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MAXIMUM PRINCIPLES FOR MATRIX-VALUED ANALYTIC

FUNCTIONS

ALBERTO A. CONDORI

Abstract. To what extent is the maximum modulus principle for scalar-
valued analytic functions valid for matrix-valued analytic functions? In re-
sponse, we discuss some maximum norm principles for such functions that do
not appear to be widely known, deduce maximum and minimum principles for
their singular values, and make some observations concerning resolvents and
matrix exponentials.

1. Introduction.

The maximum modulus principle (MMP) is a fundamental result in complex
analysis. It is often used to deduce other important results such as the fundamental
theorem of algebra, the open mapping theorem (i.e., analytic functions map open
sets to open sets), Schwarz’s lemma, the Phragmén–Lindelöff principle, etc. One
of its various formulations states that if f is a scalar-valued function, analytic on a
region Ω (i.e., a nonempty open connected subset) of the complex plane C, whose
modulus attains a local maximum in Ω, then f is constant on Ω. For a proof of the
MMP, we refer the reader to [7, Chapter 10].

Many differential equations encountered in science and engineering lead to the
consideration of matrix-valued functions, that is, functions with range in the set
Mn of n × n matrices, n > 1, with entries in C. For instance, the standard model
of an RLC circuit in electrical engineering admits the formulation x′(t) = A · x(t),
where A ∈ Mn and x is a function with values in Cn. The vector-valued solutions
x(t) = exp(tA)x0 to such an equation (with x0 ∈ Cn) depend on the matrix-
valued function t 7→ exp(tA) =

∑∞

k=0 A
ktk/k!, and the decay of these solutions is

controlled by its operator norm ‖ exp(tA)‖. As usual, ‖T ‖ = sup{‖Tv‖Cn : ‖v‖Cn =
1} is the operator norm of T ∈ Mn induced by the Euclidean norm on Cn, namely

‖v‖Cn =
(

|v1|
2 + · · ·+ |vn|

2
)1/2

when v = (v1, . . . , vn).
In linear algebra, too, matrix-valued functions arise (implicitly) in the study of

eigenvalues, i.e., the spectrum σ(A) of A ∈ Mn. After all, λ ∈ C satisfies Av = λv
for some nonzero vector v ∈ Cn if and only if the resolvent function z 7→ (A−zI)−1

has a singularity at z = λ, i.e., A − λI is not invertible. (Throughout, I = In
denotes the identity in Mn.) Since the spectrum is often insufficient for the analysis
of non-normal matrices (see [8]), focus has shifted to the study1 of the norm of the
resolvent ‖(A− zI)−1‖. For instance, the norm of the resolvent alone characterizes
when A is a normal matrix [1].

1Equivalently, one may study the so-called “pseudospectra” of A. For an overview of that
subject, see [9].
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2 ALBERTO A. CONDORI

Thus, it is of interest to study the (operator) norms of the matrix-valued func-
tions exp(zA) and (A− zI)−1. As can be expected, these functions are analytic2 in
regions of C, the entire plane C, and C\σ(A), respectively. The fact these functions
are analytic leads one to question the extent to which the MMP for scalar-valued
functions is valid for ‖F (z)‖, where F is any matrix-valued analytic function. The
purpose of this article is to find sufficient conditions, say involving the norm of a
matrix-valued analytic function, that guarantee that the function is constant.

In Section 2, we state and discuss some maximum norm principles for matrix-
valued analytic functions. Although it has been long known that a direct analog
of the MMP fails in the context of matrix-valued functions in which the operator
norm plays the role of the modulus, we find a suitable analog. Stated roughly, if
F : Ω → Mn is such that ‖F (z)‖ attains a maximum at some z0 ∈ Ω, then there is
a direction in which F (z) is constant (although F (z) need not be) namely that of
any maximizing vector of F (z0) (see Theorem 3). We rediscovered this result origi-
nally noted by Brown and Douglas in [2] and use it to describe the structure of the
function F (z) (see Theorem 4). Since the result lends itself to iteration, we make
natural assumptions on the function’s singular values and explore the consequences
further in Section 3. One of the section’s main results (see Corollary 6) illuminates
the equivalence of two apparently distinct statements to the single statement that
the matrix function F (z) is constant: the Frobenius norm of F (z) attains a max-
imum, and every singular value of F (z) attains a maximum (at possibly distinct
points).

