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GENERALIZATION OF A RAMANUJAN IDENTITY

ÖRS REBÁK

Abstract. The Euler product for the Landau–Ramanujan constant could have motivated a
curious identity by Ramanujan that appears in his notebooks two times. This observation
involves a square root and the first four prime numbers of the form 4n + 3, i.e., 3, 7, 11, 19.
Berndt asks whether Ramanujan’s identity is an isolated result, or if there are other identities
of this type. With this work we would like to give a possible answer to Berndt’s question.

1. Introduction

Let B(x) denote the number of positive integers not exceeding x that can be expressed as
a sum of two squares. Landau [6], [7, pp. 641–669] in 1908 showed that

B(x) ∼ K
x√

log x
as x → ∞,

where K is a constant. Independently, Ramanujan in his first letter to Hardy [2, pp. 52 and
60–62], [3, p. 24], [5, p. xxiv] in 1913 stated the following. The number of numbers greater
than A and less than x that can be expressed as a sum of two squares is

K

∫ x

A

dt√
log t

+ θ(x),

where K = 0.764 . . . and θ(x) is very small when compared with the previous integral. This
statement also appears in Ramanujan’s second and third notebooks [8, pp. 307 and 363].

Since then the quantity K has been known as the Landau–Ramanujan constant [4, pp. 98–
104]. An exact formula for K is given by its Euler product expansion

K =
1√
2

∏

p

(

1

1 − 1/p2

)1/2

,

where p runs through the primes of the form 4n + 3. This could have motivated the following
observation that appears in Ramanujan’s notebooks [8, pp. 309 and 363] two times:

√

2

(

1 − 1

32

)(

1 − 1

72

)(

1 − 1

112

)(

1 − 1

192

)

=

(

1 +
1

7

)(

1 +
1

11

)(

1 +
1

19

)

. (1)

“It may be somewhat interesting to note,” Ramanujan wrote about (1) in one of his letters to
Hardy [3, p. 177], referring to the fact that the squared numbers on the left-hand side are the
first four prime numbers of the form 4n + 3. We examine the identity (1) that can be found
in Berndt’s book [2, p. 20] and also in the Andrews–Berndt book [1, pp. 410–411] with only a
brief discussion.
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2. Generalization of Ramanujan’s identity

Berndt [2, p. 20, Entry 6] asks whether Ramanujan’s identity in (1) is an isolated result,
or if there are other identities of this type. The result of this section is a possible answer to
Berndt’s question.

Lemma 2.1. Let n ≥ m ≥ 1 be integers, and let (ak) be a sequence of real numbers such that

ak 6= 0, 1 for all k = m, . . . , n and −1 < aℓ < 0 for an even number of ℓ ∈ {m, . . . , n} indices.

Then
√

√

√

√

n
∏

k=m

ak + 1

ak − 1
·

n
∏

k=m

(

1 − 1

a2
k

)

=
n
∏

k=m

(

1 +
1

ak

)

. (2)

Proof. Because of the condition on the elements of (ak), the expression under the square root
and the right-hand side are nonnegative. Both sides of (2) are equal to zero if and only if
ak = −1 for some k ∈ {m, . . . , n}. Suppose that ak 6= −1 for all k = m, . . . , n. Note that for
a given real number a 6= 0, ±1, we have

a + 1

a − 1
=

1 + 1
a

1 − 1
a

=

(

1 + 1
a

)2

(

1 − 1
a

) (

1 + 1
a

) =

(

1 + 1
a

)2

1 − 1
a2

. (3)

By using this observation, straightforward arithmetic gives the result. �

Henceforth we use Lemma 2.1 to deduce such identities of the form of (2), which have a
closed-form expression for the product

∏n
k=m

ak+1
ak−1 .

Theorem 2.2 (Generalization of Ramanujan’s identity). Let a ∈ (−∞, −2/3)∪(−1/2, −1/3]∪
((−1/6, ∞) \ {0, 1}) be a real number. Then

√

a + 1

a − 1

(

1 − 1

a2

)(

1 − 1

(2a + 1)2

)(

1 − 1

(3a + 2)2

)(

1 − 1

(6a + 1)2

)

=

(

1 +
1

2a + 1

)(

1 +
1

3a + 2

)(

1 +
1

6a + 1

)

. (4)

By substituting a = 3 into (4), we arrive at Ramanujan’s identity (1).

