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EQUIDISTRIBUTION OF ZEROS OF POLYNOMIALS

K. SOUNDARARAJAN

Abstract. A classical result of Erdős and Turán states that if a monic polynomial has
small size on the unit circle and its constant coefficient is not too small, then its zeros
cluster near the unit circle and become equidistributed in angle. Using Fourier analysis we
give a short and self-contained proof of this result.

1. Introduction.

Any set of N complex numbers may be viewed as the zero set of a polynomial of degree
N . If, however, we start with a polynomial that “arises naturally”—for example, think of
polynomials with coefficients ±1—then the zeros will tend to be “evenly distributed near
the unit circle.” In [6], Erdős and Turán proved the beautiful result that if the size of a
monic polynomial on the unit circle is small, and its constant term is not too small, then
its zeros cluster around the unit circle and become equally distributed in sectors. We shall
make precise both the hypothesis and conclusion of this statement later, but we hope Figure
1 gives an impression of the phenomenon. The Erdős-Turán result was subsequently refined
by Ganelius [7] and Mignotte [11], and in this note we give a short and self-contained proof,
obtaining as a bonus a modest improvement of the previous results.
Let

P (z) =

N∏

j=1

(z − αj) = zN + aN−1z
N−1 + · · ·+ a0

be a polynomial of degree N , and write the roots αj as αj = ρje
iθj . It may be helpful to

think first of situations where the roots are not equidistributed near the unit circle. For
example, one could have the polynomial (z − 1)N =

∑N
j=0(−1)j

(
N
j

)
zj , where all the roots

are concentrated at one point z = 1 and clearly not spread out evenly. This polynomial has
large coefficients, and on the unit circle it attains a maximum size of 2N . A different type of
example is the polynomial zN − 1/2N . Here the polynomial takes only small values on the
unit circle, but all the roots are on the circle with radius 1/2. A more extreme version of
this example is the polynomial zN .
These examples indicate that it would be necessary to assume that the size of P on the

unit circle must be small, and that the constant term a0 should not be too small in order to
establish equidistribution of zeros. Henceforth we will assume that a0 6= 0 so that the roots
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Figure 1. Left: Zeros of a polynomial of degree 500 formed with the decimal
digits of π: 3z500 + z499 + 4z498 + · · · . Right: Zeros of the Fekete polynomial∑162

j=0(
j

163
)zj where the coefficients are given by the Legendre symbol ( j

163
) =

±1 for 1 ≤ j ≤ 162.

αj are all nonzero. One convenient measure of the size of coefficients is the quantity

H(P ) = max
|z|=1

|P (z)|√
|a0|

.

The triangle inequality gives, with the convention aN = 1,

H(P ) ≤ 1√
|a0|

N∑

j=0

|aj|.

On the other hand, Parseval’s formula gives

H(P )2 = max
|z|=1

|P (z)|2
|a0|

≥ 1

|a0|
1

2π

∫ 2π

0

|P (eiθ)|2dθ =
1

|a0|

N∑

j=0

|aj |2.

Combining our upper bound for H(P ) with the Cauchy–Schwarz inequality we find that

(1)
1

|a0|

N∑

j=0

|aj|2 ≤ H(P )2 ≤ N

|a0|

N∑

j=0

|aj |2.

Assuming that H(P ) is small is therefore equivalent to assuming that the coefficients of P
are small and that the constant coefficient a0 is not too small. Here by “small” we mean
that H(P ) is not exponentially large in N ; for example, one could think of a condition like
H(P ) ≤ eǫN for suitably small ǫ. In fact, we shall formulate the Erdős–Turán theorem in
terms of the slightly more refined quantity

h(P ) =
1

2π

∫ 2π

0

log+
|P (eiθ)|√

|a0|
dθ, where log+ x = max(0, log x).
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Since H(P ) ≥ (|a0|2 + |aN |2)/|a0| = (|a0|2 + 1)/|a0| ≥ 1 in view of the lower bound in (1),
the quantity h(P ) satisfies

h(P ) ≤ logmax
|z|=1

|P (z)|√
|a0|

= logH(P ),

so that the assumption that h(P ) is small is weaker than the assumption that H(P ) is small.
We now turn to the question of how to quantify the idea that zeros are equidistributed

around the unit circle. We do this in two stages, first discussing the magnitude of zeros, and
then discussing the spacings of their arguments. To treat the magnitude of the zeros (recall
αj = ρje

iθj), we define

M(P ) =

N∏

j=1

max
(
ρj ,

1

ρj

)
.

