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A RESOLVENT CRITERION FOR NORMALITY

CARA D. BROOKS AND ALBERTO A. CONDORI

Abstract. Given a normal matrix A and an arbitrary square matrix B (not
necessarily of the same size), what relationships between A and B, if any,
guarantee that B is also a normal matrix? We provide an answer to this ques-
tion in terms of pseudospectra and norm behavior. In doing so, we prove that
a certain distance formula, known to be a necessary condition for normality,
is in fact sufficient and demonstrates that the spectrum of a matrix can be
used to recover the spectral norm of its resolvent precisely when the matrix
is normal. These results lead to new normality criteria and other interesting
consequences.

1. Normality, Pseudospectra and Norm Behavior.

Let n be a natural number and let Mn denote the set of all n× n matrices with
entries in the complex plane C. Denote by I and 0 the identity and zero matrices,
respectively, whose sizes are understood in context.

For A ∈ Mn, let A
∗ denote the conjugate transpose of A. The spectrum σ(A) of

A is the set of all of its eigenvalues; that is,

σ(A) = {z ∈ C : zI −A is not invertible} = {z ∈ C : det(zI −A) = 0}.

In this article, we are interested in the notion of normality. Recall that a matrix
A ∈ Mn is said to be normal if it commutes with its conjugate transpose, i.e., if

A∗A = AA∗.

In the case that A∗A = AA∗ = I, the matrix A is called unitary1. Equivalently,
A is unitary if it is invertible and has A∗ as its inverse. Two matrices A and B are
said to be unitarily similar if there is a unitary matrix U so that A = UBU∗.

The simplest example of an n× n normal matrix is a diagonal matrix, that is,
a matrix of the form

Λ =











λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn











. (1)

Notice that the eigenvalues of Λ are precisely the entries on its main diagonal and
so σ(Λ) = {λ1, . . . , λn}.

Normal matrices are essentially diagonal according to the spectral theorem (for
normal matrices) which states that a matrix N ∈ Mn is normal if and only N is
unitarily similar to a diagonal matrix. (See Theorem 2.5.4 on page 101 in [5].)

So we ask, if given a normal matrix A and an arbitrary square matrix B, what
relationships between A and B, if any, guarantee that B is also a normal matrix?

1For matrices with real entries, unitary matrices are called orthogonal.
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Certainly, by the Spectral Theorem stated above, a “non-metric” relationship
that guarantees the normality of B from that of A is unitary similarity. This
however requires that A and B also have the same size.

And so instead we ask,

Given a normal matrix A and an arbitrary square matrix B (not
necessarily of the same size), what “metric” relationships between
A and B, if any, guarantee that B is also a normal matrix?

Two such relationships that come to mind are “identical pseudospectra” and
“same norm behavior.” To describe these notions, we first need to choose a norm
for matrices.

For A ∈ Mn, we define the (spectral) norm ‖A‖ of A by

‖A‖ = sup{‖Av‖2 : ‖v‖2 = 1},

where ‖v‖2 denotes the Euclidean norm of the vector v ∈ Cn, i.e.,

‖v‖2 =
√

|v1|2 + · · ·+ |vn|2 if v = (v1, . . . , vn).

(The subscript allows one to differentiate between the norms.) A useful feature of
the matrix norm chosen here is unitary invariance, that is,

‖V TU‖ = ‖T ‖ (2)

for any T ∈ Mn and n× n unitary matrices U and V .
Two square matrices A and B (not necessarily of the same size) have identical

pseudospectra2 if

‖(zI −A)−1‖ = ‖(zI −B)−1‖ for all z ∈ C. (3)

In the case of a normal matrix A ∈ Mn, the spectral theorem allows one to
compute the norm of the resolvent (zI − A)−1 of A. By that theorem, there is
a diagonal matrix Λ and a unitary matrix U so that A = UΛU∗ and so zI − A =
U(zI − Λ)U∗ for any z ∈ C. It follows that

‖(zI −A)−1‖ = ‖(zI − Λ)−1‖ = max{|z − λ|−1 : λ ∈ σ(A)}

or equivalently3,

‖(zI −A)−1‖ =
1

dist(z, σ(A))
for z /∈ σ(A). (4)

As the following theorem confirms, the condition of identical pseudospectra guar-
antees that B is normal whenever A is.

Theorem 1. Suppose A and B are square matrices4. If A is normal, and A and
B have identical pseudospectra, then B is normal.

To prove Theorem 1, it is convenient to know whether the validity of the distance
formula (4) for an “arbitrary” matrix B implies that B is normal. This turns out
to be true.

