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THE MAHLER CONJECTURE IN TWO DIMENSIONS VIA THE

PROBABILISTIC METHOD

MATTHEW C. H. TOINTON

Abstract. The Mahler volume is, intuitively speaking, a measure of how “round” a centrally
symmetric convex body is. In one direction this intuition is given weight by a result of Santaló,
who in the 1940s showed that the Mahler volume is maximized, in a given dimension, by the unit
sphere and its linear images, and only these. A counterpart to this result in the opposite direction
is proposed by a conjecture, formulated by Kurt Mahler in the 1930s and still open in dimensions
4 and greater, asserting that the Mahler volume should be minimized by a cuboid. In this article
we present a seemingly new proof of the 2-dimensional case of this conjecture via the probabilistic
method. The central idea is to show that either deleting a random pair of edges from a centrally
symmetric convex polygon, or deleting a random pair of vertices, reduces the Mahler volume with
positive probability.

1. Introduction

A convex body A ⊂ R
d is a compact convex set with non-empty interior; it is said to be centrally

symmetric if x ∈ A precisely when −x ∈ A. This article concerns a long-standing and seemingly
difficult question in convex geometry—the Mahler conjecture—that attempts to give a rigorous
version of the intuitively reasonable statement that cubes and octahedra are the “least round”
centrally symmetric convex bodies.

Given a centrally symmetric convex body A ⊂ R
d, the polar body A◦ ⊂ R

d is defined by

A◦ = {x ∈ R
d : 〈x, a〉 ≤ 1 for all a ∈ A}.

The Mahler volume M(A) of A is then defined to be

M(A) := vol(A) vol(A◦).

Here, of course, vol(A) means the volume of A (or, more formally, its Lebesgue measure). Note
that the Mahler volume is invariant under invertible linear transformations of Rd, since if T is such
a transformation then

(1.1) T (A)◦ = (T ∗)−1(A◦).

The Mahler volume can be thought of as measuring how “round” A is; the Mahler conjecture seeks
to justify this line of thinking by showing that Euclidean balls and their linear images maximize
the Mahler volume, whereas cubes and cross-polytopes and their linear images minimize it.

Write Bd for the unit Euclidean ball in R
d, write Qd = [−1, 1]d for the standard centred cube,

and write Od = {x ∈ R
d : ‖x‖1 ≤ 1} for the standard cross-polytope. Note that Od = (Qd)◦ and
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Qd = (Od)◦, so that M(Qd) = M(Od). Precisely, then, the Mahler conjecture states that for any
centrally symmetric convex body A ⊂ R

d we have M(Qd) ≤ M(A) ≤ M(Bd).
The second of these inequalities was proved by Santaló [11] in the 1940s, having been previously

proved by Blaschke [2] in the cases d = 2, 3. The Mahler conjecture thus reduces to the lower
bound, and in fact for the remainder of this article we refer to the lower bound only as the “Mahler
conjecture”.

Conjecture (Mahler [9]). Let A ⊂ R
d be a centrally symmetric convex body. Then

M(A) ≥ M(Qd).

The d = 2 case of this conjecture was proved by Mahler [8]. Iriyeh and Shibata [4] have very
recently released a proof the d = 3 case. The conjecture seems to be open for d ≥ 4 [13], although
there are some partial results. For example, the conjecture is known to hold for certain specific
classes of convex body (see [7], for example), and the weaker inequality M(A) ≥ (π/4)d−1M(Qd)
has been shown by Kuperberg [6] to hold in full generality. Moreover, it is known that the cube
is a local minimizer of the Mahler volume [10], and more generally that so-called Hanner polytopes
(which have the same Mahler volume as the cube) are local minimizers [5]. For more information on
progress on the Mahler conjecture the reader may consult the expository article of Tao contained
in [13], or the dissertation [3] of Henze, which also gives a detailed account of Mahler’s proof of the
d = 2 case and a sketch proof of the upper bound M(A) ≤ M(Bd).

In proving the d = 2 case, Mahler actually proved the following theorem (see [3, Lemma 2.9]).

Theorem 1 (Mahler). Let n > 2, and let A be a centrally symmetric convex polygon with 2n edges.
Then there exists a centrally symmetric polygon A′ with 2(n− 1) edges such that M(A′) < M(A).

This is sufficient since by limiting arguments we may always assume that the convex body A in
the Mahler conjecture is a polytope, and any centrally symmetric quadrilateral is a linear image of
Q2.

The purpose of this article is to present a new and, we hope, entertaining proof of Theorem 1,
via a somewhat different method from that used by Mahler. In fact, we give a slight refinement of
Theorem 1, which we now describe.