As an easy consequence of Jensen’s formula from complex analysis, we shall establish the
following upper bound for M(P ) in terms of h(P ).

Theorem 1. With notations as above,

M(P ) ≤ exp(2h(P )).

To gain a sense of this result, suppose we knew the upper bound M(P ) ≤ exp(ǫ2N). Then
it would follow that at most ǫN zeros can lie outside the band e−ǫ ≤ |z| ≤ eǫ. Or, in other
words, most of the zeros will lie inside a narrow band around the unit circle.
The more difficult part of the Erdős–Turán theorem concerns the equidistribution of the

angles θj . Given an arc I on the unit circle, let N(I;P ) denote the number of zeros αj with
eiθj lying on this arc. If the angles θj are equidistributed, then we may expect N(I;P ) to be
roughly N

2π
times the length of the arc I (which we will denote by |I|). A convenient way to

measure equidistribution is the discrepancy, which is defined as

D(P ) = max
I

∣∣∣N(I;P )− |I|
2π

N
∣∣∣.

In other words, the discrepancy measures the worst case deviation of the actual count of the
number of angles lying on a given arc from the number that one would expect if the angles
were equidistributed. A bound D(P ) ≤ ǫN , for suitably small ǫ, would indicate that the
angles θj are evenly distributed.

Theorem 2. With notations as above,

(2) D(P ) ≤ 8

π

√
Nh(P ).

Theorems 1 and 2 together establish that if h(P ) is small compared to N , then the zeros
of P cluster around the unit circle and become equidistributed in angle. For example, if the
coefficients of P are always ±1, then since H(P ) ≤ N + 1, it follows from Theorem 1 that

M(P ) ≤ (N + 1)2, and from Theorem 2 that D(P ) ≤ 8
π

√
N log(N + 1).
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Erdős and Turán [6] first established a version of (2), with the constant 8/π replaced
by 16 and with logH(P ) instead of h(P ). Ganelius [7] showed an estimate like (2), again
with logH(P ) instead of h(P ), but with a better constant than Erdős and Turán, namely

with
√

2π/k = 2.5619 . . . (with k = 1/12 − 1/32 + 1/52 − · · · = 0.9159 . . . denoting the
Catalan constant) instead of 16. Mignotte [11] refined Ganelius’s result, replacing logH(P )
by the sharper h(P ). Note that our theorem sharpens the Ganelius–Mignotte result slightly,

since 8/π = 2.5464 . . . is a little smaller than
√

2π/k. There is some scope to improve the
constant 8/π (especially in the situation where h(P ) is small compared to N), but Amoroso
and Mignotte [2] have produced examples showing that the constant in (2) must be at least√
2.
There is a vast literature surrounding zeros of polynomials, and we give a few references to

related work. For the distribution of zeros of polynomials with 0, 1 coefficients see [13]; for
work on “Fekete polynomials” where the coefficients equal the Legendre symbol (mod p),
see [4]; for work on random polynomials with coefficients drawn independently from various
distributions (where Theorems 1 and 2 will apply with high probability), see [9]; for two
recent variants on the Erdős–Turán theorem, see [15] and [5]. While the Erdős–Turán result
applies to all polynomials with complex coefficients, in number theory greater interest is
attached to irreducible polynomials with integer coefficients. If P (x) = aNx

N+· · ·+a0 ∈ Z[x]
is a polynomial with roots αj , then a central object here is the Mahler measure which is

M(P ) = |aN |
∏N

j=1max(1, |αj|). A beautiful result of Bilu [3] states that if P is an irreducible

polynomial in Z[x] and M(P ) ≤ (1 + ǫ)N is not large, then the zeros of P cluster near the
unit circle and are equidistributed; for a gentle exposition, see [8]. Any discussion of zeros of
polynomials would be incomplete without a mention of Lehmer’s outstanding open problem
that the smallest value of M(P ) that is larger than 1 is M(L) = 1.1762 . . ., attained for
Lehmer’s polynomial L(x) = x10+x9−x7−x6−x5−x4−x3+x+1; for a recent comprehensive
survey, see [14]. Finally, our proof uses ideas from Fourier analysis; two lovely books in this
area are [10] and [12].

