REFINEMENTS OF LAGRANGE'S FOUR-SQUARE THEOREM

LEO GOLDMAKHER AND PAUL POLLACK

Abstract

A well-known theorem of Lagrange asserts that every nonnegative integer n can be written in the form $a^{2}+b^{2}+c^{2}+d^{2}$, where $a, b, c, d \in \mathbb{Z}$. We characterize the values assumed by $a+b+c+d$ as we range over all such representations of n.

Our point of departure is the following signature result from a first course in number theory.
Lagrange's four-square theorem. Every nonnegative integer can be written as the sum of four integer squares. That is, for every $n \in \mathbb{N}$, there are $a, b, c, d \in \mathbb{Z}$ with

$$
\begin{equation*}
n=a^{2}+b^{2}+c^{2}+d^{2} . \tag{1}
\end{equation*}
$$

For instance ($n=2017$), we have

$$
2017=18^{2}+21^{2}+24^{2}+26^{2}
$$

Twenty years before Lagrange's proof, Euler had already conjectured a refinement of the four-square theorem for odd numbers n. The following statement can be found in a letter to Goldbach dated June 9, 1750.

Conjecture 1. Every odd positive integer n has a representation in the form (1) satisfying the extra constraint $a+b+c+d=1$.

Picking back up our earlier example, when $n=2017$, Euler's conjecture is satisfied with $a=-18, b=21, c=24$, and $d=-26$. A proof of Euler's conjecture was posted to MathOverflow by Franz Lemmermeyer in September 2010. ${ }^{1}$

Much more recently, Sun \& Sun (apparently unaware of Euler's conjecture) presented a number of related refinements of Lagrange's theorem [3] (cf. [4]). One of their many results is that for every $n \in \mathbb{N}$, there is a representation (1) with $a+b+c+d$ a square, as well as one with $a+b+c+d$ a cube [3, Theorem 1.1(a)].

We can unify all the above assertions by introducing the sum spectrum

$$
\mathscr{S}(n)=\left\{a+b+c+d: a^{2}+b^{2}+c^{2}+d^{2}=n\right\} .
$$

Lagrange's theorem is equivalent to $\mathscr{S}(n) \neq \emptyset$; Euler's conjecture asserts that $1 \in \mathscr{S}(n)$ for all odd $n \in \mathbb{N}$; and Sun \& Sun's theorem asserts that $\mathscr{S}(n)$ contains a perfect square and a perfect cube for every n. Our goal in this note is to completely describe the set $\mathscr{S}(n)$.

We have not found our results stated anywhere in the literature, but we do not claim they are novel. In the introduction to his resolution [1] of Fermat's polygonal number conjecture, Cauchy poses the following problem: Décomposer un nombre entier donné en

[^0]| n | exceptional T | n | exceptional T | n | exceptional T |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | \emptyset | 17 | \emptyset | 33 | \emptyset |
| 2 | \emptyset | 18 | \emptyset | 34 | \emptyset |
| 3 | \emptyset | 19 | \emptyset | 35 | \emptyset |
| 4 | \emptyset | 20 | \emptyset | 36 | \emptyset |
| 5 | \emptyset | 21 | \emptyset | 37 | \emptyset |
| 6 | \emptyset | 22 | \emptyset | 38 | \emptyset |
| 7 | \emptyset | 23 | \emptyset | 39 | \emptyset |
| 8 | $\{ \pm 2\}$ | 24 | $\{ \pm 2, \pm 6\}$ | 40 | $\{ \pm 2, \pm 6, \pm 10\}$ |
| 9 | \emptyset | 25 | \emptyset | 41 | \emptyset |
| 10 | \emptyset | 26 | \emptyset | 42 | \emptyset |
| 11 | \emptyset | 27 | \emptyset | 43 | \emptyset |
| 12 | \emptyset | 28 | \{0\} | 44 | $\{ \pm 8\}$ |
| 13 | \emptyset | 29 | \emptyset | 45 | \emptyset |
| 14 | \emptyset | 30 | \emptyset | 46 | \emptyset |
| 15 | \emptyset | 31 | \emptyset | 47 | \emptyset |
| 16 | $\{ \pm 2, \pm 6\}$ | 32 | $\{ \pm 2, \pm 4, \pm 6, \pm 10\}$ | 48 | $\{ \pm 2, \pm 6, \pm 10\}$ |

