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Can we model the scale-free distribution of Web hypertext degree
under realistic assumptions about the behavior of page authors?
Can a Web crawler efficiently locate an unknown relevant page?
These questions are receiving much attention due to their potential
impact for understanding the structure of the Web and for building
better search engines. Here I investigate the connection between
the linkage and content topology of Web pages. The relationship
between a text-induced distance metric and a link-based neigh-
borhood probability distribution displays a phase transition be-
tween a region where linkage is not determined by content and
one where linkage decays according to a power law. This relation-
ship is used to propose a Web growth model that is shown to
accurately predict the distribution of Web page degree, based on
textual content and assuming only local knowledge of degree for
existing pages. A qualitatively similar phase transition is found
between linkage and semantic distance, with an exponential decay
tail. Both relationships suggest that efficient paths can be discov-
ered by decentralized Web navigation algorithms based on textual
and�or categorical cues.

The link structure of the Web is attracting considerable
attention. Several studies have shown that the degree se-

quence of Web pages has a power-law distribution, Pr(k) � k��

where k is the degree of a page (number of inlinks or outlinks)
and � is a constant exponent (1–5). Two aspects of this scale-free
link topology of the Web that may have important applications,
for example, in the design of the next generation of Web search
tools, are (i) growth models to explain the emergence of popular
Web sites and (ii) navigation models to build effective crawlers.

The first goal of this article is to develop a generative model
that predicts Web degree distributions based on realistic as-
sumptions about what motivates authors to pick the sites to which
they link their pages. I do not assume global knowledge of degree
or other link information and I aim to tie the attachment process
to a plausible content-based metric, modeling the author’s intent
to link a new page to existing sites that are both popular and
related semantically. In the next section I report on a surprising
relationship between the probability that two pages belong to a
common link neighborhood and a content-based distance mea-
sure. A phase transition is observed between a region where
linkage is not determined by content and one where linkage
decays according to a power law with increasing content-based
distance. Such a finding motivates a generative model based on
this relationship and on the observed distribution of the content-
based distance measure among pairs of Web pages. The model
is described in the third section, where it is shown to accurately
predict the distribution of degree in a large Web sample. There
have been some other, more theoretical efforts recently to unify
Web content and link generation based on latent semantic and
link eigenvalue analysis (6, 7). My finding and model are
motivated entirely by more empirical observations and actual
data.

The second goal of this article is to tie the theoretical existence
of optimal navigation algorithms for small world networks and
the actual viability of efficient content-driven Web crawlers.
Given the Web’s small world and power-law topology (1, 2, 4, 5),
its diameter scales as �(logN�loglogN) (8); therefore, if two

pages belong to a connected component of the Web, some short
path exists between them. Can a crawler navigate such a short
path? In the fourth section I show that although purely link-
based algorithms can be efficient in terms of path length (9,
10), the number of pages that must actually be crawled to
determine the path is unreasonably large. I then draw a con-
nection between the link-content analysis and a theoretical result
regarding the existence of efficient decentralized algorithms to
navigate small world networks in which links are generated based
on a geographic topology (11, 12). An analogous connection is
drawn by discovering an exponential relationship between link
neighborhood probability and semantic distance between pages.
My measurements reveal that the Web’s linkage topology is
consistent with network models where links are generated based
on a topical hierarchy, for which the existence of efficient
navigation algorithms is also known (13, 36). These findings
suggest that realistic Web crawling algorithms based on textual
and�or categorical cues can efficiently discover relevant pages
and are consistent with data from state-of-the-art crawling
algorithms.

Power-Law Relationship Between Web Content and Linkage
To gain insight into the Web’s scale-free growth and mechanisms
for efficient navigation, I want to study the connection between
the two topologies induced over the Web by links and textual
content. I start by introducing a distance measure based on the
lexical similarity between the textual content of pages. Let us
define such a lexical distance

r�p1, p2� �
1

s�p1, p2�
� 1, [1]

where (p1, p2) is a pair of Web pages and

s�p1, p2� �
�k � p1 � p2 wkp1

wkp2

���k � p1 wkp1

2 �� �k � p2 wkp2

2 � [2]

is the cosine similarity function traditionally used in information
retrieval (wkp is some weight function for term k in page p, e.g.,
term frequency). The r distance measure is a natural local cue
readily available in the Web, with the target content specified by
a query, topic, or bookmark page of interest to the user. This
measure also does not suffer from the dimensionality bias that
makes L-norms inappropriate in the sparse word vector space.