2. Jensen’s formula and the proof of Theorem 1.

We begin with the easier result, Theorem 1, which follows from Jensen’s formula. If f is
holomorphic in a domain containing the unit disk with f(0) 6= 0, then Jensen’s formula (see
5.3.1 of Ahlfors [1]) states that

1

2π

∫ 2π

0

log |f(eiθ)|dθ = log |f(0)|+
∑

j

log
1

|zj |
,

where the sum is over the zeros zj of f lying inside the unit disk.
Applying Jensen’s formula, and since P (0) = a0, we find

1

2π

∫ 2π

0

log
|P (eiθ)|√

|a0|
dθ =

1

2
log |a0|+

∑

ρj<1

log
1

ρj
.
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But |a0| =
∏N

j=1 ρj , and so the above also equals

−1

2
log |a0|+

∑

ρj>1

log ρj .

Adding these two expressions,

2
( 1

2π

∫ 2π

0

log
|P (eiθ)|√

|a0|
dθ
)
=

∑

j

logmax
( 1

ρj
, ρj

)

and, since the left side above is clearly at most 2h(P ), Theorem 1 follows.

3. An observation of Schur.

The rest of this article is devoted to proving Theorem 2. We begin with an observation
attributed to Schur (see [2]) that will allow us to restrict attention to polynomials with all
zeros on the unit circle.

Lemma 3. Let P (z) =
∏N

j=1(z−αj) with αj = ρje
iθj be as above, and define the polynomial

Q by Q(z) =
∏N

j=1(z − eiθj). Then for any z with |z| = 1, we have

|P (z)|√
|a0|

≥ |Q(z)|,

so that h(P ) ≥ h(Q).

Proof. Observe that for any z with |z| = 1,
∣∣∣ z
√
ρj

−√
ρje

iθj

∣∣∣
2

=
1

ρj
+ ρj − 2Re ze−iθj ≥ 2− 2Re ze−iθj = |z − eiθj |2,

and so

|P (z)|√
|a0|

=
N∏

j=1

∣∣∣ z
√
ρj

−√
ρje

iθj
∣∣∣ ≥

N∏

j=1

|z − eiθj | = |Q(z)|,

proving the lemma. �

Since the discrepancies D(P ) and D(Q) are the same, and since h(P ) ≥ h(Q), it is enough
to establish Theorem 2 for the polynomial Q and then the corresponding bound for the
polynomial P would follow. In other words, we may assume from now on that all zeros of P
lie on the unit circle, so that ρj = 1 for all j.

4. Smoothed sums over the zeros.

Let P (z) =
∏N

j=1(z − eiθj ) be a polynomial of degree N with all zeros on the unit circle.

The following lemma establishes a crucial link between the power sums of the zeros (by which

we mean
∑N

j=1 e
ikθj for integers k) and the size of P on the unit circle.
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Lemma 4. Let P (z) =
∏N

j=1(z − eiθj) be as above. For any integer k 6= 0 we have

(3)
N∑

j=1

eikθj = −|k|
π

∫ 2π

0

eikθ log |P (eiθ)|dθ.

Consequently, for any integer k 6= 0,

(4)
∣∣∣

N∑

j=1

eikθj
∣∣∣ ≤ 4|k|h(P ).

The link between power sums of the roots and the size of P should not come as a surprise—
Newton’s identities connecting power sums of the roots with the coefficients of a polynomial
are a different version of such a link. For our purposes the identity (3) will, however, be much

more useful than Newton’s identities. For a general polynomial P (z) =
∏N

j=1(z−ρje
iθj ), the

relation (3) may be replaced by

N∑

j=1

min
(
ρj ,

1

ρj

)|k|

eikθj = −|k|
π

∫ 2π

0

eikθ log
|P (eiθ)|√

|a0|
dθ.

