither the parameter-
ization nor the specific functional form used in indexing is relevant,
so long as the same collection of distributions is catalogued on the
manifold. For example, the following two models, though assuming
different functional forms, are equivalent and equally complex in
the geometric sense: Model A, y 5 (aby(ab 1 (1 2 a)(1 2 b))) 1
error, (0 , a, b , 1), and Model B, y 5 (1y(1 1 ea1b)) 1 error (2`
, a, b , `), where the error has zero mean and follows the same
distribution for both models. Here, the parameters u 5 (a, b) of
Model A are related to the parameters h 5 (a, b) of Model B
through a 5 ln((1 2 a)ya) and b 5 ln((1 2 b)yb)).

Example Application
Geometric complexity and MDL are a powerful pair of model
evaluation tools. Used together, they elicit a deeper understanding
of the relationship between models, as the following example shows.
Consider two models from psychophysics describing the relation-
ship between physical dimensions (e.g., light intensity) and their
psychological counterparts (e.g., brightness): y 5 axb 1 error
(Stevens’ model) and y 5 a ln(x 1 b) 1 error (Fechner’s model).
We generated data samples from each model and then fitted both
models to each data set. Under AIC or BIC, Stevens’ model was
always selected more often than Fechner’s model, even when the
data were generated by the latter (63% vs. 37%; Table 2). That is,

††Rissanen provides a theorem (THEOREM 1) that strongly suggests that code-length-
minimizing models should also generalize well. He also formally shows that, under
certain conditions, code-length-minimizing models provably generalize well, though the
notion of generalizability he uses is somewhat different from that used here.

‡‡Any given learning strategy may perform poorly on very small data samples taken from
specifically constructed adversarial examples. When sample sizes are tiny (e.g., one data
point), analytic model selection criteria can behave counterintuitively. However, this is
not surprising: very little can be inferred from scanty data.

§§There are triangle inequalities governing natural distances (e.g., relative entropy, L2

norm) between distributions. These guarantee that two distributions close to a third are
also mutually close; see ref. 14.

Table 2. Model recovery rates of two psychophysics models

Selection
method

Model
fitted

Data from
Stevens

Data from
Fechner

AIC, BIC Stevens 100% 63%
Fechner 0% 37%

MDL Stevens 99% 2%
Fechner 1% 98%

The table shows the percentage of samples in which the particular model
was selected. One thousand samples were generated from each model using
the same four points for x, which ranged from 1 to 4 in increments of 1. The
random error was normally distributed with a mean of zero and a standard
deviation of 1. The parameters values used to generate the simulated data
were a 5 2, b 5 2 for Stevens’ model and a 5 2, b 5 5 for Fechner’s model.
In computing the geometric complexity as well as in estimating best-fit values
of the parameters, the following parameter ranges were assumed: 0 , a ,

`, 0 , b , 3 for Stevens’ model, and 0 , a, b , ` for Fechner’s model.
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AIC and BIC overestimated the generalizability of Stevens’ model
relative to Fechner’s model, suggesting that the former is more
complex than the latter. Implicit in the argument is the claim that
Stevens’ model fitted Fechner’s data best because the former has
more distinguishable distributions at its disposal, most of which
enabled it to capture random noise rather than the underlying
regularity. Calculation of the geometric complexity of each model
confirms this suspicion, as Townsend speculated 25 years ago (27).
Stevens’ model is more complex than Fechner’s, with the complex-
ity difference being equal to 3.804. Given the logarithmic relation-
ship between geometric complexity and the number of distinguish-
able distributions, this means that for every distribution for which
Fechner’s model can account, Stevens’ model can describe about
e3.804 ' 45 distributions. Obviously, this complexity difference
between the two models must be due to the functional form,
because they have the same number of parameters. When MDL was
used, the model recovery rate was nearly perfect for both models,
because the effect of complexity due to functional form was
properly incorporated. As this example shows, accounting for the
complexity of models is essential for a well-founded model selection
procedure.

Summary and Conclusion
Model selection can proceed confidently when a well-justified and
intuitive framework for its central concept, complexity, is available.
We have shown that the geometry of the space of probability
distributions provides such a framework. Rather than including
seemingly disparate measures of complexity such as the number of
parameters and the functional form, we construct the geometric
complexity of a model by counting the number of distributions it
indexes. This quantity is manifestly invariant under reparametriza-
tions and is a basic ingredient for assessing the complexity of a
statistical model in the MDL and Bayesian selection methods.
These tools provide powerful methods of evaluating the effective-
ness of models and the relationships between them.

Appendix
Suppose up and uq index two distributions in the family f and that
y is a sample of size N drawn from one of up or uq. In the model
selection context, we test distinguishability of these distributions by
asking how well we can guess which one produced y. Let aN and bN
be the probabilities that up is mistaken for uq and vice versa. There
is a bound on how small these error probabilities can be made.
Suppose we require that aN # «. Then, for large N, Stein’s lemma
says that the other error probability bN will exceed any given b* in
an ellipsoid defined around up, where k [ 2ln(b*) 1 ln(1 2 «) $
(Ny2)*i,j51

k Iijdu idu j (14). (Here Iij is the Fisher Information defined

earlier.) If b* is large, the distributions within this region are not
very distinguishable and should not be counted as separate distri-
butions while working with N data points. See refs. 10, 14, and 17
for further technical details.

To implement this procedure, imagine partitioning the manifold
into many (M) small cubes, where the cube centered on uj has a
coordinate volume dUj 5 Pi51

k [ du i [ du. For very large N, each
such cube contains many ellipsoids of indistinguishability, as de-
fined in the text. The Fisher Information will be basically constant
within such tiny regions, and so the ellipsoids have a volume

u~u! 5 S2pk

N D ky2 1
G~ky2 1 1!

1
Îdet I~u!

at any fixed N and k. The number of distinguishable distributions
within dUj is dUjyu(uj).

The ratio of distinguishable distributions within the cube at uj to
those contained in the entire family is

r~uj! 5
~dUjyu~uj!!

(J 5 1
M ~dUjyu~uJ!!

5
dUJÎdet I~uJ!

(KdUKÎdet I~uK!
;

dV
V~ f !

.

Happily, the dependence of the ellipsoid volumes on the parameters
N and k has cancelled out. So we can take the limit N3`, followed
by M 3 ` to recover the continuum. We are left with

r~u! 5
duÎdet I~u!

* duÎdet I~u!
;

dV
V~ f !

.

This is the ratio of the volume of the infinitesimal region du to the
volume of the parameter manifold as a whole. So, for the purpose
of determining such ratios, the appropriate volume integration
measure on a model manifold is dV 5 du=det I(u). The procedure
of first turning the manifold into a lattice and then removing the
discretization has ‘‘divided out’’ the volume occupied by indistin-
guishable distributions.
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