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ABSTRACT

In this article an alternative way of accounting for the distribution of Word length -  as measured in terms of 
number of syllables per Word -  in texts of certain natural languages will be explored.

A Standard synergetic account of word length 
distribution has been developed and investigat- 
ed in depth by Altmann, Köhler, Wimmer and 
others (cf. Wimmer et al., 1994). In this ap- 
proach, certain mathematical relationships be- 
tween, for example, neighbouring word length 
classes are assumed to hold. For instance, in a 
simple case, the probability Px assigned to the 
class with x-syllabic words is taken to be pro-
portional to the probability I\: ] of the preceding 
word length class:

where the proportionality factor is assumed to 
be a function g(x) of word length x:

Px = g ^ P x-1- (2 )

In the most elementary case g(x) may be taken 
to have the form of “Menzerath’s Law”:

g(x) = a x b: (3)

the resulting difference equation will then re- 
tum the Conway-Maxwell-Poisson Distribution.

The approach just sketched has turned out to 
be a very powerful tool in modelling word length 
distributions across rather different natural lan-

guages. However, the basic assumptions under- 
lying these models are, themselves, in need of 
theoreticaljustification. Anobstacle to any such 
attempt at justification is given by the fact that 
the parameters (usually two) of the distributions 
in question do not admit of any direct Interpre-
tation in linguistic terms. Roughly speaking, in 
our equation g(x) = ax~b the parameters a and b 
may be understood as representing, for exam-
ple, hearer’s vs. speaker’s communicative inter- 
ests or redundancy vs. efficiency of Information 
transmission. Regrettably, however, no method 
of measuring communicative interests or redun-
dancy of transmission is known, as far as natural 
languages are concemed; and the very idea that 
human languages are primarily a means of trans-
ferring quantifiable chunks of information from 
Speaker to hearer has, of course, its own, well- 
known philosophical shortcomings. As a conse- 
quence, the parameter interpretations proposed 
include a considerable amount of a priori ana- 
logical reasoning.

The mathematical model I discuss here pro- 
vides for a direct interpretation of the distribu-
tion parameters in tenns of traditional qualita-
tive linguistics without discarding the need for a 
synergetic approach. It was developed in study - 
ing word length in traditional narratives. For the 
purposes of this paper, let it suffice to say that a
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‘polysynthetic’ language is characterised by un- 
bounded recursive morphological left-branch- 
ing; that is, all stems (pre-ending morpheme se- 
quences) may be enlarged in a productive way 
by suffixing a further morpheme which can be 
inteipreted as the head of the resulting stem and 
determines, as such, the word dass pertinence 
of the whole ‘stem’ sequence. For an example, 
cf. the typical Inuktitut word ui-qa-ruma- 
laun[g]-ngit-tunga, which might be glossed as 
‘h u s b a n d ’ - ‘h a v e ’ - ‘w a n t ’ -P A S T -N E G -  
1SG:PRES:ITR and translates as ‘I didn’t want 
to have a husband’. In this example, the mor-
pheme sequences ui-, uiqa-, uiqaruma- etc. can 
also be used as inflectable stems on their own. It 
is important to note that in Inuktitut, morphemes 
usually contribute a fixed number of syllables 
(in all but a veiy few cases, more than zero) to 
any word they form a part of, despite the all- 
pervading complex word-internal sandhi proc- 
esses typical of Inuktitut in general.

The basic idea of the approach proposed here 
is quite simple: Every word contains a certain 
number of morphemes; every morpheme, in 
tum, includes a certain number of syllable nu- 
clei. This leads in a natural fashion to the fol- 
lowing two-step approach:
(1) We assume that the number o f morphemes 

o f a given word is expressed by a random 
variable N  with probability generating func- 
tion (pgf) G(t), where E(N) is the average 
number of morphemes per word in the text 
in question.

(2) We assume that the number o f syllables o f 
any given morpheme is expressed by a ran-
dom variable F with pgf Elf), where E(Y) is 
the average number of syllables per mor-
pheme in the text in question.

Note that assumption (1) is adequate only for 
languages that, like Inuktitut, have no principal 
restrictions on word-intemal morphemic com- 
plexity. The approach outlined here might, how- 
ever, also be applicable to languages that show 
productive recursivity in word formation only 
in a part of their lexicon, as is the case with 
Gennan or Chinese nominal composition. This 
remains to be tested in the light of available 
data.

The distribution of the number o f syllables in 
a word obviously is a random sum o f random 
variables, with N giving the number of F-dis- 
tributed variables in the sum. Thus, the total 
number of syllables per word is represented by 
Yj + Y?+Y3+... +Yn. The probability generating 
function C f)  for such a ‘contagious’ distribu-
tion is calculated as follows (it is assumed that 
all random variables are mutually independent):

C f)  = E(tr i+J2+ +rM) = e n  (E(tr i+J2+- +7W)|iV)

= EN ([H (fff) = G (H m  (4)

Our result, then, is that the pgf’s of the two 
“composing” distributions simply concatenate 
(functional composition).

