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We present here algorithmic cooling (via polarization heat
bath)—a powerful method for obtaining a large number of highly
polarized spins in liquid nuclear-spin systems at finite temperature.
Given that spin-half states represent (quantum) bits, algorithmic
cooling cleans dirty bits beyond the Shannon’s bound on data
compression, by using a set of rapidly thermal-relaxing bits. Such
auxiliary bits could be implemented by using spins that rapidly get
into thermal equilibrium with the environment, e.g., electron spins.
Interestingly, the interaction with the environment, usually a most
undesired interaction, is used here to our benefit, allowing a
cooling mechanism. Cooling spins to a very low temperature
without cooling the environment could lead to a breakthrough in
NMR experiments, and our ‘‘spin-refrigerating’’ method suggests
that this is possible. The scaling of NMR ensemble computers is
currently one of the main obstacles to building larger-scale quan-
tum computing devices, and our spin-refrigerating method sug-
gests that this problem can be resolved.

1. Introduction

Ensemble computing is based on a model composed of a
macroscopic number of computers, where the same set of

operations is performed simultaneously on all computers. The
concept of ensemble computing became very important recently,
because NMR quantum computers (1–4) perform ensemble
computing. NMR quantum computing has already succeeded in
performing complex operations involving up to 7–8 quantum
bits (qubits), and therefore NMR quantum computers are
currently the most successful quantum computing devices.

In NMR quantum computing, each computer is represented
by a single molecule, and the qubits of the computer are
represented by the nuclear spins embedded in a single molecule.
A macroscopic number of identical molecules is available in a
bulk system, and these molecules act as many computers per-
forming the same computation in parallel. To perform a desired
computation, the same sequence of external pulses is applied to
all molecules�computers. Finally, a measurement of the state of
a single qubit is performed by averaging over all computers�
molecules to read out the output on a particular bit on all
computers. Because of the use of a macroscopic number of
molecules, the output is a noticeable magnetic signal. It has been
shown that almost all known quantum algorithms designed for
the usual single-computer model can be adapted to be imple-
mented on ensemble computers (5), and in particular, these
ensemble computers can perform fast factorization of large
numbers (6) and fast database search (7).

Unfortunately, the widespread belief is that even though
ensemble quantum computation is a powerful scheme for dem-
onstrating fundamental quantum phenomena, it is not scalable
(see, for instance refs. 8–10). In particular, in the current
approaches to ensemble computing, identifying the state of the
computer requires sensing signals with signal-to-noise ratios that
are exponentially small in n, the number of qubits in the system.
We refer to this well-known problem as the scaling problem. The
origin of the scaling problem is explained in the following.

The initial state of each qubit, when averaged over all
computers (a macroscopic number), is highly mixed, with only
a small bias towards the zero state. At thermal equilibrium, the
state is

��0
� � �1 � �0��2 0

0 �1 � �0��2� , [1]

where the initial bias, �0, is mainly determined by the magnetic
field and the temperature but also depends on the structure and
electronic configurations of the molecule. For an ideal system,
one has �0 � �perfect � 1 leading to ��perfect

� �0��0� � (0
1

0
0),

meaning that the state is �0� with probability one, and it is �1� with
probability zero. For a totally mixed system, �0 � 0, hence the
probabilities of �0� and �1� are both equal to half. We also define
�0 � (1 � �0)�2 to be the initial error probability. Typically, �0

is around 10�6 for the liquid NMR systems in use (1–4) and can
probably be improved (increased) a great deal in the near future.
Especially promising directions are the use of liquid crystal
NMR for quantum computing (11) and the use of a SWAP
operation for the nuclear spin and the electron spin known as the
electron nuclear double-resonance (ENDOR) technique (12).
These techniques and others (e.g., SWAP with hyperpolarized
Xenon, optical pumping, Overhauser effect) might yield much-
improved polarization biases and maybe even sufficiently good
polarization biases in the far future. It seems that a combination
of these strategies with the algorithmic cooling presented here
might yield optimal results.