Table 1. Values of T satisfying (2) and (3) but not belonging to $\mathscr{S}(n)$.
quatre quarrés dont les racines fassent une somme donnée. ${ }^{2}$ For Cauchy, "racines" are nonnegative; hence, he is asking for a description of

$$
\mathscr{S}^{+}(n):=\left\{a+b+c+d: a, b, c, d \in \mathbb{N} \text { and } a^{2}+b^{2}+c^{2}+d^{2}=n\right\}
$$

Cauchy goes on to prove a partial characterization of $\mathscr{S}^{+}(n)$ (see Remark 1 below for a summary of his results), by essentially the same methods we describe below. Despite being anticipated, we believe an explicit description of $\mathscr{S}(n)$ is sufficiently interesting (and Cauchy's work on $\mathscr{S}^{+}(n)$ sufficiently underappreciated) to warrant popularization here. Moreover, we will show how our characterization of $\mathscr{S}(n)$ immediately implies both Sun \& Sun's theorems and a generalization of Euler's conjecture.

We begin by recording two easy observations. First, since an integer and its square have the same parity, every $T \in \mathscr{S}(n)$ satisfies

$$
\begin{equation*}
T \equiv n(\bmod 2) \tag{2}
\end{equation*}
$$

Second, for any real numbers a, b, c, d, the Cauchy-Schwarz inequality yields

$$
\begin{aligned}
(a+b+c+d)^{2} & \leq\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(1^{2}+1^{2}+1^{2}+1^{2}\right) \\
& =4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)
\end{aligned}
$$

it follows that every $T \in \mathscr{S}(n)$ satisfies

$$
\begin{equation*}
T^{2} \leq 4 n \tag{3}
\end{equation*}
$$

As shown in Table 1, the necessary conditions (2) and (3) are quite often (but not always) sufficient for membership in $\mathscr{S}(n)$. The following theorem, which is our main result, tells the full story.

[^1]Theorem 2. Suppose n and T are integers satisfying (2). Then $T \in \mathscr{S}(n)$ if and only if $4 n-T^{2}$ is a sum of three integer squares.

Note that (3) is implied by the condition on $4 n-T^{2}$ and so does not need to be included explicitly as a hypothesis in Theorem 2.

To convince the reader that Theorem 2 qualifies as a complete description of $\mathscr{S}(n)$, we recall the following classical result (see the Appendix to Chapter IV of [2] for a proof).

Legendre-Gauss three-squares theorem. Let $n \in \mathbb{N}$. Then n can be written as a sum of three squares if and only if $n \neq 4^{k}(8 \ell+7)$ for any $k, \ell \in \mathbb{N}$.
Proof of Theorem 2. We begin by recording the easily-verified identity

$$
\begin{align*}
(2(a+b)-T)^{2}+(2(a+c)-T)^{2}+(2(b+c) & -T)^{2}+T^{2} \\
& =4 a^{2}+4 b^{2}+4 c^{2}+4(T-a-b-c)^{2} \tag{4}
\end{align*}
$$

Thus if $T \in \mathscr{S}(n)$, say with $a^{2}+b^{2}+c^{2}+d^{2}=n$ and $a+b+c+d=T$, then

$$
(2(a+b)-T)^{2}+(2(a+c)-T)^{2}+(2(b+c)-T)^{2}=4 n-T^{2}
$$

so that $4 n-T^{2}$ is a sum of three squares.
Conversely, suppose that $4 n-T^{2}$ is a sum of three squares, say

$$
\begin{equation*}
4 n-T^{2}=A^{2}+B^{2}+C^{2} \tag{5}
\end{equation*}
$$

In view of (4), it is enough to show that-after possibly swapping the signs of A, B, C-there are $a, b, c \in \mathbb{Z}$ with

$$
\begin{equation*}
2 a+2 b-T=A, \quad 2 a+2 c-T=B, \quad 2 b+2 c-T=C . \tag{6}
\end{equation*}
$$

Indeed, in that case setting $d=T-(a+b+c)$, we have

$$
a+b+c+d=T
$$

and

$$
\begin{aligned}
& 4\left(a^{2}+b^{2}+c^{2}+d^{2}\right)-T^{2} \\
& \quad=(2 a+2 b-T)^{2}+(2 a+2 c-T)^{2}+(2 b+2 c-T)^{2} \\
& \quad=A^{2}+B^{2}+C^{2}=4 n-T^{2},
\end{aligned}
$$

so that

$$
a^{2}+b^{2}+c^{2}+d^{2}=n .
$$

Thus, we focus our attention on (6).
Solving for a, b, c in terms of A, B, C gives

$$
a=\frac{1}{4}(A+B-C+T), \quad b=\frac{1}{4}(A-B+C+T), \quad c=\frac{1}{4}(-A+B+C+T) .
$$

