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Abstract

Passengers board a fully booked airplane in order. The first passenger picks one of the seats

at random. Each subsequent passenger takes his or her assigned seat if available, otherwise

takes one of the remaining seats at random. It is well known that the last passenger obtains

her own seat with probability 1/2. We study the distribution of the number of incorrectly

seated passengers, and we also discuss the case of several absent-minded passengers.
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1 Introduction.

The following problem is posed and solved in [3, p. 177], and [10, p. 35]. An airplane with
n ≥ 2 passengers is fully booked. Passengers are boarding in chronological order, according to the
numbers on their boarding passes. The first passenger loses his boarding pass and picks one of the
seats at random. Each subsequent passenger takes his or her seat if available, otherwise takes one
of the remaining seats at random. The following intuitive argument shows that the last passenger
will sit in her own seat number n with probability 1/2. The first absent-minded passenger chooses
either his assigned seat number 1, or seat number n, or one of the seats numbered 2, . . . , n − 1.
In the first case, the last passenger will sit in her seat, and in the second case she has to sit down
in seat number 1. In each of the remaining cases, the role of the absent-minded passenger will be
taken over by the first passenger who finds his seat occupied. In the end, everything boils down
to a toss of a fair coin that decides whether one of the passengers chooses seat number 1 or seat
number n. The same argument shows that the last but one passenger will sit in his assigned seat
with probability 2/3. Likewise, the probability is 3/4 for the antepenultimate passenger to sit in
his assigned seat, etc. In this article we study the distribution of the number of incorrectly seated
passengers in the more general case where the first k passengers are absent-minded.

We find it both useful and informative to first focus on the case k = 1. Even though the results
are then basically known (see [3, 8, 9, 10]), we take a partly new approach based on probabilistic
arguments. As long as the first seat is not occupied, there is, at each stage of the boarding
procedure, exactly one incorrectly seated passenger in the remaining seats. The (suitably defined)
conditional distribution of the number of this seat is uniform; see Lemma 2.2. This fact easily
implies a certain independence property (Proposition 2.3) and then in turn an explicit formula for
the distribution of the number of incorrectly seated passengers and a central limit theorem. In
Section 3 we extend these arguments to the case where the first k passengers are absent-minded.
While there is still an independence property (Theorem 3.2), the full distribution of the number
of incorrectly seated passengers seems to be difficult to obtain. Still we have been able to derive
explicit formulae for mean and variance along with a central limit theorem. Except for the mean,
these results are new.
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2 One absent-minded passenger.

First we describe our model in a neutral, more abstract language. Consider n balls numbered
1, . . . , n, to be placed in chronological order in a box with n numbered pits. The first ball is placed
at random. The second ball is placed in pit 2, provided this pit is empty. Otherwise it is placed at
random in one of the remaining n− 1 pits. This procedure continues until the nth ball is placed.

In this section, we derive the distribution of the random number Wn (say) of balls that do
not meet their assigned pit. Moreover, we show that the limit distribution of Wn, when suitably
normalized, is standard normal as n → ∞. Most parts of this article are based on elementary
probability theory as can be found in numerous textbooks (see, e.g., [4] or [6]).

In what follows, let X1 denote the number of the pit taken by the first ball. By definition, X1

is uniformly distributed on {1, . . . , n}. For each i ∈ {2, . . . , n − 1}, consider the state of the box
after the placement of the ith ball. If pit 1 is occupied, then each subsequently placed ball matches
the number of its assigned pit. In this case we define Xi := 1. If pit 1 is empty, then each of the
pits 2, . . . , i is occupied, as well as exactly one further pit having number j (say), where j > i. In
this case we put Xi := j. Finally, we define Xn := 1.

To illustrate the notation, we consider the case n = 9. If the first ball takes pit 4, the fourth
ball takes pit 8, and ball 8 takes pit 1, then the balls numbered 2,3,5,6,7, and 9 find their assigned
pits, and we have X1 = X2 = X3 = 4, X4 = X5 = X6 = X7 = 8, and X8 = X9 = 1.

If we denote by Nj the number of the pit taken by the jth ball, where j = 1, . . . , n, then
(N1, . . . , Nn) is a random permutation of (1, . . . , n), and we have Xi = 1 if min(N1, . . . , Ni) = 1
and Xi = max(N1, . . . , Ni) otherwise. In other words, Xi = 1 if and only if pit 1 is occupied after
the placement of the ith ball. Otherwise, Xi is the largest number of the occupied pits at that
stage. Thus, for example, the permutation (2,1,3,4) of (1,2,3,4) arises if the first ball takes pit 2
and the second ball (that finds its pit occupied) chooses pit 1. Clearly, balls 3 and 4 then find their
assigned pits.