The state of an n qubit system in the ideal case is �ideal
{n} �

�0n��0n� with �0n� � �0� R �0� R . . . R �0� (a tensor product of n
single qubit states). In general, the initial state of an n-qubit
liquid NMR system can be represented as a tensor product of
states of the individual qubits:

�init
�n� � ��0

� ��0
� · · · � ��0

. [2]

This state can also be written as 	i�0
2n�1 Pi�i��i�, a mixture of all

states �i�—the basis vectors of the system, and i (for n qubits) is
an n bit binary string, e.g., for two qubits, P00 � (1 
 �0)2�4. In
fact, the initial bias is not the same on each qubit,** but as long
as the differences between these biases are small, we can ignore
this fact in our analysis. The analysis we do later on is correct if
we replace all these slightly different initial biases by their
minimum value and call this value �0.

Currently, researchers use the so-called ‘‘pseudo-pure state
(PPS)’’ technique (1–4) to perform computations with such
highly mixed initial states. In this technique, the initial mixed
density matrix is transformed to a state

Abbreviations: PPS, pseudo-pure state; RRTR, rapidly reaching thermal relaxation; BCS,
basic compression subroutine; qubit, quantum bit.

§To whom correspondence should be addressed. E-mail: talmo@cs.technion.ac.il.

**Individual addressing of qubits requires a slightly different bias for each one, which is
easily achievable in practice.
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�PPS
�n� � �1 � p�� � p������, [3]

which is a mixture of the totally mixed state � � (1�2n)I2n (with
I2n, the identity matrix of order 2n), and a pure state ��� initially
set to be �0n� in our case. Such a state is called a PPS. Unitary
operations then leave the totally mixed state unchanged but do
affect the pure state part, to perform the desired computation
via entanglement of the pure part (which we refer to as ‘‘pseudo-
entanglement’’). Finally, the state of the ensemble-computer is
measured. If the probability p of the pure state is not too small,
then the pure part of the state yields the expectation value for
each qubit, an outcome sufficient for performing quantum
computing as powerful as standard (nonensemble) quantum
computing (5). Unfortunately, in all existing PPS methods,

p �
�1 � �0�

n � 1
2n � 1

� 2�1 � �0

2 � n

, [4]

and hence, p scales exponentially badly with n (the number of
computation qubits), leading to an exponentially small signal-
to-noise ratio. As a result, an exponential number of computers
(molecules) are required to read the signal. With �0 in the range
10�6 � 10�1, one might still hope to obtain a 20-qubit computer,
because then p (approximately 10�5 � 10�6) can still lead to an
observed signal when an Avogadro number of computers are
used. But one cannot hope to go beyond a 50-qubit computer,
because then p is approximately 10�13 � 10�15, which is smaller
than the standard deviation in reading the result (and, even with
perfect devices, the signal cannot be read).

The exponential advantage of quantum computers over clas-
sical ones (6) is totally lost in these NMR computing devices,
because an exponential number of molecules�computers is
required for the computation, and therefore the scaling problem
must be resolved to achieve any useful NMR quantum comput-
ing. This scaling problem (plus the assumption that quantum
computing requires entanglement and cannot rely on pseudo-
entanglement) has led several researchers to suggest that current
NMR quantum computers are no more than classical simulators
of quantum computers (10).††

The first important step in resolving the scaling problem is to
understand that the scaling problem is not an inherent charac-
teristic of ensemble computers but is an artifact of existing PPS
methods. In fact, the original highly mixed state contains a great
deal of information, and this can be seen by rotating each qubit
separately and finally measuring the qubits. However, the exist-
ing methods of transforming the highly mixed state into the PPS
cause the scaling problem by losing information on purpose.
Furthermore, it is important to mention that for any n, there is
a range of bias, �, not close to zero, where the currently existing
methods for creating PPS work just fine. To be in that range, the
state of each qubit must be almost pure: � � 1 � 2�, where �,
the error probability, satisfies � �� 1 (actually � � 0.2 is already
useful). Then p scales well:

p �
�1 � ��n � 1

2n � 1
� �1 � ��n. [5]

As long as � � O(1�n), the probability p is sufficiently large for
all practical purposes, thus much larger ns can still be used.
Furthermore, any n can be used if one can control � as a function

of n. The PPS technique, the loss of information, and the scaling
problem are presented in Appendix A, which is published as
supporting information on the PNAS web site, www.pnas.org.