Proof of Lemma 4. For any real number φ and nonzero integer k, we shall show that

(5) eikφ = −|k|
π

∫ 2π

0

eikθ log |eiθ − eiφ|dθ,

and then (3) follows upon summing this over all φ = θj . Substituting θ = x+φ, and dividing
both sides by eikφ, we see that (5) follows from the identity

1 = −|k|
π

∫ 2π

0

eikx log |eix − 1|dx = −|k|
π

∫ 2π

0

eikx log(2 sin(x/2))dx

= −|k|
π

∫ 2π

0

cos(kx) log(2 sin(x/2))dx,(6)

where the last step follows upon pairing x and 2π − x. Since cos is an even function, it is
enough to establish (6) in the case when k is positive. Integration by parts shows that the
right-hand side of (6) equals

−1

π

∫ 2π

0

log(2 sin(x/2))d sin(kx) =
1

2π

∫ 2π

0

sin kx

sin(x/2)
cos(x/2)dx.

Since
sin kx

sin(x/2)
=

eikx − e−ikx

eix/2 − e−ix/2
= 2

k∑

j=1

cos
(2j − 1

2
x
)
,

it follows that

1

2π

∫ 2π

0

sin kx

sin(x/2)
cos(x/2)dx =

k∑

j=1

1

π

∫ 2π

0

cos
(2j − 1

2
x
)
cos(x/2)dx = 1,



EQUIDISTRIBUTION OF ZEROS OF POLYNOMIALS 7

which proves (6), and therefore also (5) and (3).
The triangle inequality gives

∣∣∣
N∑

j=1

eikθj
∣∣∣ ≤ |k|

π

∫ 2π

0

∣∣∣ log |P (eiθ)|
∣∣∣dθ.

Now

1

2π

∫ 2π

0

∣∣∣ log |P (eiθ)|
∣∣∣dθ =

1

2π

∫ 2π

0

(
2 log+ |P (eiθ)| − log |P (eiθ)|

)
dθ

= 2h(P ),(7)

upon recalling the definition of h(P ), and upon noting that Jensen’s formula gives∫ 2π

0
log |P (eiθ)|dθ = 0. This establishes (4). �

The reader familiar with Weyl’s equidistribution theorem (see Chapter 3 of [10] for an
introduction) will recognize at once the significance of Lemma 4. The estimate (4) shows

that if h(P ) is known to be small compared to N , then so are the power sums
∑N

j=1 e
ikθj , at

least for small values of k. Weyl’s criterion then gives the equidistribution mod 2π of the
angles θj . Our goal now is to flesh out this argument; the general procedure is standard, but
a few refinements are introduced to obtain Theorem 2 in its clean form.
Let I be an arc on the unit circle, and let I(θ) denote the indicator function for the arc

I, which is 2π-periodic. Thus, I(θ) = 1 if eiθ ∈ I and 0 otherwise. We are interested in the
number of zeros lying on the arc I:

N(I;P ) =
N∑

j=1

I(θj).

Since I is periodic, it is tempting to invoke its Fourier expansion. This is a little delicate,
since the function I is discontinuous and its Fourier series is not absolutely convergent.
Instead we will work with “smoothed sums over zeros”

∑N
j=1 g(θj) where g is a 2π-periodic

function with better behaved Fourier series, and then choose g to be a suitable approximation
to the indicator function I.

Proposition 5. Let P (z) =
∏N

j=1(z−eiθj ) be as above. Let g(θ) be a 2π-periodic continuous
function such that

∞∑

k=−∞

|kĝ(k)| < ∞,

where

ĝ(k) =
1

2π

∫ 2π

0

g(θ)e−ikθdθ
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denotes the Fourier coefficients of g. Put

G(θ) =
∞∑

k=−∞

|k|ĝ(k)eikθ and G = max
θ

|G(θ)|.

Then ∣∣∣
N∑

j=1

g(θj)−
N

2π

∫ 2π

0

g(θ)dθ
∣∣∣ ≤ 4Gh(P ).

If the 2π-periodic function g is ℓ-times continuously differentiable, then integration by
parts ℓ times gives (for k 6= 0)

|ĝ(k)| =
∣∣∣ 1

(ik)ℓ
1

2π

∫ 2π

0

g(ℓ)(θ)e−ikθdθ
∣∣∣ ≤ 1

|k|ℓ max
θ∈[0,2π)

|g(ℓ)(θ)|.

Thus, for example, any thrice continuously differentiable function will meet the hypothesis
of Proposition 5 and there is a rich supply of such functions.