Theorem 2. For a matrix T ∈ Mn to be normal, it is necessary and sufficient that

‖(zI − T )−1‖ =
1

dist(z, σ(T ))
for z /∈ σ(T ). (5)

2In view of inequality (14) below, we adopt the convention that ‖(zI−A)−1‖ = ∞ for z ∈ σ(A).
3If z ∈ C and E ⊆ C, we define dist(z,E) = inf{|z − w| : w ∈ E}.
4In Theorem 1, the matrices A and B are not assumed to have the same size.
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The necessity of (5) was addressed in our remarks prior to the statement of
Theorem 1 and is well known, e.g., see problem 6.42 on page 62 in [7]. In Section
2 below, we establish the sufficiency of (5) and some of its consequences.

Thus, in the remainder of this section, we prove Theorem 1 (assuming the validity
of Theorem 2) and discuss its consequences; Theorem 2 is proved in the next section.

Proof of Theorem 1. Suppose that A is normal, and that A and B have identical
pseudospectra. Not only does (3) imply that A and B have the same spectrum σ,
it also implies that

‖(zI −B)−1‖ =
1

dist(z, σ)
for all z /∈ σ

by (4) because A is normal. Thus, the normality of B follows from Theorem 2. �

Recall that if p(z) = c0 + c1z + c2z
2 + · · ·+ cmzm is a polynomial with complex

coefficients and T ∈ Mn, then p(T ) denotes the n× n matrix defined by

p(T ) = c0I + c1T + c2T
2 + · · ·+ cmTm.

Using this definition, it can be verified that, for fixed T , the mapping p 7→ p(T ) is
both linear and multiplicative.

Two square matrices A and B (not necessarily of the same size) have the same

norm behavior if

‖p(A)‖ = ‖p(B)‖ for all polynomials p. (6)

It is worth mentioning that the norm of a polynomial and the norm of the resol-
vent of a matrix appear naturally in applications. For instance, the stability of a
linear dynamical system is determined by the norm ‖p(A)‖ for suitable polynomials
p. For example, given a discrete system vk+1 = Avk, k ≥ 0, we have vk = Akv0
for all k ≥ 0 and so it suffices to use p(z) = zk. Likewise, given a continuous
system y′ = Ay, there is a polynomial pt with coefficients depending on t so that
pt(A) = exp(tA) (see [8]) and so the behavior of y is determined by ‖pt(A)‖ be-
cause y = exp(tA)y(0). Furthermore, if ‖(zI−A)−1‖ is known, one can obtain (not
necessarily sharp) upper bounds for ‖p(A)‖ using the Cauchy integral formula

p(A) =
1

2πi

∫

Γ

(zI −A)−1p(z) dz,

where Γ is any contour enclosing σ(A) (see page 46 in [7]).
In [3], Greenbaum and Trefethen showed that if two matrices have the same norm

behavior, then they also have identical pseudospectra. Therefore, an application of
their result and Theorem 1 give

Corollary 3. Suppose A and B are square matrices5. If A is normal, and A and
B have the same norm behavior, then B is normal.

In the case that both matrices A and B have the same size, one obtains criteria
for their unitary similarity. This is stated in the following corollary.

Corollary 4. Let A,B ∈ Mn and suppose A is normal. The following statements
are equivalent.

(1) A and B are unitarily similar.
(2) A and B have the same norm behavior and characteristic polynomials.

5In Corollary 3, the matrices A and B are not assumed to have the same size.
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(3) A and B have identical pseudospectra and characteristic polynomials.

Proof. Condition 1 and the normality of A imply that both A and B are unitarily
similar to the same diagonal matrix, say D. In particular, if A = UDU∗ for some
unitary matrix U , then p(A) = Up(D)U∗. Therefore, ‖p(A)‖ = ‖p(D)‖ for any
polynomial p by (2), and likewise ‖p(B)‖ = ‖p(D)‖. Moreover, if A = V BV ∗ for
some unitary V , then factoring zI −A = V (zI −B)V ∗ implies that

det(zI −A) = det(zI −B)

because the determinant is a multiplicative map. Hence, condition 2 holds.
The fact that condition 2 implies condition 3 is an immediate consequence of the

result mentioned from [3].
Finally, if condition 3 holds, Theorem 1 implies that both A and B are normal

matrices of the same size. In addition, they also have the same eigenvalues (counting
multiplicities) because they have the same characteristic polynomials. In other
words, by the spectral theorem, A and B are unitarily similar to the same diagonal
matrix, and so condition 1 holds, as desired. �

Note that the implication “2 =⇒ 1” in Corollary 4 is also a consequence of
Corollary 3 above; indeed, that corollary implies that A and B are normal matrices
of the same size and so unitary similarity follows again by the spectral theorem.
For yet another proof of the implication “2 =⇒ 1,” we refer the reader to [2].

2. The distance formula, its consequences, and criteria for

normality.