We claim that A, B, C, and T must all have the same parity. To see this, note that (5) gives $A^{2}+B^{2}+C^{2} \equiv-T^{2}(\bmod 4)$. If T is odd then $A^{2}+B^{2}+C^{2} \equiv 3(\bmod 4)$, and a moment's thought shows that all of A, B, and C must be odd. Similarly, if T is even, then $A^{2}+B^{2}+C^{2} \equiv 0(\bmod 4)$, and this forces A, B, and C to all be even. In either case, the difference between any pair of A, B, and C is even, so the difference between
any pair of a, b, and c is an integer. It follows that if any of $a, b, c \in \mathbb{Z}$, then all three are in \mathbb{Z}. Moreover,

$$
A+B-C+T \equiv A+B+C+T \equiv A^{2}+B^{2}+C^{2}+T^{2} \equiv 4 n \equiv 0(\bmod 2)
$$

and so the only way we can fail to have $a \in \mathbb{Z}$ (and hence all of $a, b, c \in \mathbb{Z}$) is if

$$
\begin{equation*}
A+B-C+T \equiv 2(\bmod 4) . \tag{7}
\end{equation*}
$$

If T is odd, then A is odd, and so if necessary we can replace A with $-A$ to avoid (7). If T is even, we will show that (7) cannot occur. Indeed, (7) implies that $8 \nmid(A+B-C+T)^{2}$. But

$$
\begin{aligned}
(A+B- & C+T)^{2} \\
& =A^{2}+B^{2}+C^{2}+T^{2}+2(A B-A C+A T-B C+B T-C T) \\
& =4 n+2(A B-A C+A T-B C+B T-C T) \\
& \equiv 0(\bmod 8) ;
\end{aligned}
$$

here we used that $n \equiv T \equiv 0(\bmod 2)$ and that all of A, B, C, and T are even.
Let us see how Theorem 2 makes quick work of both the conjecture of Euler and the theorems of Sun \& Sun. We begin with the latter. If $4 n$ itself is a sum of three squares, then Theorem 2 shows that $T=0 \in \mathscr{S}(n)$, and 0 is both a square and a cube. Otherwise, by the Legendre-Gauss theorem, $4 n=4^{k+1}(8 \ell+7)$, where k and ℓ are nonnegative integers. Then

$$
\begin{aligned}
& 4 n-\left(2^{k}\right)^{2}=4^{k}(32 \ell+27), \quad 4 n-\left(2^{k+1}\right)^{2}=4^{k+1}(8 \ell+6) \\
& \quad \text { and } \quad 4 n-\left(2^{k+2}\right)^{2}=4^{k+1}(8 \ell+3) ;
\end{aligned}
$$

invoking the Legendre-Gauss theorem once more, we see that all three of these numbers are sums of three squares. By Theorem 2, all of $2^{k}, 2^{k+1}, 2^{k+2}$ must belong to $\mathscr{S}(n)$. Clearly, the set $\left\{2^{k}, 2^{k+1}, 2^{k+2}\right\}$ contains both a square and a cube.

As for Euler's conjecture, we prove the following generalization (which, for most n, gives a very simple description of $\mathscr{S}(n))$:

Proposition 3. Suppose $n \in \mathbb{N}$ is not a multiple of 4. Then

$$
\mathscr{S}(n)=\{T \equiv n(\bmod 2):|T| \leq 2 \sqrt{n}\} .
$$

Remark 1. Cauchy proves that if $T \in \mathscr{S}^{+}(n)$, then $4 n-T^{2}$ is a sum of three squares, and that when $4 \nmid n$,

$$
\mathscr{S}^{+}(n) \supseteq\{T \equiv n(\bmod 2): \sqrt{3 n-2}-1 \leq T \leq 2 \sqrt{n}\} .
$$