To investigate the relationship between the lexical topology
induced by r and the link topology, it would be desirable to
measure the probability that two pages at a certain lexical
distance from each other have a direct link between them.
Unfortunately, such a probability is extremely difficult to mea-
sure directly because the low ratio between the average degree
of Web pages and the size of the Web makes the likelihood that
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two random pages link to each other negligibly small. Therefore
let us instead focus on a neighborhood relation in link space,
which approximates link probability but is easier to measure and
is also used to identify Web communities (4, 14). I measured the
frequency of neighbor pairs of pages as a function of the lexical
distance:

Pr����� �
��p1, p2� : r�p1, p2� � � ∧ l�p1, p2� � ��

��p1, p2� : r�p1, p2� � �� , [3]

where the neighborhood between two pages is expressed by the
function

l�p1, p2� �
�Up1

� Up2
�

�Up1
� Up2

� [4]

and Up is the URL set representing p’s neighborhood (inlinks,
outlinks, and p itself). Note that l is akin to the well known
cocitation and bibliographic coupling measures used in directed
graphs for outlinks and inlinks, respectively. The neighborhood
threshold � models the ratio of local versus long-range links,
where we think of local links as those characteristic of clustered
nodes and long-range links as those characteristic of random
connections. In small world networks such as the Web, local and
random structures coexist in the form of node clusters (com-
munities) connected by high-degree nodes (hubs).

Fig. 1 plots Pr(���) versus � for various values of �.‡ We
observe an interesting phase transition between two distinct
regions around a critical distance �* that does not depend on �
(�* � 1). For � � �* the probability that two pages are neighbors
does not seem to be correlated with their lexical distance; for � 	
�* the probability decreases according to a power law

Pr����� � c1������ [5]

so that that the majority of clustered pages are lexically similar,
but there is a long tail of pages that are clustered despite a very

large lexical distance. These could be clusters around very
popular hub pages or communities where textual content fails to
capture the semantic relationship between pages. A fit of the tails
to the power-law model reveals that the clustering exponent �
grows roughly linearly with the linkage threshold � for � � 0.5
(see Fig. 1 Inset):

���� � 6.4171� 	 0.9735. [6]

For � 	 �* the relationship between Pr(���), �, and � is
qualitatively consistent with the intuitive correlation between
the lexical and linkage topologies of the Web; pages that are
semantically related tend to be both lexically similar and clus-
tered, therefore pages that are more similar in content have a
higher likelihood to be neighbors. However, for sufficiently small
lexical distances (� � �*) there is no additional information
about link clustering to be gained from content.

Web Growth
Background. Several models have been proposed to interpret the
power-law distribution of Web page degree, for example, based
on stochastic growth rates of Web sites (3). Here I focus on
generative models, which attempt to explain the Web topology
based on the behavior of individual authors linking new pages to
existing ones. Most generative models are based on preferential
attachment, whereby one node at a time is added to the network
with m new edges to existing nodes selected according to some
probability distribution, typically a function of some character-
istic of the existing nodes. The best known preferential attach-
ment model is the Barabási-Albert (BA) model, where a node i
receives a new edge with probability proportional to its current
degree, Pr(i) 
 k(i) (2, 15). The BA model generates network
topologies with power-law degree distributions, but is based on
the unrealistic assumption that Web authors have complete
global knowledge of the Web degree. According to the BA
model, links are generated according to popularity alone, and
consequently the oldest nodes are those with highest degree.

To give newer nodes a chance to compete for links, some
extensions of the BA model use Pr(i) 
 
(i)k(i), where 
(i) is the
fitness of page i. These models still yield power-law degree
distributions, but after enough time the winning pages are those
with highest fitness (16, 17). Another class of variations that
allow new pages to compete for links is based on linking to a node
based on its degree with probability � or to a uniformly chosen
node with probability 1 � � (18–20). Such a mixture model
generates networks that can fit not only the power-law degree
distribution of the entire Web, but also the unimodal degree
distribution of subsets of Web pages such as university, company,
or newspaper homepages (20). Unfortunately, all of these mod-
els still rely on global knowledge of degree. Furthermore, they
fail to capture the cognitive processes that lead authors to pick
pages to link. Neither the global fitness measure nor the uniform
distribution match the heterogeneous nature of the Web and of
the authors’ interests.