Once the maximum singular-values principle is established in Section 3, we pro-
ceed to prove a minimum singular-values principle in Section 4. That result (The-
orem 9) is, in a sense, an analog of the well-known minimum modulus principle of
complex analysis in the context of matrix-valued functions. Finally, in Section 5,
we discuss the implications of our results in the context of the resolvent and the
matrix exponential which involve their largest and smallest singular values.

It is worth mentioning that analytic matrix-valued functions appear in many
other areas such as the harmonic analysis of operators on a Hilbert space (e.g.,
finite-rank perturbations of self-adjoint and unitary operators), and consequently
in mathematical physics (e.g., Schrödinger operators); roughly, problems concerning
spectral properties of an operator are often solved through the consideration of an
analytic matrix-valued function defined on the upper-half plane, i.e. the so-called
“characteristic function.” Due to the scope of the paper, the reader is referred to
the survey [6] and all references therein for further details.

We also remark that the results of this article could be written in the more
general framework of operator-valued functions F : Ω → B(H), where H is a
complex Hilbert space, or that of vector-valued functions F : Ω → B, where B is
a complex Banach space. However, all statements in this article are kept in the
context of matrix-valued functions so that the results are easier to read and appeal
to a wider audience.

2Recall that a function F : Ω → Mn is analytic if, for each z0 ∈ Ω, there is a member of Mn,
denoted by F ′(z0), such that ‖(z − z0)−1{F (z) − F (z0)} − F ′(z0)‖ → 0 as z → z0. It can be
shown that F : Ω → Mn is analytic if and only if F is “entry-wise analytic,” i.e., every entry of
F (z) is an analytic function on Ω.
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2. Maximum norm principles.

To find a suitable analog of the MMP for matrix-valued functions, it is reasonable
to first test whether known proofs of the MMP can be easily adapted when replacing
modulus with operator norm. One such proof of the MMP appears in [7, Chapter
10]. In it, the identity |w|2 = ww̄ (w ∈ C) appears, and although the operator
norm of T ∈ Mn does not readily provide a direct analog for ‖T ‖2, the Frobenius
norm does. In fact,3

‖T ‖2F = trace(T ∗T ) for T ∈ Mn, (1)

when ‖T ‖F is the Frobenius (Hilbert–Schmidt) norm of T , and an argument anal-
ogous to the proof of the MMP in [7] (that relies on (1)) gives the following result.

Theorem 1 (Maximum Frobenius Norm Principle). Let Ω be a region of C and let
F : Ω → Mn be analytic. If ‖F (z)‖F assumes its maximum at some z0 ∈ Ω, then
F (z) = F (z0) for all z ∈ Ω.

Despite its provision of a direct analog of the MMP for matrix-valued functions,
in applications, it is the operator norm that is of interest, not the Frobenius norm.
Unfortunately, the conclusion of Theorem 1 need not hold when the Frobenius norm
is replaced by another matrix norm. For example, let D denote the open unit disk
centered at the origin, let g : D → D be analytic (e.g., g(z) = z), and consider the
2× 2 matrix-valued function

F (z) =

[

1 0
0 g(z)

]

. (2)

Notice that the operator norm of F (z) satisfies

‖F (z)‖2 = max{1, |g(z)|2} = 1 for all z ∈ D,

even though F (z) is not a constant function. Nevertheless, one can prove a weak-
ened version for any norm.

Theorem 2 (Maximum Norm Principle). Let Ω be a region of C and let F : Ω →
Mn be analytic. If ‖F (z)‖ attains its maximum in Ω, then ‖F (z)‖ is constant on
Ω.

Theorem 2 is well known and a proof can be found in [4, Section III.14]; we
provide a different short proof based on a well-known consequence of the Hahn–
Banach theorem on linear functionals, namely if X is any normed space and x ∈ X
is nonzero, then there is a bounded linear functional Λ on X such that ‖Λ‖ = 1
and Λ(x) = ‖x‖. For further details and a simple proof of this fact, see [7, Chapter
5].

