
ar
X

iv
:2

00
5.

10
37

2v
1

 [
cs

.F
L

]
 2

0
M

ay
 2

02
0

Infinitude of Primes Using Formal Languages

Aalok Thakkar

Abstract

Formal languages are sets of strings of symbols described by a set of

rules specific to them. In this note, we discuss a certain class of formal

languages, called regular languages, and put forward some elementary

results. The properties of these languages are then employed to prove

that there are infinitely many prime numbers.

1 Introduction.

If you have used the command line shell of an operating system, or search facil-
ities of text editors, undoubtedly you would have come across pattern matching
by entering an expression to match with text. These expressions can be used
to describe sets of words. The computer can then simulate a simple model of
computation to decide the membership of a given string in these sets. This
note presents a formal characterization of such expressions and the sets they
represent. Properties of these sets are discussed and then used to prove the
infinitude of primes.

2 Words and Languages.

In order to formalize the notion of expressions, we first look at alphabets, words,
and languages. An alphabet Σ is a set of formal symbols. A priori, these symbols
do not bear any relation to each other (such as order). A finite word of length
k is a concatenated sequence a1 · a2 · . . . · ak where ai ∈ Σ. An empty word is
denoted by the symbol ǫ.

Remark 1. In the following sections, we only deal with finite alphabet and

finite-length words.

The set of all words over an alphabet Σ is denoted by Σ∗. One can think
of Σ∗ as the free monoid generated by elements of Σ, with ǫ as the identity,
and concatenation as the binary operation. Using formal rules, one can de-
scribe subsets of Σ∗ which are called languages. The nomenclature reflects the
idea that letters of the alphabet make words and words make languages. For-
mal language theory deals with the study of these languages, their properties,
their representations, and computations using them. The following are three
operations central to formal languages.

1

http://arxiv.org/abs/2005.10372v1

• (Concatenation) L1 · L2 = {u · v : u ∈ L1 and v ∈ L2} denotes the set of
strings obtained by concatenating a string in L1 with a string in L2.

• (Union) L1 + L2 = L1 ∪ L2 = {w : w ∈ L1 or w ∈ L2} denotes the union
of L1 and L2.

• (Kleene star) L∗ = ∪k≥0L
k where Lk is the k times repeated concatenation

of L. By definition, L0 = {ǫ}. One can think of L∗ as the smallest
set containing ǫ and L that is closed under concatenation, or as the free
monoid generated by the elements of L.

3 Regular Expressions and Regular Languages.

In general, a language may be infinite, in which case it is necessary to look for a
finite representation of it. Expressions offer one such way to represent a certain
class of languages. Given an alphabet Σ, an expression is a finite-length string
of characters that uses symbols from Σ and operators to describe the language.
For notation, if e is an expression, then L(e) denotes the language represented by
e. Of the many equivalent ways to formally describe regular expressions, we opt
for the one preferred by most introductory references for formal language theory.

The following are the constant expressions.

• ∅ denotes the empty set.

• ai denotes the singleton set containing ai (a character in the alphabet Σ).

One can define the three operations of concatenation, union, and Kleene star
for the expressions analogously. Note that ∅∗ = {ǫ} by the definition of Kleene
star.

Definition 1 (Regular Expression). The set of regular expressions is the small-

est set closed under concatenation, union, and Kleene star that contains the

constant expressions. An expression is said to be regular if it belongs to the set

of regular expressions.

The expressions used for pattern matching in command line shells are exactly
these regular expressions (sometimes with additional operators such as those to
match with the beginning or the end of a line). The priority of operation is
first given to Kleene star, followed by union, then by concatenation. Therefore,
a + b · c∗ means a + (b · (c∗)). The following examples demonstrate the use of
expressions to represent languages.

Example 1. Let Σ = {a, b, c}. The language L ⊂ Σ∗ consisting of words with

at least one a can be represented by the expression (a+ b+ c)∗ · a · (a+ b+ c)∗,
and the language L′ ⊂ Σ∗ consisting of words that do not contain any a can be

represented by (b+ c)∗.

2

S
0start S1

a

b,c

b

a,c

Figure 1: A DFA accepting the language described in Example 1. S0 is the
initial state (as indicated by the transition from ”start”) and the only final
state (as indicated by the double-circle). Starting with S0, we remain in S0 on
reading b or c, and move to S1 on reading an a. We remain in S1 on reading a

or c, and move to S0 on reading a b. The word is accepted if and only if we are
in S0 when the word ends.

Example 2. Let Σ = {a, b, c}. Let L′′ be the set of strings w ∈ Σ∗ such that for

every a occurring in w, there is at least one b occurring to the right of it. For a

word w in L′′, if a does not occur in w, then it belongs to the language represented

by (b+ c)∗. Otherwise, a occurs in w, and so w can be written as u · b · v where

u ∈ Σ∗ contains at least one a, and v ∈ Σ∗ does not contain an a. Hence, L′′

can be represented by the expression (b+c)∗+(a+b+c)∗ ·a·(a+b+c)∗ ·b·(b+c)∗.

