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Abstract

We use well-known limit theorems in probability theory to derive a

Wallis-type product formula for the gamma function. Our result immedi-

ately provides a probabilistic proof of Wallis’s product formula for π, as

well as the duplication formula for the gamma function.

In 1655, Wallis [4, Prop. 191] wrote down the following beautiful formula
for π:

π

2
=

∞
∏

n=1

(

2n

2n− 1
· 2n

2n+ 1

)

=
2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· 8
7
· · · . (1)

Ever since the formula’s discovery, various proofs of Wallis’s product formula

have been found, and each of them has its own merits. One of the more common
proofs of the formula uses a recursion derived from integrating trigonometric
functions. Another proof simply plugs in x = π/2 into Euler’s infinite product
formula

sinx

x
=

∞
∏

n=1

(

1− x2

n2π2

)

. (2)

Although this proof is perhaps the shortest one, proving the above product
formula for sine requires some amount of work.

The purpose of this note is to use well-known limit theorems in probability
theory to derive a Wallis-type product formula for the gamma function. A so-
called duplication formula for the Gamma function will easily follow from the
product formula. The Gamma function Γ : (0,∞) → R, which we only define
for positive real numbers for simplicity, is given by

Γ(α) =

∫

∞

0

e−ttα−1 dt.

A direct computation shows Γ(1/2) =
√
π, and this will let us derive (1) from

a more general product formula for the Gamma function. By integration by
parts, one can easily check that Γ(α) = (α − 1)Γ(α − 1) for any α > 1. From
this Γ(n) = (n− 1)! for all n ∈ N follows.
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The Gamma function is closely related to spheres and spherical coordinates.
For any n ∈ {2, 3, 4, . . .}, the surface area of the unit sphere

Sn−1 = {(x1, . . . , xn) ∈ Rn | x2
1 + · · ·+ x2

n = 1}

embedded in Rn is 2πn/2/Γ(n/2). Also, for any continuous f : [0,∞) → R with
∫

∞

0 |f(r)|rn−1 dr < ∞, we have

∫

Rn

f

(

√

x2
1 + · · ·+ x2

n

)

dx1 · · · dxn =
2πn/2

Γ(n/2)

∫

∞

0

f(r)rn−1 dr. (3)

For more details on the Gamma function, see [1, p. 58 and Section 2.7].
If we restrict our interest to just proving (1), then there already exist some

probabilistic proofs. A proof by Miller [2] uses the fact that for any ν ∈ N, the
function f : R → [0,∞) given by

f(t) =
Γ
(

ν+1
2

)

√
πνΓ

(

ν
2

)

(

1 +
t2

ν

)−
ν+1

2

is a probability density, i.e., it is nonnegative and has a total integral of one.
The distribution with the density f is called Student’s t-distribution with ν
degrees of freedom. Another proof by Wei, Li, and Zheng [5] derives (1) from a
version of the central limit theorem applied to certain familiar discrete random
variables.

Theorem 1. If α > 0, then

lim
k→∞

kα
(k − 1)(k − 2) · · · 1

(k − 1 + α)(k − 2 + α) · · ·α = Γ(α) (4)

and

lim
k→∞

√
πkα

(

k − 1
2

) (

k − 3
2

)

· · · 1
2

(

k − 1
2 + α

) (

k − 3
2 + α

)

· · ·
(

1
2 + α

) = Γ

(

α+
1

2

)

(5)

where k ranges over positive integers.

Proof. Consider a family X1, X2, . . . of independent standard normal random
variables. The proof is established by investigating the value of

E
(

X2
1 + · · ·+X2

n

)α

in two different ways: the first way uses well-known limit theorems while the
second way is purely computational. In fact, this value is the moment of order
α of a chi-squared distribution. However, we won’t assume any prior knowledge
of chi-squared distributions in this note.

Let us start with the approach using limit theorems. By the weak law of
large numbers we have

X2
1 + · · ·+X2

n

n
→ 1 in probability.
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Applying the continuous function f(y) = |y|α to both sides above and using
the continuous mapping theorem [3, Corollary 6.3.1 (ii)], which tells us that
convergence in probability is preserved under continuous maps, we also get

(

X2
1 + · · ·+X2

n

n

)α

→ 1 in probability.

Note that

E

(

X2
1 + · · ·+X2

n

n

)2

=
nEX4

1 + n(n− 1)(EX2
1 )

2

n2
≤ max{EX4

1 , (EX2
1 )

2}.

Similarly, for any integer p > α we have

E

(

X2
1 + · · ·+X2

n

n

)p

≤ max{EX2p
1 , . . . , (EX2

1 )
p} < ∞.