We may view a centrally symmetric convex polytope A in R
d as the region bounded by a finite set

H of hyperplanes, with central symmetry in particular implying that H ∈ H if and only if −H ∈ H;
let us call the minimal such H the hyperplane presentation of A. Note that if the number of pairs
of hyperplanes is greater than d then there is at least one way to remove a pair of hyperplanes from
the presentation in such a way that the remaining hyperplanes still define a centrally symmetric
convex polytope. Alternatively, we may view a centrally symmetric convex polytope A in R

d as the
convex hull of a finite set P of points, with central symmetry in particular implying that x ∈ P if
and only if −x ∈ P; let us call the minimal such P the vertex presentation of A. Note that if the
number of pairs of points is greater than d then there is at least one way to remove a pair of points
from the presentation in such a way that the remaining points still define a centrally symmetric
convex polytope.

Our refinement of Theorem 1 is then as follows.

Theorem 2. Let n > 2, and let A be a centrally symmetric convex polygon with 2n edges. Then
there is either a way to remove an opposite pair of lines from the hyperplane presentation A, or a
way to remove an opposite pair of points from the vertex presentation of A, in such a way that the
Mahler volume decreases.
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One of the most interesting aspects of our proof of Theorem 2 is that it uses the so-called
probabilistic method. The probabilistic method is a powerful tool, most often associated with com-
binatorics, that can be used to prove the existence of a certain mathematical object with certain
given properties. The crucial insight of the probabilistic method is that in order to show that it is
possible for a given object to have certain properties, it is sufficient to show that if the object is
generated at random according to some probability distribution then it has the required properties
with positive probability. The reader may consult the book [1] of Alon and Spencer for a more
thorough description of the method and of its rich history and numerous applications.

Acknowledgements. I am grateful to two anonymous referees for careful readings of an earlier
version of this article and a number of suggestions that have significantly improved the exposition.

2. Outline of the argument

Given a centrally symmetric convex polytope A in R
d we write V (A) for the set of vertices of A,

and F (A) for the set of facets of A, which is to say the set of faces of A of dimension d− 1. In the
two-dimensional setting we write E(A) instead of F (A) to emphasize that facets are simply edges.

Each s ∈ F (A) lies within a hyperplane in R
d appearing in the hyperplane presentation of A.

Thus, there exists a unit vector u(s) ∈ R
d that is perpendicular to s, and some real number c(s) > 0

such that s ⊂ {x ∈ R
d : 〈x, u(s)〉 = c(s)}, and we have

(2.1) A = {x ∈ R
d : 〈x, u(s)〉 ≤ c(s) for all s ∈ F (A)}.

It follows that A◦ is a centrally symmetric convex polytope in R
d, and the set V (A◦) of vertices of

A◦ is precisely {v◦(s) : s ∈ F (A)}, where for each s ∈ F (A) we define the point v◦(s) ∈ R
d via

(2.2) v◦(s) = u(s)/c(s).

For each vertex v ∈ V (A◦) we denote by e◦(v) the facet of A that gave rise to v; thus v = v◦(e◦(v)).
This notation is illustrated in Figure 1 for the two-dimensional case.

Throughout our proof of Theorem 2 we consider two types of parallelogram formed from the
vertices of a given centrally symmetric convex polygon A, which we call type-1 parallelograms and
type-2 parallelograms. We define the type-1 parallelogram based at the edge e ∈ E(A), written

0

s = e◦(x)

s′ = e◦(x′)

c(s)

c(s′)

A

0

x = v◦(s)

x′ = v◦(s′)

A◦

Figure 1. Illustration of the vertex and facet notation in two dimensions.
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e

−e

Type 1

P1(e)

x

−x

P2(x)

Type 2

Figure 2. The two types of parallelogram.

P1(e), to be the convex hull of the edges ±e. We define the type-2 parallelogram based at the vertex
x ∈ V (A), written P2(x), to be the convex hull of the four vertices adjacent to the vertices ±x.
Note that the definition of a type-2 parallelogram is degenerate when the ambient polygon is itself
a parallelogram. These definitions are illustrated in Figure 2.

The first stage of our argument is to show that the type-1 parallelograms in a centrally symmetric
convex polygon are smaller on average than the type-2 parallelograms, as follows.

Proposition 2.1. Let A be a centrally symmetric convex polygon in R
2 with at least 6 sides. Then

(2.3)
∑

s∈E(A)

area(P1(s)) ≤
∑

x∈V (A)

area(P2(x)),

with equality if and only A has exactly 6 sides.