Instead of converting the initial state (Eq. 2) to a PPS (Eq. 3),
we perform a ‘‘purification’’ transformation that takes a subset,
m (with m � n), of the qubits to a final state of the form

�final
�m� � ��des

� ��des
� · · · � ��des

, [6]

where �des is some desired bias close enough to 1. This state with
a higher bias can then be transformed into a scalable PPS, �PPS

{m}.
For example, we shall demonstrate how to achieve (via algo-
rithmic cooling) � � 0.2, which allows m in the range of 20–50
qubits, and � � 0.04, which allows m in the range of 50–200
qubits.

In this paper, we present a purification process that uses
concepts from information theory (data compression) and from
thermodynamics (heat bath, thermal relaxation) and that re-
solves the scaling problem. Our ‘‘information-theoretic’’ purifi-
cation is totally classical, hence the density matrices are treated
as classical probability distributions, and no explicit quantum
effects are taken into consideration. In an earlier work, Schul-
man and Vazirani (13) already demonstrated novel compression-
based (and not PPS-based) alternative NMR computing, which
does not suffer from the scaling problem. Their invention,
‘‘(reversible) molecular scale heat engines,’’ is based on infor-
mation theoretic tools, and it leads to Eq. 6. However, the
Shannon bound on the purification ability of reversible data
compression prevents purifying any reasonable fraction of bits
for small values of �0: m � [(�0

2)�(2 ln 2)]n (see Section 2),
meaning that thousands of bits are required in order to obtain
one or a few purified bits (with a reasonable probability of
success). More explicitly, any entropy-preserving purification
scheme cannot currently be useful for NMR computation.

We present here the first cooling scheme that goes beyond the
Shannon bound, an algorithmic cooling via polarization heat-
bath, or in short, algorithmic cooling. This cooling scheme,
presented in Section 3, purifies a large fraction of the bits initially
set in a highly mixed state and hence resolves the scaling
problem. Algorithmic cooling can bypass the Shannon bound,
because it does not preserve entropy of the system but removes
entropy into a heat bath at a temperature 	0. To pump entropy
into the polarization heat bath, algorithmic cooling demands the
existence and mutual processing of two types of qubits:‡‡ com-
putation bits and bits that rapidly reach thermal relaxation
(RRTR bits). The computation bits are assumed to have a very
long relaxation time, �comput�bits, and they are used for the
computation; the RRTR bits are assumed to have a much shorter
relaxation time, �RRTR, hence they rapidly get into thermal
equilibrium with the environment (a heat bath) at a temperature
of 	0. Because the RRTR bits are defined via their spin (to be
0 or 1), the heat bath is actually a spin-polarization heat bath. In
our algorithmic cooling, a standard compression is performed on
the computation bits, purifying (cooling) some while concen-
trating the entropy (heating) of the others, to heat them above
	0. Then the hotter bits are replaced with the RRTR bits, which
are at the heat-bath temperature 	0, resulting in an overall
cooling of the system. Repeating the process many times via a
recursive algorithm, any final close-to-zero ‘‘temperature’’ (that
is, any final bias), can in principle be achieved.

Algorithmic cooling provides a new challenge for experimen-
talists, because such processing of two types of quantum bits (two
different spin systems) is highly nontrivial. The currently existing
experimental technologies and the new ‘‘experimental chal-

††Actually, the important contribution of ref. 10 is the result that in some neighborhood of
the totally mixed state, all states are separable; hence, some pseudo-entangled state (a
state for which the pseudo pure part is entangled) contains no entanglement. But ref. 10
does not prove (and does not claim to prove) that current NMR quantum computers do
not perform quantum computation. We, in contrast, conjecture that the PPS technique
and the work of ref. 10 form the first step in proving that quantum computing without
entanglement is possible.

‡‡We refer to these qubits as bits, because no quantum effects are used in the cooling
process.
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lenge’’ of combining them to perform algorithmic cooling are
explained further in Appendix B, which is published as supporting
information on the PNAS web site. Conclusions and some open
questions for further research are provided in Section 4.