The ‘‘copying’’ model (21, 22) implements a rich-get-richer
process equivalent to the BA model, but without requiring
explicit global knowledge of node degrees. For each new node,
an existing prototype node i is first chosen at random. Then each
link j from the new node is either attached to a uniformly chosen
node with probability �, or to the target of i’s jth link with
probability 1 � �. Higher-degree nodes are automatically fa-
vored by the copying mechanism, producing the same power-law
degree distributions as the BA model. The prototype node could
correspond to a related page known to the author, thus modeling
some sort of local selection process.

A generative model that uses local information even more
explicitly was recently proposed for trees (23). Nodes are given
random coordinates in the unit square. Then new nodes are

‡The data were collected from a uniform random sample of 150,134 URLs extracted from
47,174 distinct categories in the Open Directory Project snapshot of February 14, 2002.
Further details of the data collection procedure can be found in ref. 33.

Fig. 1. Cluster probability Pr(���) as a function of lexical distance �, for
various values of the linkage threshold �. A nonlinear least-squares fit of the
tail of each distribution to the power law model Pr(���) � ��� is also shown.
(Inset) Plot of the relationship between the linkage threshold � and the
clustering exponent � of the power-law tail. The frequency data are based on
�4 � 109 pairs of Web pages sampled from the Open Directory Project
(http:��dmoz.org).
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attached to existing ones based on a linear combination of
linkage and geographic bias. In this model a new node j is
deterministically linked to the node arg mini(
rij � gi), where rij
is the Euclidean distance and gi is a ‘‘centrality’’ measure of i in
the tree. It is shown that for critical values of 
 (
̃ � 
 
 o(�N),
where 
̃ is a constant and N is the number of nodes), this model
yields a power-law degree distribution. The Euclidean distance
here is independent of link topology and thus could be used to
model the factors that lead authors to link their pages to other
pages based on, say, content rather than popularity alone.
However, the linear combination model still requires global
knowledge of the tree structure, and the uniform distribution of
nodes in the unit square as a geographic model does not capture
a realistic content topology.

Content-Based Generative Model. The phase transition in Fig. 1
suggests a straightforward way to interpret the growth of the
Web’s link structure based on the content similarity between
pages. I want to model an author’s desire to link new pages to
sites that are both similar (hence probably related) and popular
(hence probably important). Let us assume in keeping with
current models that page importance or popularity is correlated
with degree. However, I do not assume that an author has global
knowledge of degree; instead, an author has only local knowl-
edge of degree, i.e., knowledge of importance only for pages with
similar content. This is quite realistic as such pages are probably
known to the author or else can be discovered simply by using
a search engine.

I propose a generative model based on the above assumptions.
At each step t one new page pt is added, and m new links are
created from pt to m existing pages {pi, i � t}, each selected with
probability:

Pr�pi, t� � �k�i�
mt

if r�pi, pt� � �*

c1r���pi, pt� otherwise
, [7]

where k(i) is the indegree of pi,§ �* is a lexical distance threshold,
and c1 and � are constants. This growth process is driven by local
link decisions based on content. It is consistent with the phase

transition of Fig. 1: lexical independence for close pages and an
inverse power-law dependence for distant pages (where I model
the link probability after the neighborhood probability expressed
by Eq. 5).

To test this model one needs a prior distribution for the values
of r across Web pages. The frequency

Pr��� �
��p1, p2� : r�p1, p2� � ��

��p1, p2��
[8]

measured from a large number of pairs of Web pages is shown
in Fig. 2. I used a nonlinear fit of this frequency data to the
exponential model

Pr��� � c2� �
1

1 	 � [9]

as a PDF to generate realistically distributed random r(pi, pj)
values for any pair (pi, pj), i � j. I then simulated the generative
model of Eq. 7 to build a network with N nodes. The parameters
of the simulation are shown in Table 1.