The second stage of our argument shows how to pass from a certain comparison of type-1 par-
allelograms in A with type-2 parallelograms in A◦ to the conclusion required by Theorem 2, as
follows.

Proposition 2.2. Let A be a centrally symmetric convex polygon in R
2 with at least 6 sides, and

let s ∈ E(A). Let As = {x ∈ R
d : 〈x, u(s′)〉 ≤ c(s′) for s′ ∈ E(A)\{±s}} be the set obtained from A

by removing ±s from E(A) in the presentation (2.1). Suppose that

(2.4)
area(P1(s))

area(A)
≤

area(P2(v
◦(s)))

area(A◦)
.

Then M(As) < M(A).

We prove these results in the next section using elementary geometry. For now, let us see how
they combine to imply Theorem 2.

Proof of Theorem 2. It is not difficult to check that if A is a centrally symmetric convex body in
R
d then (A◦)◦ = A (see [12, Proposition 1.1], for example). In the case d = 2, note also that A and

A◦ are each centrally symmetric polygons with the same number of edges, and removing a pair of
edges from the hyperplane presentation of one corresponds to removing a pair of vertices from the
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vertex presentation of the other. In proving Theorem 2, therefore, we may interchange A and A◦

without loss of generality. In particular, we may assume that

Es∈E(A)
area(P1(s))

area(A)
≤ Et∈E(A◦)

area(P1(t))

area(A◦)
.

Combining this with Proposition 2.1 implies that

Es∈E(A)
area(P1(s))

area(A)
≤ Es∈E(A)

area(P2(v
◦(s)))

area(A◦)
,

and so—and this is where we apply the probabilistic method—there must exist some s such that
the inequality (2.4) holds. Proposition 2.2 implies that for this s we have M(As) < M(A), and so
the theorem is proved. �

Remark. In dimension greater than 2 we would no longer be able to interchange A and A◦ in quite
the same way, since they would not in general have the same number of facets or vertices. In
three dimensions, for example, if A were the cube and A◦ the cross-polytope then interchanging
A and A◦ would increase the number of facets of A. Indeed, deleting a pair of facets from the
three-dimensional cross-polytope produces a linear image of the cube, and so the process of deleting
pairs of facets would not even necessarily terminate if we allowed interchanges.

3. The details of the argument

In this section we prove Propositions 2.1 and 2.2. Throughout, given points x1, . . . , xr ∈ R
d we

write [x1, . . . , xr] for their convex hull. Moreover, given a centrally symmetric convex polytope A,
for each x ∈ V (A) we write x+ 1 for the vertex neighbouring x in a clockwise direction, and x− 1
for the vertex neighbouring x in an anticlockwise direction. More generally, for k ∈ N we define
x+ k and x− k recursively via x+ k = (x+ (k − 1)) + 1 and x− k = (x− (k − 1))− 1. Note that
if A has 2n vertices then x+ n = −x for every x ∈ V (A).

Proof of Proposition 2.1. Equality is trivial when A has 6 sides, so we may assume it has 2n sides
with n ≥ 4 and prove that the inequality (2.3) holds and is strict.

Given a vertex x of A write H(x) for the hexagon [x − 1, x, x + 1, x + n − 1, x + n, x + n + 1].
Write e(x) ∈ E(A) for the edge [x− 1, x], and note that each of P1(e(x)) and P2(x) is a subset of
H(x). Carving P1(e(x)) out from H(x) leaves triangles T1(x) = [x, x+1, x+ n− 1] and −T1(x), as
illustrated in Figure 3. Carving out P2(x) from H(x) leaves the triangles T2(x) = [x − 1, x, x + 1]
and −T2(x), as also illustrated in Figure 3. The desired conclusion is therefore equivalent to the
statement that

∑

x∈V (A)

area(T1(x)) >
∑

x∈V (A)

area(T2(x)).

However, since we are summing over all vertices x we may replace x by x− 1 on the left-hand side,
meaning that this is equivalent to the statement that

∑

x∈V (A)

area(T1(x− 1)) >
∑

x∈V (A)

area(T2(x)).

In fact, we claim that this inequality holds not just in the sum, but term by term, in the sense that

(3.1) area(T1(x− 1)) > area(T2(x))
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x− 1

e(x)

x
x+ 1

x+ n− 1 x+ n

x+ n+ 1

T1(x)

P1(e(x))

x− 1x
x+ 1

x+ n− 1 x+ n

x+ n+ 1

T2(x)

P2(x)

Figure 3. The two parallelograms from the proof of Proposition 2.1 carved out of
the same hexagon.

for every x ∈ V (A). To see that this is true, note that the triangles T1(x− 1) and T2(x) may both
be thought of as having the edge [x − 1, x] as a base. Without loss of generality, we may assume
that this edge is horizontal and that the body A lies above it, as illustrated in Figure 4.