Proof. Suppose that a 6= −1/3. We can use Lemma 2.1 with (ak) = (2a + 1, 3a + 2, 6a + 1).
For the first product of (2), we find that

3
∏

k=1

ak + 1

ak − 1
=

(2a + 1) + 1

(2a + 1) − 1
· (3a + 2) + 1

(3a + 2) − 1
· (6a + 1) + 1

(6a + 1) − 1
=

(a + 1)2

a2
.

On the other hand, if we suppose that a 6= −1, by using (3), we have

a + 1

a − 1

(

1 − 1

a2

)

=

(

1 + 1
a

)2

1 − 1
a2

(

1 − 1

a2

)

=
(a + 1)2

a2
.

Since both sides of (4) are equal to zero if and only if a = −1 or a = −1/3, the proof is
complete. �
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Remark 2.3 (Alternative form). It is clear from the proof of Theorem 2.2 that the following

identity holds. Let a ∈ (−∞, −2/3)∪(−1/2, −1/3] ∪((−1/6, ∞) \ {0}) be a real number. Then

a + 1

a
·
√

(

1 − 1

(2a + 1)2

)(

1 − 1

(3a + 2)2

)(

1 − 1

(6a + 1)2

)

=

(

1 +
1

2a + 1

)(

1 +
1

3a + 2

)(

1 +
1

6a + 1

)

. (5)

We can derive similar identities by using Lemma 2.1 with the sequence (ak) = (2a + 1,
3a + 1, 6a + 5) or with (ak) = (2a + 1, 4a + 1, 4a + 3) with a suitable condition on a. By
substituting a = 1 into (5), we find that

2 ·
√

(

1 − 1

32

)(

1 − 1

52

)(

1 − 1

72

)

=

(

1 +
1

3

)(

1 +
1

5

)(

1 +
1

7

)

. (6)

We generalize (6) for further odd denominators in (9) of Theorem 3.1.

3. Identities with telescoping products

In this section we use Lemma 2.1 with appropriate (ak) sequences, for which the product
∏n

k=m
ak+1
ak−1 has a telescoping property.

Theorem 3.1. Let n and m be integers. For n ≥ m ≥ 2, we have
√

√

√

√

n(n + 1)

m(m − 1)
·

n
∏

k=m

(

1 − 1

k2

)

=
n
∏

k=m

(

1 +
1

k

)

. (7)

For n ≥ m ≥ 1, we have
√

√

√

√

2n + 1

2m − 1
·

n
∏

k=m

(

1 − 1

(2k)2

)

=
n
∏

k=m

(

1 +
1

2k

)

(8)

and
√

√

√

√

n + 1

m
·

n
∏

k=m

(

1 − 1

(2k + 1)2

)

=
n
∏

k=m

(

1 +
1

2k + 1

)

. (9)

Note that (7) gives (n + 1) /m, which appears under the square root in (9).

Proof. In order to prove (7), according to Lemma 2.1, we have to show the closed-form of a
telescoping product. We find that

n
∏

k=m

k + 1

k − 1
=

m + 1

m − 1
· m + 2

m
· m + 3

m + 1
· · · · · n − 1

n − 3
· n

n − 2
· n + 1

n − 1

=
n(n + 1)

m(m − 1)
.

The proofs of (8) and (9) are analogous. �
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Berndt’s question may have other interesting answers. It would be worth examining Lemma 2.1
further with various (ak) sequences. In the following theorem, we use (ak) =

(

k3
)

.

Theorem 3.2. Let n ≥ m ≥ 2 be integers. Then
√

√

√

√

m(m − 1) + 1

m(m − 1)
· n(n + 1)

n(n + 1) + 1
·

n
∏

k=m

(

1 − 1

k6

)

=
n
∏

k=m

(

1 +
1

k3

)

.

Proof. According to Lemma 2.1, we have to deduce the following.
n
∏

k=m

k3 + 1

k3 − 1
=

m3 + 1

(n + 1)3 + 1
·

n
∏

k=m

(k + 1)3 + 1

k3 − 1
=

m3 + 1

(n + 1)3 + 1
·

n
∏

k=m

k + 2

k − 1

=
m3 + 1

(n + 1)3 + 1
· n(n + 1)(n + 2)

(m − 1)m(m + 1)
=

m(m − 1) + 1

m(m − 1)
· n(n + 1)

n(n + 1) + 1
. �
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