Fig. 3 shows the degree distribution obtained by the simu-
lation of the local content-based generative model and com-
pares it with the distribution measured from a sample of Web
pages. Given the relatively small N and the fact that the
sampled pages tend to be quite specific, the degree distribution
of the data diverges significantly from the ‘‘pure’’ power laws
reported for massive Web crawls (5). The general mixture
model (20) matches the data very well for a preferential
attachment coefficient � � 0.3. The novel result here is that
the degree distribution generated by the local content-based

§This formulation is for directed graphs; in the indirected case the degree normalization
factor is 2mt.

Fig. 2. Probability distribution of lexical distance, Pr(�). The frequency data
are based on �4 � 109 pairs of Web pages sampled from the Open Directory
Project (http:��dmoz.org). A nonlinear least-squares fit of the distribution to

the exponential model Pr(�) � ��
1

1�� is also shown.

Fig. 3. Degree sequence distributions N Pr(k) generated by a simulation
of the local content-based generative model and by a sample of N 
 109,648
Web pages from the Open Directory Project (http:��dmoz.org). A nonlinear
least-squares fit of the Open Directory Project data to the mixture model

Pr(k) 
 [m(1 � �)]
1
��[�k 	 m(1 � �)]1�

1
� (adapted from ref. 20 for directed

links) is also shown, yielding � � 0.3(� 
 1 � 1�� � 4.3).

Table 1. Parameter values for generative model simulation

Parameter Value Source (Open Directory data)

�* 3 Fig. 1
c1 0.01282 Fig. 1, Eq. 5, � 
 0.1
� 1.68894 Fig. 1, Eq. 5, � 
 0.1
c2 0.14723 Fig. 2, Eq. 9, �0

1 Pr(�)d� � 1
� 107 Fig. 2, Eq. 9
N 109,648 Fig. 3
m 15 Fig. 3

14016 � www.pnas.org�cgi�doi�10.1073�pnas.212348399 Menczer



model also yields a very accurate fit of the data. The tails of
all three distributions are consistent with a single power law
with exponent � � 4.3, as shown in Table 2.

Web Navigation
Background. The relationships between Web link topology and
notions of semantic similarity stemming from page content or
topic classification have important applications for the design
of more effective search tools (24, 25). Topic-driven crawlers
(26–30) are increasingly seen as a way to address the scalability
limitations of current universal search engines, by distributing
the crawling process across users, queries, or even client
computers. The context available to such crawlers can guide
the navigation of links with the goal of efficiently locating
highly relevant target pages. Given the need to find unknown
target pages, we are interested only in decentralized crawling
algorithms, which can use only information available locally
about a page and its neighborhood. Starting from some source
Web page we aim to visit a target page by visiting � �� N pages,
where N is the size of the Web, several billion pages.

Since the Web is a small world network (1, 2, 4, 5) we know
that its diameter [at least for the largest connected component
(5, 31)] scales logarithmically with N, or more precisely a short
path of length

�� 	
log N

log log N
[10]

is likely to exist (8) between some source (e.g., a bookmarked
page or a hit returned by a search engine) and some unknown
relevant target page. Can a crawler navigate such a short path?

If the only local information available is about the hypertext
link degree of each node and its neighbors, then simple greedy
algorithms that always pick the neighbor with highest degree lead
to paths whose length �� scales logarithmically (�� � log N) (10)
or sublinearly (�� � N�, � � 0.7 � 1) (9). However, a real Web
crawler would have to visit all of the neighbors of a page to
determine their degree. Due to the power-law degree distribu-
tion, moving to high-degree nodes leads to covering most of
the nodes in a short number of steps. For example, simula-
tions suggest that the number of steps to cover N�2 nodes scales
as N0.24 � �� (9). Therefore a small �� implies a large � (� � N),
making the degree-seeking strategy too costly for actual Web
navigation.

Kleinberg (11–13) and Watts et al. (36) characterized certain
classes of networks whose link topology depends on external
geographic or hierarchical structures, showing that in these
special cases navigation algorithms are guaranteed to exist with
polylogarithmic bounds � 
 O(log�N), � � 1. I now outline these
models and show that they can be applied to the Web.

Content-Based Crawling Algorithms. If the link topology of a
network follows a D-dimensional lattice, with local links to
lattice neighbors plus some long-range connections, and in-
formation about the geographic location of nodes is available,
Kleinberg (11, 12) proved that a greedy algorithm, which
always picks the neighbor geographically closest to the target,
yields a bound � 
 O(log2N). In this geographic model the

optimal path length is achieved if, and only if, long-range links
are chosen with probability Pr(r) � r��, where r is the lattice
(L1) distance between the two nodes, and � is a critical
constant clustering exponent dependent on the dimensionality
of the lattice (� 
 D).