2. Information Theory, the Basic Compression Subroutine, and
Purification Levels
2.1. Shannon’s Bound. Let us briefly describe the purification
problem from an information theoretic perspective. There exists
a straightforward correspondence between the initial state of our
n qubit system and a probability distribution of all n bit binary
strings, where the probability of each string i is given by the term
Pi, the probability of the state �i� in the mixed state �init

n described
by Eq. 2. A loss-less compression of a random binary string that
is distributed as stated above has been well studied (see any
textbook on information theory, e.g., refs. 14 and 15). In an
optimal compression scheme, all the randomness (and hence the
entropy) of the bit string is transferred to n � m bits, while with
extremely high probability leaving m bits in a known determin-
istic state, say the string 0. The entropy H of the entire system
is H(system) � nH(single-bit) � nH(1�2 
 �0�2) with H(P) 

�P log2 P � (1 � P) log2(1 � P) measured in bits. Any loss-less
compression scheme preserves the entropy H of the entire
system, hence one can apply Shannon’s source coding bound on
m to get m 
 n[1 � H(1�2 
 �0�2)]. Simple leading-order
calculation shows that m is bounded by (approximately) [(�0

2)�
(2 ln 2)]n for small values of the initial bias �0, and in a practical
compression scenario, this can be achieved if a large enough
string (large enough n) is used. Schulman and Vazirani (13) were
the first to use information theoretic tools for solving the scaling
problem, and they also demonstrated how to get very close to the
Shannon bound, once n is very large. We consider here a bias of
0.01 and a bias of 0.1, and with these numbers, the Schulman–
Vazirani compression cannot be useful in practice and cannot
help in achieving NMR computing with more than 20 qubits in
the foreseeable future. In fact, any entropy-preserving purifica-
tion scheme cannot be useful for NMR computation in the near
future.

We suggest here an entropy-nonpreserving purification. Our
purification, algorithmic cooling, has some common properties
with the entropy-preserving purification, such as the basic
compression subroutine and the purification levels. These are
therefore described in the following.

2.2. Basic Compression Subroutine and Purification Levels. The basic
compression subroutine (BCS) is the simplest purification pro-
cedure used to convert a mixture with a particular bias �j to one
with a higher bias �j
1 but fewer bits. We take pairs of bits and
check whether they are the same or different. One bit (the
‘‘supervisor’’) retains the information of whether they were the
same. If they were the same, then we keep the other bit (the
‘‘adjusted’’ bit), and we say it is purified. In this way, we increase
the bias or push the bits to a higher purification level. To realize
this operation, we use a Controlled-NOT (CNOT) transforma-
tion on a control bit (c) and a target bit (t): 0c0t 3 0c0t, 0c1t 3
0c1t, 1c0t 3 1c1t, 1c1t 3 1c0t. After the transformation, the
target bit holds the information regarding the identity of the
initial states of the two bits. Hence, without being measured, this
target bit can then be used as a supervisor bit for the next steps:
If the target bit is 0 after the CNOT operation between a pair
of bits, then the pair had the same initial value, and the control
bit of the CNOT (the adjusted bit) is retained because it is
purified, otherwise they were different and the adjusted bit is
thrown away because it got dirtier. In both cases, the supervisor
bit has a reduced bias (increased entropy), hence it is thrown
away. However, before being thrown away, the supervisor bit is
used as a control bit for a SWAP operation: if it has the value
‘‘0,’’ then it SWAPs the corresponding adjusted bit at the head

of the array (say to the left), and if it is ‘‘1,’’ it leaves the
corresponding adjusted bit at its current place. In either case, the
supervisor bit is then SWAPped to the right of the array. (Note
that we use here a hybrid of English and symbol languages to
describe an operation such as SWAP.) As a result, at the end of
the BCS, all purified bits are at the first locations at the left side
of the array, the dirty adjusted bits are at the center, and the
supervisor bits are at the right side of the array. Thus the dirty
adjusted bits and the supervisor bits can be thrown away (or just
ignored).

Starting a particular BCS on an even number nj of bits with a
bias �j at the end of the BCS, there are (on average) nj
1 � [(1 

�j

2)�4] nj � (�j�2�j
1)nj purified bits with a new bias �j
1 �
2�j�(1 
 �j

2). The number of computation steps in one such BCS
is TBCS � (2nj)(nj�2) � nj

2. The new length, the new bias, and
the number of steps are calculated in detail in the supporting
information in Appendix C (www.pnas.org).