Now by symmetry the edge [x+n− 1, x+n] is horizontal, and so by convexity none of the edges
lying on the clockwise path from [x−1, x] to [x+n−1, x+n] can be horizontal or downward sloping
from x + j to x + j + 1. The vertical components of x, x + 1, . . . , x + n − 1 are therefore strictly
increasing. Since n ≥ 4, we may therefore conclude that x+n− 2 has a vertical component strictly
greater than that of x+1. The triangle T1(x− 1) therefore has a greater height than T2(x) and the
same base, as illustrated in Figure 4, and so (3.1) holds and the lemma is proved. �

The proof of Proposition 2.2 is also relatively straightforward, but we make it easier to follow
with two simple lemmas.

Lemma 3.1. Let A be a centrally symmetric convex polygon in R
2. Suppose that s ∈ E(A) is

horizontal, let s′ ∈ E(A) be an edge adjacent to s, and write z for the intersection of the vertical

x− 1x

x+ 1

x+ n− 2

x+ n− 1 x+ n

T1(x− 1)

T2(x)

Figure 4. Illustration of the triangles appearing in the inequality (3.1).
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α

c(s)

c(s′)

s

s′

z

0

θ 0

v◦(s)

v◦(s′)β

γ θ

Figure 5. Illustration of the hypotheses of Lemma 3.1.

axis and the line in R
2 containing s′, as illustrated in Figure 5. Write α for the vertical distance

from z to s, write β for the vertical distance from v◦(s) to v◦(s′), and write γ for the vertical distance
from v◦(s′) to the origin. Then

α

c(s)
=

β

γ
.

Proof. We have ‖v◦(s′)‖ = 1/c(s′) by (2.2), and by the equality of the angles labelled θ in Figure
5 we may compare similar triangles to conclude that ‖v◦(s′)‖/γ = (α + c(s))/c(s′). Combining
these gives α + c(s) = 1/γ. Another instance of (2.2) implies that β + γ = 1/c(s). These last two
equalities give αγ = 1− c(s)γ = βc(s), which gives the desired result. �

An immediate consequence of Lemma 3.1 is the following fact.

Lemma 3.2. Let A be a centrally symmetric convex polygon in R
2, and suppose that s ∈ E(A) is

horizontal and that the lines containing the edges adjacent to the edge s intersect on the vertical
axis. Then the vertices adjacent to v◦(s) lie on a common horizontal line.

Proof of Proposition 2.2. It follows from (1.1) that applying an invertible linear transormation to
A not affect the value of either side of the inequality (2.4). We are therefore free to apply such a
transformation to A. In particular, by rotating we may assume that s is horizontal, and by applying
a suitable shear we may assume that the intersection z of the lines containing the edges adjacent
to s lies on the vertical axis, as illustrated in Figure 6. Note that the edge [v◦(s)− 1, v◦(s) + 1] of
P2(v

◦(s)) is also horizontal by Lemma 3.2. Having applied these transformations, we write β for
the vertical distance from v◦(s) to P2(v

◦(s)), and γ for the distance from v◦(s) to the origin minus
β, as in Lemma 3.1. This notation is also recorded in Figure 6.

The body As is obtained from the body A by removing the edges ±s and extending their neigh-
bouring edges to the points ±z, which will form a pair of vertices of As. The body (As)

◦ is obtained
from the body A◦ by removing the vertices ±v◦(s) and taking the convex hull of the remaining
vertices. Again, the reader may find it helpful to refer to Figure 6.



8 MATTHEW C. H. TOINTON

s

−s

A A◦

P1(s)

z

−z

0

v◦(s)− 1

v◦(s)

v◦(s) + 1

−v◦(s)

β

γ

0

P2(v
◦(s))

Figure 6. Illustration of the proof of Proposition 2.2.

This all implies that

area((As)
◦) = area(A◦)−

β

2γ
area(P2(v

◦(s))),

and combined with Lemma 3.1 implies that

area(As) = area(A) +
β

2γ
area(P1(s)).

Multiplying these equations together, we see that

M(As) = M(A) +
β

2γ

(

area(A◦) area(P1(s))− area(A) area(P2(v
◦(s)))

)

−
β2

4γ2
area(P1(s)) area(P2(v

◦(s))).

Since the last term of this expression is always negative, the proposition follows from (2.4). �
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