Proof of Theorem 2. Assume there is a z0 ∈ Ω such that ‖F (z)‖ ≤ ‖F (z0)‖ for all
z ∈ Ω and, without loss of generality, that ‖F (z0)‖ 6= 0. Then we can choose a
bounded linear functional Λ : Mn → C of norm 1 so that ‖F (z0)‖ = Λ(F (z0)). By
continuity of Λ and analyticity of F , Λ(F (z)) defines an analytic function on Ω,
and

|Λ(F (z))| ≤ ‖F (z)‖ ≤ ‖F (z0)‖ = |Λ(F (z0))|.

3As usual, T ∗ denotes the conjugate transpose of the matrix T .
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It follows now from the usual MMP that Λ(F (z)) must be constant throughout Ω
and

‖F (z)‖ ≥ Λ(F (z)) = Λ(F (z0)) = ‖F (z0)‖ ≥ ‖F (z)‖ for all z ∈ Ω.

Thus, ‖F (z)‖ = ‖F (z0)‖ for all z ∈ Ω. �

The conclusion of the maximum norm principle above may be seen as unsatis-
factory because it gives limited information about the structure of F (z) itself. This
is not at all surprising; after all, the theorem holds for any norm. So, from now on
we use the operator norm exclusively in an effort to gain more information about
the function F .

A useful property of the operator norm of a matrix is that given any A ∈ Mn,
there is a unit vector x0 ∈ Cn, called a maximizing vector for A, so that ‖Ax0‖ =
‖A‖; in other words, matrices attain their operator norm at some vector in the unit
ball of Cn. This is a consequence of the compactness of the closed unit ball of Cn.

Recently, we rediscovered a maximum operator norm principle due to Brown
and Douglas. In [2, Theorem 4], the authors proved that if F (z) is a nonconstant
matrix-valued analytic function whose operator norm attains its maximum, then
there is a direction x0 in which F (z)x0 is constant. Our version reads as follows.

Theorem 3 (Maximum Operator Norm Principle, cf. [2]). Let Ω be a region of C
and let F : Ω → Mn be analytic. If there is a z0 ∈ Ω so that ‖F (z)‖ ≤ ‖F (z0)‖ for
all z ∈ Ω and x0 is a maximizing vector for F (z0), then F (k)(z0)x0 = 0 for every
k ≥ 1. In particular, F (z)x0 is constant on Ω.

The conclusion4 of Theorem 3 here is, at first sight, a slight improvement to
that in Theorem 4 (part (1)) of [2]; after all, using a series expansion of F (z), the
condition F (k)(z0)x0 = 0 for k ≥ 1 easily implies that F (z)x0 is constant on Ω. In
fact, the reverse implication is also true and a justification can be made using series,
too. On the other hand, although our series proof of Theorem 3 below is not as
short as that of Brown and Douglas, it elucidates the consideration of maximizing
vectors x0 (see (5) below).

Proof of Theorem 3. Let R > 0 be such that D(z0;R) ⊆ Ω. Then F (z) admits a
power series representation on D(z0;R), say

F (z) =

∞
∑

k=0

Ck(z − z0)
k, (3)

where Ck ∈ Mn for k ≥ 0. For any vector x,

‖F (z)x‖2 =
∑

j,k≥0

(z − z0)
j(z − z0)

k〈Cjx,Ckx〉

by continuity of the inner product and so

1

2π

∫ 2π

0

‖F (z0 + reit)x‖2 dt =

∞
∑

k=0

‖Ckx‖
2r2k (4)

for any r ∈ (0, R).