A full compression scheme (from �0 to �jfinal
) can be built by

repeating the BCS jfinal 
 jf times, each BCS acting on bits
purified by the previous BCS. See Appendix C for more details.
When only the repeated BCS is performed, the resulting average
final length of the string is m � njf

� (�jf�1�2�jf
)njf�1 �

(�0�2jf�jf
)n0, so that the initial required number of bits, n0, is

huge. Because the final desired bias, for the purpose of obtaining
PPS after the cooling, is not very close to 1 (see examples for
actual numbers in Appendix C, which is published as supporting
information in the PNAS web site), then even a ratio (n�m) of
2 jf�jf

��0 � 8 � 6.666 � 50 could lead to m � 50 bits via the
reversible data compression, with n � 2,500 bits to start with.

By the way, better compression schemes can be designed (13),
which approach the Shannon’s bound n � 1.3963m��0

2. For our
purpose, which is to achieve a ‘‘cooling via polarization heat-
bath’’ algorithm, this simplest compression scheme, the BCS, is
sufficient, and much larger ratios of m�n can be obtained.

3. Algorithmic Cooling via Polarization Heat-Bath
3.1. Going Beyond Shannon’s Bound. To go beyond Shannon’s
bound, we assume that we have a thermal bath of partially
polarized bits with a bias �0. As a more realistic way to implement
that assumption in a physical system, we assume that we have
RRTR bits, in addition to the computation bits. These RRTR
bits, by interaction with the environment at some constant
temperature 	0, rapidly return to the fixed initial distribution
with bias of �0 (a reset operation). Hence the environment acts
as a polarization heat bath.

In one application of the BCS on bits at a bias of �j, some
fraction f (satisfying 1�4 
 f 
 1�2) is purified to the next level,
�j
1, whereas the other bits have increased entropy. The super-
visor bits are left with a reduced bias of �j

2, and the adjusted bits
that failed to be purified are changed to a bias � � 0, that is, they
now remain with full entropy.

To make use of the heat bath for removing entropy, we swap
a dirtier bit with an RRTR bit at bias �0 and do not use this
RRTR bit until it thermalizes back to �0. We refer to this
operation as a single ‘‘cooling’’ step.§§ In a nearest-neighbor gate
array model, which is the appropriate model for NMR quantum
computing, we can much improve the efficiency of the cooling by
assuming that each computation bit has an RRTR bit as its
neighbor (imagine a ladder built of a line of computation bits and
a line of RRTR bits). Then k cooling steps (a single ‘‘cooling
operation’’) can be done in a single time step by replacing k dirty
bits with k RRTR bits in parallel.

§§Actually, adjusted bits that failed to purify are always dirtier than the RRTR bits, but
supervisor bits are dirtier only as long as �j

2 � �0. Therefore the CUT of the adjusted bits
that failed to purify, � (which is explained in the next subsection) is the main ‘‘engine’’
that cools the NMR system at all stages of the protocol.
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By applying many BCSs and cooling operations in a recursive
way, spins can be refrigerated to any temperature, via algorith-
mic cooling.

3.2. Cooling Algorithm. For the sake of simplicity, we design an
algorithm whereby BCSs are always applied to blocks of exactly
m bits (thus, m is some prechosen even constant), and which
finally (via repeated cooling operations and BCSs) provide m
bits at a bias �jf

. Any BCS is applied onto an array of m bits at
a bias �j, all purified bits are pushed to the head of the array (say,
to the left), all supervisor bits are swapped to the back of the
array (say, to the right), and all unpurified adjusted bits (which
actually became much dirtier) are kept in their place. After one
such BCS, the m�2 bits at the right have bias of �j

2, the purified
bits at the left have a bias �j
1, and to their right there are bits
with a bias zero. Note that the boundary between the purified
adjusted bits and the dirtier adjusted bits is known only by its
expected value ��j
1� � [(1 
 �j

2)�4] m (where the number of
purified bits, �j
1, with the new bias �j
1 is different on each
molecule). By repeating this set of operations � times (as
explained in the following paragraphs), with � � 4, an expected
value ��j
1

� � � [�(1 
 �j
2)�4] m of bits is obtained, from which

the first m bits are defined as the output bits with �j
1, and the
rest are ignored. If an additional purification is now performed,
only these first m bits are considered as the input for that
purification. We refer to � as the ‘‘cooling depth’’ of the cooling
algorithm.¶¶