Table 1 shows the feasible permutations (N1, . . . , Nn) for the case n = 4, together with their
respective probabilities. For each permutation, the last column displays the number of “incorrectly
placed balls,” i.e., balls that do not meet their assigned pit.

N1 N2 N3 N4 prob W4

1 2 3 4 1/4 0
2 1 3 4 1/12 2
2 3 1 4 1/24 3
2 3 4 1 1/24 4
2 4 3 1 1/12 3
3 2 1 4 1/8 2
3 2 4 1 1/8 3
4 2 3 1 1/4 2

Table 1: The feasible permutations (N1, N2, N3, N4) and their probabilities.

The model has the following simple but crucial symmetry property.

Lemma 2.1. Let i ∈ {1, . . . , n}. Then Xi is uniformly distributed on {1, i+1, . . . , n}.
Proof. We use induction on i. For i = 1 and i = n the assertion is true. Assume that it holds for
some i ∈ {2, . . . , n− 1} and let j ∈ {1, i+2, . . . , n}. Conditioning on Xi and noting that Xi+1 = j
implies either Xi = j or Xi = i+ 1, we obtain

P(Xi+1 = j) = P(Xi = j)P(Xi+1 = j|Xi = j)

+ P(Xi = i+ 1)P(Xi+1 = j|Xi = i+ 1)

=
1

n− i+ 1
· 1 + 1

n− i+ 1
· 1

n− i

=
1

n− i
,

and the proof is finished.
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For i ∈ {1, . . . , n}, let Ai denote the event that the ith ball is placed in its assigned pit. Since
Ai = {Xi−1 6= i} for i ≥ 2, Lemma 2.1 yields

P(Ai) =
n− i+ 1

n− i+ 2
, i = 2, . . . , n; (1)

see also [9]. Thus, in particular, P(An) = 1/2, which is the solution to the initial problem given in
[3] and [10].

Incidentally, it follows by induction that there are 2n−1 feasible permutations. In fact, the last
ball can only meet either its assigned pit or pit 1, and each of these cases gives rise to the same
number of feasible permutations (N1, . . . , Nn). Indeed, if Nn = n, then the admissible assigments
of balls 1, . . . , n− 1 to pits 1, . . . , n− 1 coincide with the feasible permutations in the case of n− 1
pits. On the other hand, if Nn = 1, then we are in the situation of n − 1 balls and n − 1 pits
numbered n, 2, . . . , n − 1. Here, pit n is assigned to the first ball to be placed, and this ball is
“absent-minded”; see Table 1 for the case n = 4. Hence, the case Nn = 1 also gives rise to 2n−1

feasible permutations.
Writing 1A for the indicator function of an event A, let

Cn :=

n
∑

i=1

1Ai

denote the number of correctly placed balls. Since P(A1) = 1/n, (1) gives

E(Cn) =
1

n
+

n
∑

i=2

(

1− 1

n− i+ 2

)

=
1

n
+

n−2
∑

j=0

(

1− 1

j + 2

)

,

so that

E(Cn) = n−Hn−1, (2)

where Hm := 1 + 1/2 + · · ·+ 1/m, m ∈ N, is the mth harmonic number.
Below we will show that the events A2, . . . , An are independent, a result that might come as a

surprise. To do so we need the following lemma.

Lemma 2.2. Suppose that r ∈ {1, . . . , n−2} and 2 ≤ i1 < · · · < ir ≤ n−1. Let i ∈ {ir+1, . . . , n}.
Then, under the condition Ai1 ∩ · · · ∩ Air , the random variable Xi has a uniform distribution on

{1, i+ 1, . . . , n}.
Proof. For ease of notation we prove the result in the case r = 1, the general case being analogous.
Let m := i1. We need to show that P(Xi = j|Am) = 1/(n− i+ 1) for each i ∈ {m+ 1, . . . , n} and
each j ∈ {1, i+ 1, . . . , n}. We proceed as in the proof of Lemma 2.1 and use induction on i.

Let j ∈ {1,m+ 2, . . . , n}. By the definition of our model and Lemma 2.1,

P(Xm+1 = j,Xm−1 6= m) = P(Xm−1 = j) + P(Xm−1 = m+ 1, Xm+1 = j)

=
1

n−m+ 2
+ P(Xm−1 = m+ 1) · 1

n−m

=
1

n−m+ 2
· n−m+ 1

n−m
.