4It is worth mentioning that our version of Theorem 3 also complements a result due to Daniluk
in [3].
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Now, since ‖F (z)‖ ≤ ‖F (z0)‖ = ‖C0‖ for all z ∈ Ω, it follows from (4) that

∞
∑

k=0

‖Ckx‖
2r2k =

1

2π

∫ 2π

0

‖F (z0 + reit)x‖2 dt ≤ ‖C0‖
2‖x‖2 (5)

for any vector x and r ∈ (0, R). Let x0 be a maximizing vector for C0. Replace x
by x0 in (5), and conclude

‖C0‖
2 +

∞
∑

k=1

‖Ckx0‖
2r2k ≤ ‖C0‖

2‖x0‖
2 = ‖C0‖

2,

and F (k)(z0)x0 = Ckx0 = 0 for every k ≥ 1. In particular, by (3), F (z)x0 =
C0x0 = F (z0)x0 for all z ∈ D(z0;R) and so, by the identity theorem (e.g., [7,
Theorem 10.18]), F (z)x0 = F (z0)x0 for all z ∈ Ω. �

Remark. Note that the conclusion of Theorem 3 alone implies that ‖F (z)‖ has
a minimum at z0; after all, if z 7→ F (z)x0 is constant on Ω for some maximizing
vector x0 of F (z0), then

‖F (z0)‖ = ‖F (z0)x0‖ = ‖F (z)x0‖ ≤ ‖F (z)‖ for all z ∈ Ω.

Hence, the conclusion of Theorem 3 is stronger than that of the maximum norm
principle (when using the operator norm) because it implies that any maximizing
vector x0 for F (z0) is also a maximizing vector for F (z), and F (z) has constant
norm equal to that of F (z0) for all z ∈ Ω.

The observation made in the remark leads one to the following factorization.

Theorem 4. Let Ω be a region of C and let F : Ω → Mn be analytic. If there is
a z0 ∈ Ω so that ‖F (z)‖ ≤ ‖F (z0)‖ for all z ∈ Ω, then there are n× n (constant)
unitary5 matrices U and V , and an analytic function G : Ω → Mn−1, such that

F (z) = U

[

‖F (z0)‖ 0
0 G(z)

]

V. (6)

Roughly, in the case of 2 × 2 matrices, Theorem 4 states that when F (z) is
nonconstant, analytic, and achieves its maximum operator norm, say equal to 1, at
a point of a region, then there is a nonconstant analytic function g : Ω → D such
that

F (z) =

[

1 0
0 g(z)

]

up to multiplication by (constant) unitary matrices on the right and the left. Hence,
in a sense, the example given in (2) is essentially the only example of a nonconstant
2× 2 matrix function whose operator norm achieves a maximum value of 1.

Proof of Theorem 4. Without loss of generality, we assume ‖F (z0)‖ = 1. By Theo-
rem 3, if x0 is a maximizing vector for F (z0), then the vector function z 7→ F (z)x0

is constant on Ω. Recalling that ‖v‖2
Cn = v∗v for any v ∈ Cn and choosing

y0 = F (z0)x0, we obtain

‖y0‖
2 = ‖x0‖

2 = 1 and y∗0F (z)x0 = y∗0F (z0)x0 = 1 for all z ∈ Ω.

5Recall that A ∈ Mn is said to be unitary if A∗A = AA∗ = I.
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Let X0 and Y0 be (constant) n×n unitary matrices whose first columns are x0 and
y0, respectively. Then, in matrix blocks,

Y ∗
0 F (z)X0 =

[

a1,1(z) a1,2(z)
a2,1(z) a2,2(z)

]

,

where a1,1(z) = y∗0F (z)x0 = 1. Furthermore, asX0 and Y0 are unitary, ‖Y
∗
0 F (z)X0‖ =

‖F (z)‖ = 1 (or, alternatively, this follows by the remark following the proof of The-
orem 3). This implies that

a1,2(z) = 0 and a2,1(z) = 0 for all z ∈ Ω

because the operator norm of an n× n matrix is an upper bound on the Euclidean
(vector) norm of its columns and rows. In other words, the assumptions on F (z)
imply the existence of n× n constant unitary matrices X0 and Y0 so that

F (z) = Y0

[

1 0
0 a2,2(z)

]

X∗
0

where a2,2(z) is an analytic (n − 1) × (n − 1) matrix-valued function. Thus, the
desired conclusion follows with U = Y0, V = X∗

0 , and G(z) = a2,2(z). �

3. Maximum singular value principles.

An attractive feature of Theorem 4 is that it lends itself to iteration. Indeed,
the lower right block G(z) in (8) may very well satisfy the assumptions of Theorem
4 just as F (z) did. In this section, we explore this situation and its consequences,
but first review some basic terminology and results concerning singular values.