We now give a straightforward and self-contained proof of Theorem 2 and state
some of its own interesting consequences. We also mention two other approaches
by which Theorem 2 can be proved.

Proof of Theorem 2. In view of the remarks preceding (4), we only need to show
that if (5) holds, then T is normal. Instead of (5), let us assume the following
equivalent formulation:

‖(zI − T )−1‖ = max
{

|z − λ|−1 : λ ∈ σ(T )
}

for all z /∈ σ(T ). (7)

By Schur’s Theorem (see Theorem 2.3.1 on page 79 and the Remark on page 80
in [5]), there is a unitary matrix U and a lower triangular matrix L such that
T = ULU∗. In this case, the main diagonal of L must consist of the eigenvalues of
T (in any desired order but counting multiplicities). So, zI − L is lower triangular
and has (z−λ) with λ ∈ σ(T ) as main diagonal entries. Consequently, (zI−L)−1 is
also lower triangular with entries (z − λ)−1, λ ∈ σ(T ), on its main diagonal. Since
(zI − T )−1 = U(zI − L)−1U∗, (7) can be restated as

‖(zI − L)−1‖ = max
{

|z − λ|−1 : λ ∈ σ(L)
}

for all z /∈ σ(L). (8)

We show that L must be a diagonal matrix. To that end, we use the following
well-known result (see Section 0.7.3 in [5]).

Lemma 5. Suppose M ∈ Mn is invertible and has block form

M =

[

A 0
B C

]

, (9)
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where A and C are square matrices. Then A and C are invertible, and the inverse
of M has block form

[

A−1 0
−C−1BA−1 C−1

]

. (10)

To simplify notation, label the entries down the main diagonal in L as λn, λn−1,
. . ., λ2, and λ1. For k = 1, . . . , n, let Lk denote the principal submatrix of L
obtained by removing the first n− k rows and columns of L. In particular, each Lk

is a k × k lower triangular matrix, Ln = L, and L1 = λ1.
For each 1 ≤ k ≤ n− 1,

Lk+1 =

[

λk+1 0
bk Lk

]

for some vector bk ∈ Ck and so, by Lemma 5,

(zI − Lk+1)
−1 =

[

(z − λk+1)
−1 0

(zI − Lk)
−1bk(z − λk+1)

−1 (zI − Lk)
−1

]

(11)

for every z /∈ σ(L). In particular, if v = (1, 0, . . . , 0) ∈ Ck+1, then

‖(zI − Lk+1)
−1‖2 ≥ ‖(zI − Lk+1)

−1v‖22,

or equivalently,

‖(zI − Lk+1)
−1‖2 ≥ |z − λk+1|

−2 + ‖(zI − Lk)
−1bk(z − λk+1)

−1‖22. (12)

Similarly, we see that

‖(zI − Ln)
−1‖ ≥ ‖(zI − Ln−1)

−1‖ ≥ . . . ≥ ‖(zI − L1)
−1‖. (13)

We now show that bk = 0. Indeed, if z ∈ C is chosen so that the maximum on the
right-hand side of (8) equals |z − λk+1|

−1, then

|z − λk+1|
−2 = ‖(zI − Ln)

−1‖2

≥ ‖(zI − Lk+1)
−1‖2

≥ |z − λk+1|
−2 + ‖(zI − Lk)

−1bk(z − λk+1)
−1‖22

by (8) and (12). Therefore,

(zI − Lk)
−1bk(z − λk+1)

−1 = 0

and so bk = 0. Since each column below a main diagonal entry of L is a zero vector,
L is a diagonal matrix and so T is normal, as desired. �

Even though the distance formula (5) does not hold for non-normal n × n ma-
trices, the following inequality does: for any T ∈ Mn,

dist(z, σ(T )) ≥ ‖(zI − T )−1‖−1 for all z /∈ σ(T ). (14)

This fact is verified using the Neumann (geometric) series; for if A and B are in
Mn, A is invertible, and ‖A − B‖ < ‖A−1‖−1 holds, then BA−1 is invertible and
so B is also invertible. It follows that if (zI − T ) is invertible and the inequality
|z − w| = ‖(zI − T ) − (wI − T )‖ < ‖(zI − T )−1‖−1 holds, then (wI − T ) is also
invertible. In other words, if z /∈ σ(T ) and |z−w| < ‖(zI−T )−1‖−1, then w /∈ σ(T )
and so the inequality in (14) is obtained.
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Our proof of Theorem 2 also reveals that equality (5) need not hold for all z /∈
σ(T ) = {λ1, . . . , λn}. Rather, normality of T follows from the weaker (equivalent)
condition6 that for each 1 ≤ k ≤ n− 1, there is a zk ∈ C so that

‖(zkI − T )−1‖ = |zk − λk|
−1.

We now state the following criteria for normality.