In what follows, I shall, for reasons of sim- 
plicity, assume that both N  and F. are Poisson- 
distributed. Of course, independent reasons for 
this decision are still needed and will still have 
to be provided by a synergetic approach as 
sketched above. Thus, in the case of the simple 
Poisson distribution, g(x) in (2) will be p'x, 
where p  is the expectancy value of the random 
variable. Since in Inuktitut, any word consists 
of at least one morpheme and almost all mor-
phemes comprise at least one syllable, it is rea- 
sonable to use the simple Poisson distribution in 
its one-displaced form in both cases. Our word 
length distribution then comes out as

G(H(t)) = poib*(poim*(t)), (5)

where poib*(t) is the pgf of a one-displaced sim-
ple Poisson distribution with parameter b. Note 
that the two parameters b and m now indeed 
receive a direct linguistic interpretation: b is the 
average word length in terms of morphemes mi-
nus 1, and m is the average morpheme length in 
terms of syllables minus 1. Writtenout explicit- 
ly, we thus have:

G(H(t)) = t-e ^ -V  • e b«emi,-l)-D (6)

If we had chosen the non-displaced variants of 
the Poisson distribution instead, we would have 
obtained the well-known two-parameter Ney- 
man distribution typeA. Note, however, that the
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distribution in (6) does not belong to the Ney- 
man family of distributions.

Obtaining an explicit representation of the 
distribution in (6) is a bit more cumbersome. I 
shall merely give a coarse and veiy informal 
outline of how to achieve this here. If we con- 
sider, for example, words with 3 morphemes, 
word length is given as the sum of three identi- 
cally distributed, independent random variables 
Y, each of wliich is represented by pgf H(t). As 
the pgf’s of added independent random varia-
bles multiply, the probability P (morphemes = 
3; morpheme-length-parameter = m; syllables = 
i) will be

P (morphemes = 3, morpheme-length-par .= 
m. syllables = ;) = {[H(t)]3} ^ \t=0/ü. (7)

To obtain the probability that a word has x sylla-
bles, we simply sum up these P ’s for all possible 
morpheme numbers i multiplied by the proba-
bility that a word has in fact i morphemes:

P (word-length-par. = h. morpheme-length- 
par .= m, syllables = x) = P b-m (8)

X (Poisson'b (/') • P (morphemes = i, morph. 
length.par. =m, syllables = x)) =

-h x
—  X.A-! ,= ll / ■ i ■ b' *• (im)x ' ■ e

The following recursive representation can be 
found for the distribution in (8):

p b,m =r x+! x

, x (x - k  + 1 )mx k ,mpb.m + be-m £  l---------:----- . p  b.m
X  *=1 ( x -  k ) \  k

(9)

mt = a ■ e c\ ( 10)

where a and c are constants and m. is the mor-
pheme length parameter in words with i mor-
phemes. If we set a to 1 (for simplicity) and 
replace m in the second line of (8) by the ‘rela- 
tivised’ nr of (10) we obtain:

P - * 6 ' C  \ i x~i+ l-b '- l i e - ci)x- '- * ( 11)

So far, the distributions (8) and (11) discussed 
in this paper have been applied only to a rather 
restricted set of linguistic data. As there is no 
satisfactory fitting algorithm for the distribu-
tions proposed available at the moment, the re- 
sults listed below must be considered as prelim- 
inary and are very likely to be improved 
considerably as soon as better, iterative fitting 
techniques are used.
( 1) The probability distribution given in (6, 8) 

could be fitted to 28 out of 33 Inuktitut nar-
ratives examined (all taken from Nungak, 
Arima 1969), where P(A'I 2) > 0.01; the distri-
bution was well fittable (P(X2) > 0.05) to 21 
texts.

(2) The probability distribution given in (6, 8) 
could be fitted to 19 out of 26 German texts 
as found in Altmann & Best (1996), where 
P{X2) >0.01; the distribution was well fitta-
ble (P(X2) > 0.05) to 18 texts. All texts that 
did not work contained veiy long words 
(more than seven syllables), which possibly 
points to a specific, as yet unclear, reason 
for their non-fit.

(3) The probability distribution given in (11) 
could be fitted to 27 out of 33 Inuktitut nar-
ratives counted, where P(X2) >0.01; the dis-
tribution was well fittable (P(X2) > 0.05) to 
23 texts.

I will just mention a further refinement of our
mathematics. So far, we have been assuming 
that morpheme length (in terms of syllables) is 
independent of word length (in terms of mor-
phemes). This assumption, however, runs coun- 
ter to Menzerath’s Law: We should rather ex- 
pect shorter morphemes in longer words:

The morphology-based account has thus indeed 
led to some empirically testable mathematical 
assumptions using so-called multiple or ‘conta- 
gious’ Poisson distributions that may be of in-
ternst in other areas of quantitative linguistics as 
well. It is nevertheless questionable whether the 
specific theoretical motivations given for the 
above distributions are valid. In order to check
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this, it will be necessary to calculate the real 
average word and morpheme lengths to be found 
in the texts examined.
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