The algorithm is written recursively with purification steps Mj,
where the jth purification step corresponds to purifying an initial
array of Nj bits into a set of m bits at a bias level of �j, via repeated
compression�cooling operations described as follows: In one
purification step M0, we wish to obtain m bits with a bias �0. To
achieve this, we SWAP m bits with m RRTR bits, which results
in m cooling steps performed in parallel (one cooling operation).
The number of bits required for M0 is N0 � m. In one
purification step Mj
1 (with j � 0), we wish to obtain m bits with
a bias �j
1. To achieve this goal, we apply � purification steps Mj,
each followed by a BCS applied to exactly m bits at a bias �j. First,
Mj is applied onto Nj bits, yielding an output of m bits at a bias
�j. A BCS is then applied onto these bits, yielding a string of
expected length ��j
1

1 � � [(1 
 �j
2)�4] m bits purified to a bias

�j
1 and pushed all the way to the left. At the end of that BCS,
all the m�2 supervisor bits are located at positions m�2 
 1 until
m. Then Mj is applied again onto an array of Nj bits, starting at
position m�2 
 1. This time, all BCSs within this second
application of Mj push the bits to the relative first location of that
Mj array, which is the location m�2 
 1 of the entire string. (In
the case of j � 0, of course, there are no BCSs within M0.) At
the end of that second Mj application, a BCS is applied to m bits
at a bias �j (at locations m�2 
 1 till m�2 
 m), purifying them
to �j
1. The purified bits are pushed all the way to the left,
leading to a string of expected length ��j
1

2 � � 2[(1 
 �j
2)�4] m.

At the end of that BCS, all the m�2 supervisor bits are located
at positions m 
 1 until 3m�2. Then Mj is again applied onto an
array of Nj bits, starting at position m 
 1. All BCSs within this
third application of Mj push the bits to the relative first location
of that Mj array (the location m 
 1 of the entire string). At the
end of that third Mj application, a BCS is applied to m bits at a
bias �j (at locations m 
 1 until m 
 m), purifying them to �j
1,
and the purified bits are pushed all the way to the left. This
combined Mj and BCS is repeated � times, yielding ��j
1

� � �
�[(1 
 �j

2)�4] m bits purified to �j
1. For � � 4, we are pro-

mised that ��j
1
� � � m, and a CUT operation, �j
1, defines the

first m bits to be the output of Mj
1.
The total number of bits used in Mj
1 is Nj
1 � (� � 1)m�2 


Nj bits, where the Nj bits are the ones used at the last Mj step,
and the (� � 1)m�2 bits are the ones previously kept. The output
of Mj
1 is defined as the first m bits, and in case Mj
2 is to be
performed, these m bits are its input. Let the total number of
operations applied at the jth purification step, Mj, be represented
as Tj. Note that T0 � 1, meaning that m bits are SWAPped with
RRTR bits in parallel. Each application of the BCS has a time
complexity smaller than m2 for a near-neighbor connected
model, TBCS � (2nj)(nj�2) � nj

2 (see Appendix C). When the kth
cooling is done (with k � {1, . . . , �}), the number of additional
steps required to (control-)SWAP the adjusted bit at the top of
the array is less than 2(k � 1)m. Thus we get Tj
1 �
	k�1

� [(2{k � 1}m 
 2m)(m�2) 
 Tj]. Hence, for all j,

Tj � 1 � �
k � 1

�

�km2 � Tj� �
��� � 1�

2
m2 � �Tj . [7]

The purification steps M1 and M2 can be obtained by following
the general description of Mj
1. For clarity, M1 is described in
Fig. 1, M2 is described in Fig. 2, and both M1 and M2 are
described in words in Appendix D, which is published as sup-
porting information on the PNAS web site. For the entire
protocol, we choose jfinal and perform Mjf

starting with Njf

 n

bits, and we end up with m bits.
To emphasize the recursive structure of this algorithm, we use

the following notations: [�{(k�1)3k}], the BCS procedure puri-
fying from �k�1 to �k (followed by moving the purified bits to the
relevant starting point); [�], SWAP m bits with the RRTR; [�j],
CUT, keep the first m bits from the starting point of the subarray
of the bits with a bias �j. Then, M0 
 �, and for j � {1, . . . , jf},

¶¶An algorithm with � replaced by �j (different numbers of repetitions, depending on the
bias-level j) could have some advantages but will not be as easy to analyze.