Using Lemma 2.1 again, we hence obtain

P(Xm+1 = j|Am) =
P(Xm+1 = j,Xm−1 6= m)

P(Xm−1 6= m)
=

1

n−m
.

Assume now the assertion is true for each i ∈ {m+1, . . . , n−1} and take some j ∈ {1, i+2, . . . , n}.
Then

P(Xi+1 = j|Am) = P(Xi = j|Am) + P(Xi+1 = j,Xi = i+ 1|Am)

=
1

n− i+ 1
+ P(Xi+1 = j|{Xi = i+ 1} ∩ Am)P(Xi = i|Am)

=
1

n− i+ 1
+

1

n− i
· 1

n− i+ 1
=

1

n− i
.

This finishes the induction and hence the proof.
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The following independence property can be found (with a different proof) as Theorem 3.5 in
[7].

Theorem 2.3. The events A2, . . . , An are independent.

Proof. Let r ∈ {1, . . . , n− 1} and 2 ≤ i1 < · · · < ir ≤ n− 1. By Lemma 2.2,

P(Ai1 ∩ · · · ∩ Air ) = P(Air |Ai1 ∩ · · · ∩ Air−1
)P(Ai1 ∩ · · · ∩ Air−1

)

=
n− ir + 1

n− ir + 2
· P(Ai1 ∩ · · · ∩ Air−1

).

Repeating this reasoning r − 1 times and using Lemma 2.1 in the final step, we obtain

P(Ai1 ∩ · · · ∩ Air ) =
n− ir + 1

n− ir + 2
· · · n− i1 + 1

n− i1 + 2
,

as required.

Writing Ac for the complement of an event A, let

Wn := n− Cn =

n
∑

i=1

1Ac

i

denote the number of balls that do not meet their assigned pit. From Table 1, the probability
distribution of W4 is given by

P(W4 = 0) =
6

24
, P(W4 = 2) =

11

24
, P(W4 = 3) =

6

24
, P(W4 = 4) =

1

24
.

Here, the numbers 6 =
[

4

1

]

, 11 =
[

4

2

]

, 6 =
[

4

3

]

, and 1 =
[

4

4

]

figuring in the respective numerators
are Stirling numbers of the first kind. For general n ∈ N and j ∈ {1, . . . , n}, the Stirling number
[

n
j

]

is the number of permutations of {1, . . . , n} having exactly j cycles; see, e.g., [5, Section 6.1].

Notice that
[

n
1

]

= (n − 1)!. The next result shows that the occurrence of the Stirling numbers in
the special case n = 4 is not a lucky coincidence; see [7, Theorem 3.6].

Theorem 2.4. The distribution of Wn is given by

P(Wn = 0) =

[

n
1

]

n!
, P(Wn = j) =

[

n
j

]

n!
, j = 2, . . . , n.

Proof. For i ∈ {2, . . . , n} define Bi := An−i+2. Then

Wn = Rn − 1A1
, (3)

where Rn := 1 +
∑n

i=2
1Bi

. By Theorem 2.3, the events B2, . . . , Bn are independent, and we have
P(Bi) = 1/i, i ∈ {2, . . . , n}. We thus have, for each n ≥ 1 and each j ∈ {2, . . . , n},

P(Rn+1 = j) = P({Rn+1 = j} ∩Bc
n+1) + P({Rn+1 = j} ∩Bn+1)

=
n

n+ 1
P(Rn = j) +

1

n+ 1
P(Rn = j − 1). (4)

Hence, the generating function fn(z) := E(zRn), z ∈ [0, 1], of Rn satisfies the recursion

fn+1(z) =
n+ z

n+ 1
fn(z).

Since f1(z) = z, it follows that

fn(z) =
z(z + 1) · · · (z + n− 1)

n!
, z ∈ [0, 1].
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Up to the factor 1/n! this expression is the generating function of the Stirling numbers of the first
kind (see [5, p. 252]), so that

P(Rn = j) =

[

n
j

]

n!
, j = 1, . . . , n. (5)

Since, by (3), Rn = Wn on the event Ac
1 andWn = 0 on the event A1 (since A1 = A1∩A2∩· · ·∩An),

the result follows.