Expressions are used to represent languages as they are concise and simple
to give as input to computers. In order to check if a given string w matches the
expression e, that is, w ∈ L(e), the computer needs to allocate some bounded
memory based on the expression (independent of the length of the word), and
then the membership can be checked in time that is linear in the length of
the word. The model of computation simulated for this process is called a
deterministic finite automaton (DFA). Informally, a DFA is a nonempty set of
states Q, of which exactly one is an initial state and zero or more are final
states, together with a transition function δ : Q×Σ → Q. DFAs also represent
languages, and a word is said to belong to the language of a given DFA if
successive application of the transition function on reading the letters of the
word map the initial state to one of the final states. Continuing Example 1, the
DFA representing L needs only two states as shown in Figure 1.

In 1956, Kleene proved the equivalence of the set of languages represented
by regular expressions and the set of languages recognized by a DFA. We use
this equivalence to define regular languages.

Definition 2 (Regular Languages). L ⊂ Σ∗ is regular if and only if it can be

represented by a regular expression.

In order to show that the definition is meaningful, we give an example of
a language that is not regular. As Σ∗ is a countably infinite set, its power
set is uncountable. If one shows that there are only countably many regular
expressions, the result is immediate. The reader is left to fill in the details while
we take a constructive approach.

Example 3. Let Σ = {a}. Let L be the set of strings w ∈ Σ∗ such that the

length of w is a power of 2. Let us show that L is not regular. For the sake

3

of contradiction, suppose there is a regular expression e that represents L. As

the set L is infinite, the Kleene star operation must be used somewhere in the

expression. The expression can be decomposed as e = e′+(eP ·(eQ)∗ ·eR), where
eP , eQ, and eR are non-empty and eQ is not equal to {ǫ}. Let w = (ap)·(aq)·(ar)
be such that ap ∈ L(eP), aq ∈ L(e∗Q), and ar ∈ L(eR). As L(e∗Q) is infinite,

we can chose q > 0. By definition of Kleene star, for all n ∈ N, anq ∈ L(e∗q).
Hence, ap+nq+r ∈ L(eP · (eQ)∗ · eR) ⊂ L(e). Therefore, for q 6= 0 and for some

p and r, (p + r + nq) is a power of 2 for all n ∈ N. We have produced an

arithmetic progression in the set of powers of 2. Elementary number theory tells

us that there is no arithmetic progression in the set of powers of 2. Hence there

is a contradiction.

In order to prove irregularity using only the expressions, one needs to work
combinatorially. This becomes involved when the alphabet is not singleton, and
the language does not have such a simple structure. In such cases, distinguishing
extensions provide an alternative.

Definition 3 (Distinguishing Extension). Given a language L ⊂ Σ∗, and a pair

of strings x and y in Σ∗, a distinguishing extension is a string z ∈ Σ∗ such that

exactly one of the two strings xz or yz is a member of L.

The distinguishing extensions partition Σ∗ into equivalence classes that de-
scribe certain properties of the language. For regular languages, we have the
following.

Theorem 1 (Myhill–Nerode). Let x ≡L y if there is no distinguishing extension

for x and y with respect to L. Then L is regular if and only if ≡L induces finitely

many equivalence classes.

Theorem 1 is a strong and useful characterization of regular languages and
provides a systematic way to deal with regularity testing. Other alternatives are
the pumping lemma, Parikh’s theorem, and tests based on the closure properties
. The following examples show the application of Theorem 1.

Example 4. Let Σ = {a, b} and let |w| denote the length of a word w. Let L

be the set of all strings w ∈ Σ∗ with length of the form 5k + 3, that is, |w| ≡ 3
mod 5. Given u, v ∈ Σ∗ such that m ≡ |u| 6≡ |v| mod 5 and 0 ≤ m < 4, let
w = a8−m. Notice that |u·w| = m+8−m ≡ 3 mod 5 while |v·w| 6≡ m+8−m ≡ 3
mod 5. Hence w distinguishes u and v. Also, if |u| ≡ |v| mod 5, then there

is no distinguishing string and hence u ≡L v. This implies that, ≡L induces

exactly five equivalence classes, partitioning Σ∗ into the classes based on the

length of a string modulo five, which is to say that, given a string w, it must

be equivalent to a, a2, a3, a4, or a5 under ≡L. Therefore, by Theorem 1, L is

regular.

Example 5. Let Σ = {a} and let L be the set of all strings w ∈ Σ∗ with

length equal to a Fibonacci number. Let F (i) be the ith Fibonacci number. Let

A = {aF (3k) : k ∈ N;F (k) > 1}. For two distinct elements x = aF (3i) and

4

y = aF (3j) of A with i > j, z = aF (3i−1) is a distinguishing extension as xz ∈ L

and yz 6∈ L, by the definition of Fibonacci numbers. Hence no two elements of

A can belong to the same equivalence class, and by Theorem 1, we have that L

is not regular.

Not only does Theorem 1 put forward a rigorous test of regularity, but it also
brings out the algebraic character of formal language theory. The concept of
distinguishing extensions was further developed by M. P. Schützenberger in his
seminal paper on star-free languages, and by Krohn and Rhodes in their work
on an algebraic theory of machines. One can appreciate the parallels between
algebra and computation—the spirit of formalism, the affection for abstraction,
and the strive for elegance. Encompassing logic and proof theory, combinatorics
and computation complexity, the domain of the intersection of the two subjects
also provides the following proof of infinitude of primes.