Proof of Proposition 5. Using the Fourier expansion of g, we obtain
N∑

j=1

g(θj)−
N

2π

∫ 2π

0

g(θ)dθ =
∑

k 6=0

ĝ(k)

N∑

j=1

eikθj ,

and so by Lemma 4 this equals

−
∑

k 6=0

ĝ(k)
|k|
π

∫ 2π

0

eikθ log |P (eiθ)|dθ = −1

π

∫ 2π

0

log |P (eiθ)|
∑

k 6=0

|k|ĝ(k)eikθdθ.

From the definition of G, in magnitude the above is bounded by

G

π

∫ 2π

0

∣∣∣ log |P (eiθ)|
∣∣∣dθ =

G

π

∫ 2π

0

(
2 log+ |P (eiθ)| − log |P (eiθ)|

)
dθ

= 4Gh(P ),

upon recalling (7). �

To pave the way for the proof of Theorem 2 in the next section, we work out the bound
of Proposition 5 for a particular class of functions g. The idea is that one can construct
functions g meeting the hypothesis of Proposition 5 by convolving the indicator function I
with suitable nice functions K. In the next section, we shall make a specific choice for K so
that the resulting function g approximates the indicator function I well.

Lemma 6. Let I be an arc on the unit circle, and let I(θ) denote its indicator function as

above. Let K be a 2π-periodic continuous function that is always nonnegative, and whose

Fourier coefficients K̂(n) are all nonnegative, with
∑

n∈Z K̂(n) < ∞. Let g be the convolution

of I and K. Thus,

g(θ) =
1

2π

∫ 2π

0

I(α)K(θ − α)dα.
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Then, g satisfies the hypothesis of Proposition 5, and in the notation used there,

G = max
θ

∣∣∣
∞∑

k=−∞

|k|ĝ(k)eikθ
∣∣∣ ≤ 2

π2
K(0).

Proof. Suppose that I is the arc from eiα to eiβ, so that for k 6= 0 we have

Î(k) = 1

2π

∫ β

α

e−ikydy =
e−ikα − e−ikβ

2πik
.

The Fourier coefficients of the convolution of two functions are the products of the Fourier

coefficients of those functions; thus ĝ(k) = Î(k)K̂(k). Therefore |kĝ(k)| = |kÎ(k)|K̂(k) ≤
K̂(k)/π so that

∞∑

k=−∞

|kĝ(k)| ≤ 1

π

∞∑

k=−∞

K̂(k) =
1

π
K(0) < ∞.

This shows that the hypothesis
∑

k |kĝ(k)| < ∞ in Proposition 5 is satisfied, and moreover
establishes the bound G ≤ K(0)/π.
To obtain the more precise bound for G claimed in our lemma, note that

G(θ) =
∞∑

k=−∞

|k|ĝ(k)eikθ =
∞∑

k=−∞

|k|K̂(k)Î(k)eikθ

=
1

2πi

∞∑

k=−∞
k 6=0

sgn(k)K̂(k)(eik(θ−α) − eik(θ−β)).

Pairing the terms k and −k together, and using K̂(k) = K̂(−k) (since K and K̂ are real
valued), we find

|G(θ)| = 1

2π

∣∣∣
∞∑

k=−∞
k 6=0

sgn(k)K̂(k)
(
sin(k(θ − α)− sin(k(θ − β)

)∣∣∣

≤ 2max
φ

1

2π

∞∑

k=−∞

K̂(k)| sin(kφ)|.

Therefore

G = max
θ

|G(θ)| ≤ 2max
φ

1

2π

∞∑

k=−∞

K̂(k)| sin(kφ)|.

A simple calculation gives the Fourier expansion

| sin x| = 2

π
− 4

π

∞∑

ℓ=1

cos(2ℓx)

4ℓ2 − 1
,
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and so we obtain

1

2π

∞∑

k=−∞

K̂(k)| sin(kφ)| = 1

2π

∞∑

k=−∞

K̂(k)
(2
π
− 4

π

∞∑

ℓ=1

cos(2kℓφ)

4ℓ2 − 1

)

=
1

π2
K(0)− 2

π2

∞∑

ℓ=1

K(2ℓφ)

4ℓ2 − 1
≤ 1

π2
K(0),

proving the lemma. �

5. Proof of Theorem 2.

Let I be an arc on the unit circle. To establish (2) it is enough to show that

(8) N(I;P )− |I|
2π

N ≤ 8

π

√
Nh(P ).