Fig. 1. The purification step M1.
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Mj � �j���j � 1�3 j�Mj � 1 · · · ���j�1�3 j�Mj�1

� times

[8]
Ç

is the recursive formula describing our algorithm.
A full cooling algorithm is Mjf

, performed starting at location
� � 0. A pseudo-code for the complete algorithm is shown in
Fig. 3 in Appendix D in the supporting information. For any
choice of �des, one can calculate the required (minimal) jf such
that �jf

� �des, and then m bits (cooled as desired) are obtained
by calling the procedure COOLING (jfinal, 1, �, m), where � �
4. We actually use � � 5 in the rest of the paper (although � �
4 is sufficient when the block’s size m is very large) to make sure
that the probability of a successful process does not become too
small. (The analysis done in ref. 13 considers the case in which
m goes to infinity, but the analysis does not consider the
probability of success of the purification in the case where m does
not go asymptotically to infinity. However, to motivate experi-

ments in this direction, one must consider finite and not too large
blocks, with a size that shall potentially be accessible to exper-
imentalists in the near future. In our algorithm, the case of � �
4 does not provide a reasonable probability of success for the
cooling process, but � � 5 does.)

3.3. Algorithmic Complexity and Error Bound 3.3.1. Time and space
complexity of the algorithm. We now calculate Nf � n, the
number of bits we must start with to get m purified bits with bias
�jf

. We have seen that N0 � m and Nj � [(� � 1)�2] m 
 Nj�1,
leading to Nj � ({[��1]�2}j 
 1) m, and in particular

Njf
� �� � 1

2
jfinal � 1� m. [9]

Thus, to obtain m bits, we start with n � cm bits where c � [(�
� 1)�2] jfinal 
 1 is a constant depending on the purity we wish
to achieve (that is, on jfinal) and on the probability of success we
wish to achieve (that is, on �). For reasonable choices, jf in the
range 3–7 and � in the range 5–7, we see that c is in the range
7–22. To compare with the Shannon’s bound, where the constant
goes as 1��0

2, one can show that here c is a function of 1�log �0.
As we have seen in Section 3.2, the total number of operations

applied at the jth purification step, Mj, satisfies Tj � [�(� 
 1)]�2
m2 
 �Tj�1. Writing d � m2[�(� 
 1)]�2, the recursive formula
leads to Tjf � �jfT0 
 d 	i � 0

jf � 1 �k � �jf 
 d[�jf � 1]�[� � 1]. After
some manipulations, we get

Tjf
� m2�jf � 1. [10]

This bound is not tight, and a tighter bound can be obtained. It
is also important to mention that in a standard gate-array model
(and even in a ‘‘qubits in a cavity’’ model), in which SWAPs are
given almost for free, an order of m instead of m2 is obtained.

Let the relaxation time �1 of the computation bits be called
�comput�bits and the relaxation time �1 for the RRTR bits be
called �RRTR. Note that the dephasing time, �2, of the compu-
tation bits is irrelevant for our algorithm and plays a role only
after the cooling is done.

With a short-term goal in mind (see Table 1 in Appendix C in
the supporting information), we obtain that m � 20 can be
achieved (for � � 5) with �0 � 0.01, jf � 6, Tjf

� 3.1 � 107 steps,
and n � 260 bits, or with �0 � 0.1, jf � 3, Tjf

� 250,000 steps,
and n � 140 bits. Increasing m to 50 multiplies the initial length
by only 2.5 and multiplies the time steps by 6.25. Thus, this more
interesting goal can be achieved with �0 � 0.01, jf � 6, Tjf

� 1.9 �
108 steps, and n � 650 bits, or with �0 � 0.1, jf � 3, Tjf

� 1.56 �
106 steps, and n � 350 bits (compared with n � 2,500 bits for
the reversible repeated-BCS algorithm).

Concentrating on the case of jf � 3 and �0 � 0.1, let us
calculate explicitly the timing demands. For m � 20 bits, we see
that the switching time �switch must satisfy 250,000 �switch ��
�comput�bits to allow completion of the purification before the
system spontaneously relaxes. Then, with m2 � 400 time steps
for each BCS operation, the relaxation time for the RRTR bits
must satisfy �RRTR �� 400 �switch, if we want the RRTR bits to
be ready when we need them the next time. As a result, a ratio
of �comput�bits �� 625 �RRTR is required in that case. The more
interesting case of m � 50 demands 1.56 � 106 �switch ��
�comput�bits, �RRTR �� 2500 �switch, and �comput�bits �� 625
�RRTR. Note that choosing � � 6 increases the size by a factor
of 5�4 and the time by a factor of 64�54 � 2. We discuss the
possibility of obtaining these numbers in an actual experiment in
Appendix B in the supporting information.