While Kleinberg’s geographic model is inspired by social
small world networks where location knowledge exists, the
lattice model cannot be applied directly to the Web where such
a notion of L1 norm-based geography is unrealistic. However,
Kleinberg’s result would be applicable to the Web if one could
use a realistic topological distance measure for r. In fact, the
result of the second section, namely the power law in Eq. 5
obtained from the tail of the conditional probability distribu-
tion in Fig. 1, makes the distance induced by the lexical
similarity between the textual content of pages an obvious
candidate for r. In the lattice model, local links are equiprob-
able whereas long-range links are governed by the power-law
distribution. Analogously, in the Web lexical similarity defines
the geographic topology of the pages and the critical distance
�* marks the border between local links (whose probability is
independent of r) and long-range links. Therefore my finding
suggests that Kleinberg’s analysis based on geographic net-
works can be applied to the Web to infer the existence of
efficient crawling algorithms. There is one caveat. Kleinberg’s
result requires a critical clustering exponent � 
 D, but what
is the meaning of D in the Web? One could imagine defining
an analogous ‘‘Web dimensionality’’ based, say, on the com-
munities induced by the Web’s link structure (14). Fortunately,
it is not necessary to quantify such a dimensionality to extend
Kleinberg’s analysis to the Web; it is sufficient to assume that
the dimensionality can be defined by a ‘‘critical neighborhood
threshold’’ �*. Then Eq. 6 can be used to obtain a correspond-
ing critical clustering exponent �* 
 �(�*). Since the power-
law relationship of Eq. 5 holds over a wide range of � values
(compare Fig. 1), it is reasonable to conjecture the existence
of a decentralized Web navigation algorithm that can be
proven to be optimally efficient under the linkage topology
induced by �* and the geographic topology induced by r.

A qualitatively similar result (the existence of polylogarith-
mic navigation algorithms, � 
 O(log�N) was given by Klein-
berg for the case where information about a semantic hierarchy
is available, where nodes are classified into the leaves of a
topical tree and links are drawn from a critical probability
distribution based on the semantic distance between nodes
induced by the tree (13). The link probability distribution must
have an exponential tail Pr(h) � ��h where � is a constant and
h is the semantic distance between two nodes, expressed by the
height of the lowest common ancestor in the tree. The
hierarchical model is more plausible than the geographic
model for the Web because directories such as Yahoo and the
Open Directory Project can play the role of semantic hierarchy
trees. An almost identical hierarchical model was proposed by
Watts et al. (36) with an even stronger (constant) bound on
navigation time.

I have previously studied the relationship between link
topology and semantic similarity by analyzing the probability
of finding links to a set of pages on a certain topic as one crawls
away from that set. This probability remains remarkably
constant in exhaustive breadth-first crawls of depth up to three
links starting from pages classified by Yahoo (34). This finding
has been confirmed and extended by recent experiments based
on crawls from the Open Directory Project, showing that the
linkage probability is significantly higher between pages on the
same topic than between pages on different topics (25). To
investigate whether the hierarchical model analysis can be
applied to the Web, let us define a semantic distance between
topics:

Table 2. Asymptotic power law exponents from least-squares fit
of degree distribution tails, with standard errors

Distribution �� ���

Open Directory sample 4.28 0.14
Mixture model (20) 4.31 0.22
Local content model 4.26 0.07
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h�p1, p2� �
log Pr�p1� 	 log Pr�p2� � 2 log Pr�p0�

log Pr�p1� 	 log Pr�p2�
, [11]

where p0 is the lowest common ancestor of p1 and p2, and Pr(p)
represents the fraction of pages classified at node p. This is a
straightforward extension of the information-theoretic semantic
similarity measure (32), and it generalizes the hierarchical
models to account for the fact that pages are classified by actual
Web directories into internal nodes as well as leaves.