This shows that

E

((

X2
1 + · · ·+X2

n

n

)α)p/α

= E

(

X2
1 + · · ·+X2

n

n

)p

is bounded uniformly in n, and thus the family
{(

X2
1 + · · ·+X2

n

n

)α}∞

n=1

is uniformly integrable. What we used here is sometimes called the “crystal ball
condition”; see [3, p. 184]. Since any uniformly integrable sequence of random
variables that converges in probability also converges in L1, see [3, Theorem
6.6.1], we have

lim
n→∞

E

(

X2
1 + · · ·+X2

n

n

)α

= E1 = 1. (6)

Let us next directly compute E(X2
1 + · · ·+X2

n)
α by integration:

E(X2
1 + · · ·+X2

n)
α =

∫

Rn

(x2
1 + · · ·+ x2

n)
α · 1

(2π)n/2
e−(x2

1+···+x2
n
)/2 dx1 · · · dxn

=
2 · πn/2

Γ(n/2)

∫

∞

0

r2α · 1

(2π)n/2
e−r2/2 · rn−1 dr

=
1

2(n/2)−1Γ(n/2)

∫

∞

0

rn+2α−1e−r2/2 dr.

We used (3) in the second equality. Continuing our calculations, we observe
that

1

2(n/2)−1Γ(n/2)

∫

∞

0

rn+2α−1e−r2/2 dr

=
1

2(n/2)−1Γ(n/2)

∫

∞

0

(2u)(n/2)+α−1e−u du

= 2α · Γ ((n/2) + α)

Γ(n/2)
.
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Finally, we conflate the two approaches. By (6) and the previous computa-
tion, we have

lim
n→∞

(n

2

)

−α

· Γ ((n/2) + α)

Γ(n/2)
= 1.

Plug in n = 2k and n = 2k + 1. Then, using Γ(x) = (x − 1)Γ(x − 1) to
expand both the numerator and denominator of the left side, and applying
limk→∞[(k + 1

2 )/k]
α = 1, we have

lim
k→∞

k−α (k − 1 + α)(k − 2 + α) · · ·αΓ(α)
(k − 1)(k − 2) · · · 1 = 1

and

lim
k→∞

k−α

(

k − 1
2 + α

) (

k − 3
2 + α

)

· · ·
(

α+ 1
2

)

Γ
(

α+ 1
2

)

(

k − 1
2

) (

k − 3
2

)

· · · 1
2Γ

(

1
2

) = 1.

Taking the reciprocal and using Γ(1/2) =
√
π concludes the proof.

In case α is rational, we can estimate Γ(α) by a ratio of products of integers.

Corollary 1. For any positive integers p and q, we have

lim
k→∞

q · kp/q((k − 1)q)((k − 2)q) · · · q
((k − 1)q + p)((k − 2)q + p) · · · p = Γ

(

p

q

)

,

where k ranges over positive integers.

Proof. By applying (4) with α = p/q, we obtain

lim
k→∞

q · kp/q((k − 1)q)((k − 2)q) · · · q
((k − 1)q + p)((k − 2)q + p) · · · p

= lim
k→∞

kp/q · (k − 1)(k − 2) · · · 1
(

k − 1 + p
q

)(

k − 2 + p
q

)

· · · p
q

= Γ

(

p

q

)

.

The formula for Γ(1/2) leads us to Wallis’s original formula.

Corollary 2 (Wallis).

π

2
=

∞
∏

n=1

(

2n

2n− 1
· 2n

2n+ 1

)

=
2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· 8
7
· · · .

Proof. Applying Corollary 1 with p = 1 and q = 2 gives

lim
k→∞

2 ·
√
k · 2 · 4 · · · (2k − 4)(2k − 2)

1 · 3 · · · (2k − 3)(2k − 1)
= Γ

(

1

2

)

=
√
π.

Dividing both sides by
√
2 and taking the square of both sides, we have

lim
k→∞

2

1
· 2
3
· 4
3
· 4
5
· · · 2k − 2

2k − 3
· 2k − 2

2k − 1
· 2k

2k − 1
=

π

2
,

which implies the desired formula.
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Combining (4) and (5), we can provide a proof of the following.

Corollary 3 (duplication formula). For any α > 0, we have

Γ(α)Γ

(

α+
1

2

)

= 21−2α√πΓ(2α).

Proof. Multiplying (4) and (5), we have

√
πk2α

(

k − 1
2

)

(k − 1) · · · 1 · 1
2

(

k − 1
2 + α

)

(k − 1 + α) · · ·
(

α+ 1
2

)

· α → Γ(α)Γ

(

α+
1

2

)

.

By multiplying 22k to both the numerator and the denominator, we have

21−2α
√
π(2k)2α

(2k − 1)(2k − 2) · · · 1
(2k − 1 + 2α)(2k − 2 + 2α) · · · (2α) → Γ(α)Γ

(

α+
1

2

)

.

By noticing that the previous formula contains (4) with α and k replaced by 2α
and 2k, we obtain the desired formula.
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