4 A Class of Regular Languages.

In order to prove the infinitude of primes, we look at a particular class of lan-
guages. Consider the alphabet Σ = {a, b}. Let |w|α denote the number of
occurrences of the character α in the string w, and set ξ(w) = |w|a − |w|b. For
n ∈ Z

+, let

Ln = {w ∈ Σ∗ : ξ(w) is divisible by n}.

Proposition 1. For all n ∈ Z
+, the language Ln is regular.

Proof. Similar to Example 3, given u, v ∈ Σ∗, let m ≡ ξ(u) 6≡ ξ(v) mod n

where 0 ≤ m < n. The string an−m distinguishes u from v. Indeed, note that
ξ is additive, which is to say that ξ(u · v) = ξ(u) + ξ(v). Now, ξ(uan−m) =
ξ(u) + ξ(an−m) ≡ m + n−m ≡ 0 mod n, which implies that uan−m ∈ Ln. A
similar calculation shows that van−m 6∈ Ln. If ξ(u) ≡ ξ(v) mod n, then there
is no distinguishing extension. Therefore, ≡Ln

induces exactly n equivalence
classes, that is, any word w ∈ Σ∗ is equivalent to one of the elements of the set
{ai : 0 ≤ i < n}. By Theorem 1, Ln is regular.

Let P ⊂ N be the set of primes. Let

L =
⋃

p∈P

Lp. (1)

Proposition 2. L = {w ∈ Σ∗ : ξ(w) 6= ±1}.

Proof. By definition, for every integer other than +1 and −1, there exists a
prime number dividing it, and there is no prime number dividing +1 or −1. For
w ∈ Σ∗, if ξ(w) 6= ±1, then some p ∈ P divides ξ(w) and if ξ(w) = ±1, then no
prime in P divides ξ(w). Therefore w ∈ ∪p∈PLp if and only if ξ(w) 6= ±1.

Proposition 3. L is not regular.

5

Proof. Consider the set A = {a3k : k ∈ N}. For x = a3i and y = a3j in A

with i > j, the string z = b3j+1 distinguishes the two as ξ(xz) = ξ(a3ib3j+1) =
3(i − j) − 1 ≥ 2 which implies xz ∈ L, whereas ξ(yz) = ξ(a3jb3j+1) = −1 so
yz 6∈ L. Therefore, no two elements of the infinite set A belong to the same
equivalence class. By Theorem 1, L is not regular.

5 Infinitude of Primes.

By the definition of regular expressions, the union of two regular languages is
regular, and hence regularity is preserved under finite union. For the sake of
contradiction, suppose there are only finitely many primes; then we have L

as a finite union of regular languages Lp making L regular. This contradicts
Proposition 3. Hence we have shown that there must be infinitely many prime
numbers. A motivated reader may now assume the infinitude of primes and
prove that the language of words of prime length is not regular.

References

[1] Furstenberg, H. (1955). On the infinitude of primes. Amer. Math. Monthly.
62(5): 353.

[2] Hopcroft, J., Motwani, R., Ullman, J. D. (2001). Introduction to Automata

Theory, Languages, and Computation, 2nd ed. Boston: Addison-Wesley.

[3] Kleene, S. C. (1956). Representation of events in nerve nets and finite au-
tomata. In: Shannon, C., McCarthy, J., eds. Automata Studies. Princeton,
NJ: Princeton Univ. Press, pp. 3–42.

[4] Kozen, D. C. (2006). Theory of Computation. London: Springer-Verlag.

[5] Krohn, K., Rhodes, J. (1965). Algebraic theory of machines. I. Prime de-
composition theorem for finite semigroups and machines. Trans. Amer.

Math. Soc. 116: 450–464.

[6] Myhill, J. (1957). Finite automata and the representation of events. Tech-
nical Report WADC TR-57-624, Dayton, OH: Wright Patterson Air Force
Base.

[7] Nerode, A. (1958). Linear automaton transformations. Proc. Amer. Math.

Soc. 9: 541–544.

[8] Parikh, R. (1966). On context-free languages Journal of the ACM. 13: 570–
581.

[9] Sakarovitch, J. (2009). Elements of Automata Theory. (Thomas, R., trans.)
Cambridge: Cambridge Univ. Press.

6

[10] Salomaa, A. (1985). Computations and Automata. Encyclopedia of Math-
ematics and Its Applications, Vol. 25. Cambridge: Cambridge Univ. Press.

[11] Schützenberger, M. P. (1955-1956). Une théorie algébrique du codage.
Séminaire Dubreil. Algébre et Théorie des Nombres 9: 1–24.

[12] Sipser, M. (2012). Introduction to the Theory of Computation, 3rd ed.
Boston: Cengage Learning.

7

	1 Introduction.
	2 Words and Languages.
	3 Regular Expressions and Regular Languages.
	4 A Class of Regular Languages.
	5 Infinitude of Primes.