The relationship between semantic distance h and link topol-
ogy can be analyzed in the same way as was done for lexical
distance r in the second section, by measuring the frequency of
neighbor pairs of pages as a function of the semantic distance:

Pr����� �
��p1, p2� : h�p1, p2� � � ∧ l�p1, p2� � ��

��p1, p2� : h�p1, p2� � �� , [12]

where h was computed by using the Open Directory Project
tree.¶ Fig. 4 plots the tail of Pr(���) versus � for various values
of �. We observe a good fit between the data and the exponential
model

Pr����� � c3������ [13]

for � 	 �* � 0.5. The fit also reveals that the base �(�) is roughly
exponential in � (see Fig. 4 Inset). As for the geographic model,
this finding suggests that the analyses based on hierarchical
networks can be applied to the Web to conclude that efficient
crawling algorithms exist. In fact, the crawler proposed in ref. 27
attempts to prioritize links based on h estimates obtained from
a classifier and thus is an implementation of the optimal greedy
algorithm described in ref. 13.

The greedy algorithm proposed by Kleinberg (12) would
locate a target page by visiting � � c4 log2 N pages with a constant
c4 � 128. For N � 1010, � � 104 pages. This finding is consistent
with our experimental data, as illustrated by the discovery time

distribution in Fig. 5; the majority of relevant pages are located
based on local content before 104 pages have been crawled.


Conclusion
In this article I addressed two questions of considerable interest
for potential Web applications: whether one can effectively
model the emergence of the scale-free topology of the Web from
realistic assumptions about authors’ local knowledge and behav-
ior and whether one can design crawling algorithm to efficiently
locate unknown pages of interest to a user or search engine.

I found that the answer to both of these questions is yes, and
in doing so I uncovered two interesting relationships between
the Web’s link topology and distance metrics based on lexical
and semantic similarity. The two relationships (compare Figs.
1 and 4) are qualitatively very similar: in both cases a critical
distance (�* or �*) marks a phase transition between a
relatively f lat section at small distances and a decay at large
distances. The decay has a long (power law) tail in the case of
lexical distance and a short (exponential) tail for semantic
distance. These are probably two manifestations of the same
behavior. Authors tend to link their pages to semantically
related clusters, identified via page content. The link proba-
bility decreases rapidly with increasing semantic�lexical dis-
tance. But among the most closely related pages, the choice of
which pages to link is largely driven by other factors such as
authority or popularity.

This analysis led to a generative model for the Web graph
based on local content cues, which accurately matches the
distribution of degree in a representative sample of Web pages.
This generative model yielded accurate predictions of degree
sequence based on page content data. My model may help us
gain a better understanding of the evolving structure of the Web
and its cognitive and social underpinnings and may lead to more
effective authoring guidelines as well as to improved ranking,
classification, and clustering algorithms.

Finally, the link�lexical power law relationship and the
related link�semantic exponential relationship led to analogies
between the Web and special classes of geographic and
hierarchical graphs for which the existence of optimally effi-
cient (polylogarithmic) navigation algorithms was proven.

¶The full Open Directory Project snapshot of February 14, 2002 was used to compute the
probabilities associated with each of 97,614 distinct categories containing a total of
896,233 URLs. 
These data are based on crawls for six topics, from experiments described in ref. 35.

Fig. 4. Tail of cluster probability Pr(���) as a function of semantic distance �,
for various values of the linkage threshold �. A nonlinear least-squares fit of
each tail to the exponential model Pr(���) � ��� is also shown. (Inset) Plot of
the relationship between the linkage threshold � and the base � of the
exponential tail. The data are based on the same Open Directory Project
sample used for Fig. 1.

Fig. 5. Distribution of discovery times for unknown relevant pages obtained
by a crawler using a content-driven (and slightly less greedy) version of the
algorithm described in ref. 12. The crawler is given a short topic query and a
limited store for unvisited URLs and starts at least three links away from any
relevant pages.

14018 � www.pnas.org�cgi�doi�10.1073�pnas.212348399 Menczer



These results strongly suggest that short paths can be discov-
ered by decentralized Web crawlers based on textual and�or
categorical cues. These data-supported results yielded efficient
bounds on the number of pages visited by Web crawlers to
reach unknown targets. The field of focused crawlers is gaining
much empirical attention owing to its potential to cope with
the scalability limitations of current search engine technology.
The present findings are consistent with, and give some
theoretical grounding to, data from a growing body of work on

crawling algorithm design; they may have a large impact
toward the construction of effective decentralized search tools.
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Gautam Pant for helpful comments; the paper was greatly improved by the
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