Formula (5) gives the distribution of the number of cycles in a purely random permutation
of {1, 2, . . . , n} (see, e.g., [2, Section 6.2]), as well as the distribution of the number of records in
a sequence of independent and identically distributed continuous random variables (see, e.g., [2,
Section 9.5]). In both cases, the reason is a recursion of the type (4).

Figure 1 shows a bar chart of the distribution of W100. The most probable value (= 0.2112)
for the number of incorrectly seated passengers is attained at ℓ = 5. Since |Wn − Rn| ≤ 1,
the Lindeberg–Feller central limit theorem and Sluzki’s lemma show that the limit distribution
of (Wn − logn)/

√
logn as n → ∞ is standard normal; see, e.g., [1, p. 383], and, in particular,

Example 27.3.

.05

.10

.15

.20

0 1 2 3 4 5 6 7 8 9 10 11 13 14

P(W100 = ℓ)

ℓ

Figure 1: Bar chart of the distribution of W100.

3 Several absent-minded passengers.

Generalizing the problem discussed in [3], [9], and [10], we now consider the case when the first
k passengers are absent-minded, where k ∈ {1, . . . , n − 1}. If these passengers take their seats
completely at random and the subsequent passengers board the airplane according to the rule
stated in the introduction, what is the probability that the last passenger finds his or her seat
available? We will see that the answer is 1/(k + 1). Moreover, we will compute the expectation
and variance of and a central limit theorem for the number of incorrectly seated passengers.

In a more neutral formulation, suppose again that we have n balls to be allocated to n pits
in a box. Let k ∈ {1, . . . , n − 1}, and assume that the first k balls are distributed at random,
each subset of size k of all n pits having the same probability of being chosen. The (k + 1)st ball
takes pit k + 1 provided that pit is available. Otherwise it chooses its position at random. This
procedure continues until the last ball is placed.

Given i ∈ {k, . . . , n}, we define a random subset Zi of {1, . . . , k} ∪ {i+1, . . . , n} as follows.
Consider the state of the box after the placement of the ith ball. If i = k, let Zi be the set of pits
occupied by the “absent-minded balls.” If i > k, then all pits from {k+1, . . . , i} are occupied, and
we write Zi for the set of all other occupied pits. Then Zi has k elements, i.e., we have |Zi| = k.

To illustrate the new notation, consider the case n = 10, k = 3 and the placement

ball no. 1 2 3 4 5 6 7 8 9 10
pit no. 7 3 9 4 5 6 1 8 10 2

.

Thus, ball 1 takes pit 7, ball 2 chooses pit 3, ball 3 meets pit 9, etc. In this case, we have
Z3 = Z4 = Z5 = Z6 = {3, 7, 9}, Z7 = Z8 = {1, 3, 9}, Z9 = {1, 3, 10}, and Z10 = {1, 2, 3}.
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Let Pi denote the system of all sets A ⊂ {1, . . . , k} ∪ {i + 1, . . . , n} with |A| = k. The next
result generalizes Lemma 2.1.

Lemma 3.1. Let i ∈ {k, . . . , n}. Then the distribution of Zi is uniform on Pi.

Proof. We proceed by induction on i. For i = k the assertion holds. Suppose it is true for some
i ∈ {k, . . . , n − 1} and let A ∈ Pi+1. Since {Zi = A} ⊂ {Zi+1 = A} and Zi 6= Zi+1 if and only if
i+ 1 ∈ Zi, we have

P(Zi+1 = A) = P(Zi+1 = A = Zi) + P(Zi+1 = A,Zi 6= A)

= P(Zi = A) +
∑

j∈A

P(Zi = (A \ {j}) ∪ {i+ 1}) · 1

n− i

=

(

n− i+ k

k

)−1(

1 +
k

n− i

)

=

(

n− i+ k

k

)−1
n− i + k

n− i

=

(

n− (i+ 1) + k

k

)−1

.

This finishes the induction and hence the proof.

For i ∈ {1, . . . , n} again let Ai denote the event that the ith ball is placed in its pit. Clearly,

P(Ai) =
1

n
, i = 1, . . . , k. (6)

Since Ai = {i /∈ Zi−1} for i ≥ k + 1, Lemma 3.1 entails

P(Ai) =
n− i+ 1

n− i+ k + 1
, i = k + 1, . . . , n, (7)

and in particular P(An) = 1/(k + 1).
We note in passing that there are k!(k+1)n−k feasible permutations; see [7, Theorem 3.9]. The

proof uses the so-called canonical cycle representation of a permutation. An alternative argument
can be based on induction, similarly to the case k = 1 discussed in the paragraph after equation
(1).