See [1, Corollary I of Theorem I, Theorem IV, and Corollary II of Theorem III].
Proof of Proposition 3. In view of Theorem 2, our task is to show that $4 n-T^{2}$ is a sum of three squares whenever $4 \nmid n$. Suppose first that n is odd, so that T is also odd. Then $4 n \equiv 4(\bmod 8)$ and $T^{2} \equiv 1(\bmod 8)$, whence $4 n-T^{2} \equiv 3(\bmod 8)$. By the LegendreGauss theorem, $4 n-T^{2}$ is a sum of three squares, and we're done. Now suppose instead that n is twice an odd integer. Then T is even, say $T=2 t$, so that $4 n-T^{2}=4\left(n-t^{2}\right)$. It will suffice to show that $n-t^{2}$ is a sum of three squares, for then $4\left(n-t^{2}\right)$ is as well. Since $n \equiv 2(\bmod 4)$ and $t^{2} \equiv 0$ or $1(\bmod 4)$, we have $n-t^{2} \equiv 1$ or $2(\bmod 4)$. In
particular, $n-t^{2}$ is not of the form $4^{k}(8 \ell+7)$, and so the desired conclusion follows from the Legendre-Gauss theorem. This completes the proof.

We conclude this note with a few remarks about the structure of $\mathscr{S}(n)$ for general n. When $8 \mid n$, it is easy to see that any integer solution to

$$
a^{2}+b^{2}+c^{2}+d^{2}=n
$$

has all of a, b, c, d even. Thus, there is a bijection $(a, b, c, d) \leftrightarrow(a / 2, b / 2, c / 2, d / 2)$ between representations of n as a sum of four squares and representations of $n / 4$. Consequently,

$$
\mathscr{S}(n)=2 \mathscr{S}(n / 4)
$$

where the notation on the right-hand side means dilation by a factor of 2 . Iterating, if k is the largest nonnegative integer for which $2^{2 k+3} \mid n$, we find that

$$
\mathscr{S}(n)=2^{k+1} \mathscr{S}\left(n / 4^{k+1}\right) .
$$

We have from our choice of k that $2 \mid n / 4^{k+1}$ while $8 \nmid n / 4^{k+1}$.
The observations of the last paragraph show that to describe $\mathscr{S}(n)$, it is enough to consider those cases where $8 \nmid n$. When $4 \nmid n$, Proposition 3 tells us the answer. However, when $4 \mid n$, it does not seem that there is much to be said beyond what follows immediately from Theorem 2 and the Legendre-Gauss theorem.

The situation becomes both clearer and a bit cleaner if one is willing to shift perspective. Rather than first picking n and asking for a description of the elements of $\mathscr{S}(n)$, we may pick T and ask for which n we have $T \in \mathscr{S}(n)$.

Proposition 4. Let $T \in \mathbb{Z}$. Assume that $n \geq T^{2} / 4$ and $n \equiv T(\bmod 2)$.
(1) If T is odd, then $T \in \mathscr{S}(n)$.
(2) If T is twice an odd integer, then $T \in \mathscr{S}(n)$ if and only if $n \not \equiv 0(\bmod 8)$.
(3) Suppose that $4 \mid T$. Then $T \in \mathscr{S}(n)$ if and only if

$$
n \notin \bigcup_{k \geq 1}\left\{T^{2}-4^{k}\left(\bmod 2^{2 k+3}\right)\right\} .
$$

Here the right-hand side is an infinite union of disjoint residue classes modulo $2^{2 k+3}$, over positive integers k.

We leave the (routine) proof of this proposition to the interested reader.

References

[1] A. L. Cauchy, Démonstration du théorème général de Fermat sur les nombres polygones, Mém. Sci. Math. Phys. Inst. France 14 (1813-15), 177-220.
[2] J.-P. Serre, A course in arithmetic, Graduate Texts in Mathematics, Vol. 7, Springer-Verlag, New York-Heidelberg, 1973.
[3] Y.-C. Sun and Z.-W. Sun, Some refinements of Lagrange's four-square theorem (2017), http://arxiv.org/abs/1605.03074.
[4] Z.-W. Sun, Refining Lagrange's four-square theorem, J. Number Theory 175 (2017) 167-190.
Dept of Mathematics \& Statistics, Williams College, Williamstown, MA, USA
E-mail address: leo.goldmakher@williams.edu
Dept of Mathematics, University of Georgia, Athens, GA, USA
E-mail address: pollack@uga.edu

[^0]: LG is partially supported by an NSA Young Investigator grant. PP is partially supported by NSF award DMS-1402268.
 ${ }^{1}$ See https://mathoverflow.net/questions/37278/euler-and-the-four-squares-theorem.

[^1]: ${ }^{2}$ Decompose a given whole number into four squares whose roots make a given sum.