3.3.2. Estimation of error. Because the cooling algorithm is
probabilistic, and so far we have considered only the expected
number of purified bits, we need to make sure that in practice the

Fig. 2. The purification step M2. The details of the operations of M1 on the
second level are shown.
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actual number of bits obtained is larger than m with a high
probability. This is especially important when one wants to deal
with relatively small numbers of bits. We recall that the random
variable �j

k is the number of bits purified to �j, after the kth
round of purification step Mj�1, each followed by �{(j�1)3j}.
Hence, prior to the CUT �j we have �j

� bits with bias �j, where
the expected value ��j

�� � �[(1 
 �j�1
2 )�4] m � �m�4, and we

use � � 5. Of these bits, we keep only the first m qubits, i.e., we
keep at most a fraction 4�� of the average length of the string of
desired qubits. Recall also that �j

� is a sum of independent
Bernoulli random variables, and hence one can apply a suitable
form of the strong law of large numbers to determine the
probability of success, i.e., the probability that �j

� � m.
The details of applying a law of large numbers are given in

Appendix E, which is published as supporting information on the
PNAS web site. Here we state only the result. Chernoff’s bound
implies that the probability of failing to get at least m bits with
bias �j is

Pr��j
� � m� 
 exp��

1
2�1 �

4
�
�2 �

4
m�,

which, because of

1
2�1 �

4
�
� 2 �

4
m �

�� � 4�2

8�
m,

gives

Pr��j
� � m� 
 exp��

�� � 4�2

8�
m�.

For the probability of success of the entire algorithm, we have the
following conservative lower bound on Pr[s] 
 Pr [success of the
algorithm]:

Pr�s� � 	1 � exp��
�� � 4�2

8�
m�
�� jf�1�/���1�

. [11]

The probability of success is given here for several interesting
cases with jf � 3 (and remember that the probability of success
increases when m is increased): For m � 50 and � � 6, we get
Pr[success of the algorithm] � 0.51. For m � 50 and � � 5, we
get Pr[success of the algorithm] � 2.85 � 10�5. This case is of
most interest because of the reasonable time scales. Therefore,
it is important to mention here that our bound is very conser-

vative because we demanded success in all truncations
(see details in Appendix E), and this is not really required in
practice. For instance, if only m � 1 bits are purified to �1 in one
round of purification, but m bits are purified in the other � � 1
rounds, then the probability of having m bits at the resulting M2
process is not zero but is actually very high. Thus, our lower
bound presented above should not discourage the belief in the
success of this algorithm, because a much higher probability of
success is actually expected.

4. Discussion
In this paper, we suggested ‘‘algorithmic cooling via polarization
heat bath,’’ which removes entropy into the environment and
allows compression beyond the Shannon’s bound. The algorith-
mic cooling can solve the scaling problem of NMR quantum
computers and can also be used to refrigerate spins to very low
temperatures. We explicitly showed how, by using SWAP oper-
ations between electron spins and nuclear spins, one can obtain
a 50-qubit NMR quantum computer, starting with 350 qubits,
and using feasible time scales. Interestingly, the interaction with
the environment, usually a most undesired interaction, is used
here to our benefit.

Some open questions that are left for further research: (i) Are
there better and simpler cooling algorithms? (ii) Can the above
process be performed in a (classical) fault-tolerant way? (iii) Can
the process be much improved by using more sophisticated
compression algorithms? (iv) Can the process be combined with
a process that resolves the addressing problem? (v) Can one
achieve sufficiently different thermal relaxation times for the two
different spin systems? (vi) Can the electron-nuclear spin
SWAPs be implemented on the same systems that are used for
quantum computing? Finally, the summarizing question is: (vii)
How far are we from demonstrating experimental algorithmic
cooling, and how far are we from using it to yield 20-, 30-, or even
50-qubit quantum computing devices?
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