Theorem 6. The following statements are equivalent for a matrix T ∈ Mn.

(1) For all z /∈ σ(T ),

‖(zI − T )−1‖ =
1

dist(z, σ(T ))
.

(2) For each 1 ≤ k ≤ n− 1, there is a zk ∈ C so that

‖(zkI − T )−1‖ = |zk − λk|
−1, (15)

where λ1, . . . , λn denote the eigenvalues of T (counting multiplicities).
(3) T is normal.
(4) For every polynomial p,

‖p(T )‖ = max{|p(λ)| : λ ∈ σ(T )}. (16)

Proof. It is only left to prove that “4 =⇒ 1” as “3 =⇒ 4” is a straightforward
consequence of the spectral theorem; for if T is normal and p is a polynomial, there
is a unitary matrix U so that T = UΛU∗ with Λ as in (1). In this case,

‖p(T )‖ = ‖Up(Λ)U∗‖ = ‖p(Λ)‖ = max{|p(λ)| : λ ∈ σ(T )}

and so condition 4 holds.
Now suppose condition 4 holds. Let z /∈ σ(T ) be fixed and define f(t) = (z−t)−1.

Let λ1, . . . , λk denote the distinct eigenvalues of T . For 1 ≤ i ≤ k, λi is a zero
of the minimal polynomial m of T . It follows from Theorem 6.2.9 in [6] that
(zI − T )−1 = qz(T ), where qz(t) is any polynomial of degree at most n − 1 that

interpolates f(t) and its derivatives at the zeros of m. That is, f (u)(λi) = q
(u)
z (λi)

for u = 0, . . . , (si− 1) and i = 1, . . . , k (see page 390 in [6]). Therefore, (16) implies
‖qz(T )‖ = max{|qz(λ)| : λ ∈ σ(T )}, or equivalently,

‖(zI − T )−1‖ = max{|z − λ|−1 : λ ∈ σ(T )} =
1

dist(z, σ(T ))
for z /∈ σ(T ).

Hence, condition 1 holds and the proof is now complete. �

Surprisingly, the criteria for normality appearing in Theorem 6 are absent from
the literature. Thus, these criteria may be considered addenda to the 89 other
characterizations of normal matrices that appear in [1] and [4].

Corollary 7. If T ∈ M2 and

‖(zI − T )−1‖ =
1

dist(z, σ(T ))

holds for one point z /∈ σ(T ), then T is normal.

6Even better, if d is the number of distinct eigenvalues of T and one eigenvalue is simple, then
equality (15) need only hold for zk near each of the other d− 1 eigenvalues to conclude that T be
normal.
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Hence, for non-normal 2× 2 matrices T , the inequality in (14) must be strict for
all z /∈ σ(T ). For instance, if

N =

[

0 1
0 0

]

,

then σ(N) = {0} and so ‖(zI−N)−1‖ > dist−1(z, σ(N)) = |z|−1 holds for all z 6= 0
by (14) and Corollary 7.

Remark. The sufficient condition for normality in Theorem 2 may also be deduced
two other ways.

(1) If σǫ(T ) denotes the “ǫ-pseudospectrum” of T , that is,

σǫ(T )
def
= {z : ‖(zI − T )−1‖ > ǫ−1},

then Theorem 2.2 of [9] states that7 if the equality

σǫ(T ) = {ζ + ξ : ζ ∈ σ(T ) and |ξ| < ǫ} (17)

holds for all ǫ > 0, then the matrix T is normal. In a sketch of a proof, the
authors assert that one can deduce simultaneous diagonalizability of T and
T ∗ from content in a later section in [9] on eigenvalue perturbation theory.
Therefore, if equality (5) holds, then the equality of the sets in (17) follows,
and so T is normal.

(2) The fact that (5) implies normality of T may also be deduced in the context
of radial matrices. For z /∈ σ(T ), equality (5) implies that (zI − T )−1 is
radial and so unitarily similar to

‖(zI − T )−1‖ (U ⊕B) , (18)

where U ∈ Mk is unitary, 1 ≤ k ≤ n, and B ∈ Mn−k has spectral radius
less than 1 and ‖B‖ ≤ 1 (see Problem 27(g) on page 45 in [6]). To con-
clude normality of T , one can obtain from (18) orthonormal eigenvectors
of (zI −T )−1 (corresponding to the eigenvalue (z−λ)−1) and so orthonor-
mal eigenvectors for T ; thus, one can form a complete set of orthonormal
eigenvectors of T through a choice of z near each eigenvalue.

Acknowledgments. The authors wish to thank Thomas Ransford and Roger
Horn for comments on a preliminary version of this paper calling to our attention
Theorem 2.2 of [9] and an alternative approach to obtaining Theorem 2 using
unitary similarity to (18), respectively.
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