Once the upper bound is in place, we may use that

N(I;P )− |I|N/(2π) = |Ic|N/(2π)−N(Ic;P ),

where Ic denotes the arc complementary to I, to obtain a corresponding lower bound, and
thus complete the proof of Theorem 2.
Let g be a 2π-periodic function that majorizes the indicator function of I; that is, g(θ) ≥ 0

always, and g(θ) ≥ 1 if eiθ ∈ I. Then

N(I;P )−|I|
2π

N ≤
N∑

j=1

g(θj)−
|I|
2π

N

=
( N∑

j=1

g(θj)−
N

2π

∫ 2π

0

g(θ)dθ
)
+N

( 1

2π

∫ 2π

0

g(θ)dθ − |I|
2π

)
.(9)

Now the strategy is to find a nice function g for which we can use Proposition 5 and Lemma
6 to bound the first term above, while also keeping g close to the indicator function of I so
that the second term is also small.
Given π > δ > 0, let Iδ denote the arc obtained by widening I on either side by δ. (If

|I| + 2δ > 2π then take Iδ to be all of the unit circle.) Let us denote by Iδ the indicator
function of the widened arc Iδ. Let Kδ denote the 2π-periodic function, given by

Kδ(θ) =
2π

δ2
max(δ − |θ|, 0)

for θ ∈ (−π, π]. The function Kδ is closely related to the Fejer kernel (see, for example,

Chapter 2 of [10]), and its Fourier coefficients are easily computed: K̂δ(0) = 1, and for k 6= 0

K̂δ(k) =
(sin(kδ/2)

kδ/2

)2

.



EQUIDISTRIBUTION OF ZEROS OF POLYNOMIALS 11

Take g to be the convolution of Iδ and Kδ; thus g(θ) =
1
2π

∫ 2π

0
Iδ(α)Kδ(θ − α)dα. From the

definition of Kδ, and noting that 1
2π

∫ 2π

0
Kδ(α)dα = 1, we see easily that the function g(θ) is

always nonnegative, and it equals 1 if eiθ ∈ I. We may think of g as the indicator function I
“smeared out” over a δ neighborhood of the arc I. If we make δ smaller, our approximation
g is closer to I and the second term on the right in (9) will become smaller, but, on the
other hand, the function g will become “less smooth” and the first term on the right in (9)
will become larger. The idea is to choose δ optimally so as to balance these two effects.
Note that

ĝ(0) =
1

2π

∫ 2π

0

g(θ)dθ =
|Iδ|
2π

=
|I|+ 2δ

2π
,

unless Iδ is all of the unit circle in which case ĝ(0) = 1. Since g majorizes the indicator
function of I, we may use (9), and from our evaluation of ĝ(0) it follows that the second
term in the right side of (9) is at most Nδ/π.
To bound the first term in (9), we appeal to Proposition 5 and Lemma 6. They show that

∣∣∣
N∑

j=1

g(θj)−
N

2π

∫ 2π

0

g(θ)dθ
∣∣∣ ≤ 4h(P )max

θ

∣∣∣
∞∑

k=−∞

|k|ĝ(k)eikθ
∣∣∣

≤ 8

π2
Kδ(0)h(P ) =

16

πδ
h(P ).

We conclude that
N∑

j=1

g(θj)−
|I|
2π

N ≤ 16

πδ
h(P ) +

δ

π
N,

and choosing δ = 4
√
h(P )/N , the estimate (8) follows. The proof of Theorem 2 is now

complete.

We conclude by looking back at the proofs, and pointing out the key steps. Theorem 1,
showing that the roots accumulate near the unit circle, was a simple application of Jensen’s
formula. The more difficult Theorem 2, which gives the equidistribution of the angles of
the roots, began with an observation of Schur allowing us to restrict attention to the case
when all roots lie on the unit circle. Then the key identity is contained in Lemma 2, which
connects power sums of the roots with the size of the polynomial on the unit circle. Lemma
2 allows us to understand smooth sums over the angles of the roots, as in Proposition 1. The
last step is the passage from smooth sums over angles to identifying angles lying on arcs,
and this is carried out in Lemma 3 together with the work of this section.
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[5] Erdélyi, T. (2008). An improvement of the Erdős–Turán theorem on the distribution of zeros of poly-

nomials. C. R. Math. Acad. Sci. Paris 346(5-6): 267–270.
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