A conceptual proof of Lemma 3.1 uses the fact that, after the placement of the ith ball, where
i > k, each of the places k+1, . . . , i is occupied. Therefore, the other k occupied places are among
the n− i+ k places numbered 1, . . . , k and i+ 1, . . . , n. By symmetry, each choice of k (occupied)
places from these n− i+ k places has the same probability. In particular, the probability that the
(i+ 1)st ball finds its assigned pit empty equals (n− i)/(n− i + k).

Writing Wn,k =
∑n

i=1
1Ac

i
for the number of balls that do not meet their assigned pit, we now

have

E(Wn,k) =

n
∑

i=1

P(Ac
i ) = k

(

1− 1

n

)

+

n
∑

i=k+1

k

n− i+ k + 1

= k (1 +Hn−1 −Hk) .

The following result can be proved with the help of an analog of Lemma 2.2. We leave this to
the reader.

Theorem 3.2. The events Ak+1, . . . , An are independent.

We now derive a formula for the variance of Wn,k. Since Wn,k + Cn,k = n, where Cn,k =
∑n

i=1
1Ai

is the number of balls that meet their assigned pit, we have V(Wn,k) = V(Cn,k). Now,
Cn,k is a sum of indicator random variables, whence

V(Cn,k) =

n
∑

i=1

P(Ai) (1− P(Ai)) + 2
∑

1≤i<j≤n

(P(Ai ∩ Aj)− P(Ai)P(Aj)) . (8)

6



Using (6) and (7), the single sum equals

k(n− 1)

n2
+ k(Hn −Hk)− k2

n
∑

ℓ=k+1

1

ℓ2
.

In view of Theorem 3.2, only pairs (i, j) satisfying either 1 ≤ i < j ≤ k or 1 ≤ i ≤ k < j ≤ n
make a nonzero contribution to the double sum figuring in (8). Since P(Ai ∩ Aj) = 1/(n(n− 1))
if 1 ≤ i < j ≤ k, it follows that

∑

1≤i<j≤k

(P(Ai ∩ Aj)− P(Ai)P(Aj)) =

(

k

2

)

1

n2(n− 1)
.

If i ∈ {1, . . . , k} and j ∈ {k+1, . . . , n}, we write P(Ai∩Aj) = P(Ai)P(Aj |Ai). Under the condition
Ai, the situation is that of a box containing n− 1 pits numbered 1, . . . , i− 1, i+ 1, . . . , n, and the
balls numbered 1, . . . , i−1, i+1, . . . , k are distributed at random. By relabelling each ball j, where
j > i, with j − 1, we can use formula (7) with n, k, and i replaced with n − 1, k − 1, and j − 1,
respectively, and obtain

P(Ai ∩ Aj) =
1

n
· n− j + 1

n− j + k
, j = k + 1, . . . , n.

Consequently,

k
∑

i=1

n
∑

j=k+1

(P(Ai∩Aj)− P(Ai)P(Aj)) =
k
∑

i=1

n
∑

j=k+1

1

n

(

n−j+1

n−j+k
− n−j+1

n−j+k+1

)

,

and some algebra shows that this expression equals k
n
(Hn−1 −Hk−1 − 1 + k/n). Putting every-

thing together, straightforward calculations give

V(Wn,k) = k

[

2(1−n+kn)−n2−k

n2(n− 1)
+

2

nk
+

(

1+
2

n

)

(Hn−Hk)− k

n
∑

ℓ=k+1

1

ℓ2

]

.

We have not been able to find a closed-form expression for the distribution of Wn,k if k ≥ 2.
The asymptotic distribution of Wn,k as n → ∞, however, is available. To this end, writing an ∼ bn
if an/bn → 1 as n → ∞, and using Hn ∼ logn, it follows that E(Wn,k) ∼ k logn and V(Wn,k) ∼
k logn. By the Lindeberg–Feller central limit theorem, the random variable

∑n
i=k+1

1Ac

i
, after stan-

dardization, has a standard normal limit as n → ∞ (see [1, p. 383]. Since |Wn,k−
∑n

i=k+1
1Ac

i
| ≤ k,

Sluzki’s lemma shows that the limit distribution of (Wn,k−k log n)/
√
k logn as n → ∞ is standard

normal.

Acknowledgment: The authors wish to thank Nicole Bäuerle for drawing their attention to the
article [7].
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