We begin with the observation that the maximizing vectors for a matrix A admit
the characterization that x0 is a maximizing vector for A ∈ Mn if and only if x0

has norm 1 and A∗Ax0 = ‖A‖2x0. More generally, for a vector x (whether it has
norm 1 or not),

‖Ax‖ = ‖A‖ · ‖x‖ if and only if A∗Ax = ‖A‖2x. (7)

A proof of (7) can be based on the fact that every positive semi-definite matrix
has a unique positive semi-definite square root (e.g., see [5, Theorem 7.2.6]). To
that end, first note that the inequality ‖Av‖ ≤ ‖A‖ · ‖v‖ valid for all vectors v is
equivalent to stating that the matrix ‖A‖2I − A∗A is positive semi-definite. So,
‖Ax‖ = ‖A‖ · ‖x‖ holds if and only if ‖(‖A‖2I − A∗A)1/2x‖ = 0, or equivalently,
(‖A‖2I − A∗A)x = 0. Hence, x0 is a maximizing vector of A if and only if it is an
eigenvector of A∗A of norm 1, i.e., (7) holds.

The role played in Theorem 3 by maximizing vectors for a matrix and their
alternative characterization as eigenvectors lead directly to the consideration of
singular values.

Recall that the singular values sk(A), 1 ≤ k ≤ n, of an n× n matrix A are the
nonnegative square roots of the eigenvalues of A∗A ordered in the nonincreasing
order, that is,

s1(A) ≥ s2(A) ≥ · · · ≥ sn(A).

In particular, s1(A) = ‖A‖ (see (7)) and s21(A) + s22(A) + · · ·+ s2n(A) = ‖A‖2F . The
latter can be deduced using any singular value decomposition (SVD) of A (e.g., [5,
Theorem 7.35]) and (1).

The following result is a simple consequence of Theorem 4.
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Theorem 5. Let Ω be a region of C and let F : Ω → Mn be analytic. Suppose
that, for each k = 1, . . . , n, the function z 7→ sk(F (z)) attains its maximum value
on Ω. Then F (z) is constant on Ω.

In Theorem 5, the assumption does not require that the functions s1(F (z)), . . . ,
sn(F (z)) attain their maximum values at the same point6 of Ω; they may assume
their respective maxima at distinct points z1, . . . ,zn ∈ Ω.

Proof of Theorem 5. Our proof is by induction on n. When n = 1, the desired
conclusion holds by the MMP. So, suppose that the result holds for n = 1, . . . ,m−1
with m ∈ N. We now show that it also holds for n = m.

Suppose F : Ω → Mm is analytic, and the function z 7→ sk(F (z)) attains its
maximum value on Ω for each k = 1, . . . ,m. Let z1 ∈ Ω be such that s1(F (z)) ≤
s1(F (z1)) for all z ∈ Ω. By Theorem 4, there arem×m (constant) unitary matrices
U1 and V1, and an analytic function F1 : Ω → Mn−1, such that

F (z) = U1

[

s1(F (z1)) 0
0 F1(z)

]

V1. (8)

In particular, sk(F1(z)) = sk+1(F (z)) attains its maximum value on Ω for each
k = 1, . . . ,m− 1. By the inductive hypothesis, F1(z) must be constant on Ω and,
consequently, F (z) is also constant. �

At first sight, the assumption in Theorem 5 that every function z 7→ sk(F (z))
attains its maximum value on Ω for k = 1, . . . , n appears to be different from saying
that ‖F (z)‖F attains its maximum value on Ω in the maximum Frobenius norm
principle above. Based upon the results above one may conclude that they are in
fact equivalent!

Corollary 6. Let Ω be a region of C. The following statements are equivalent for
an analytic function F : Ω → Mn.

(1) F (z) is constant on Ω.
(2) For every k = 1, . . . , n, sk(F (z)) is constant on Ω.
(3) For every k = 1, . . . , n, sk(F (z)) attains its maximum value at some zk ∈ Ω.
(4) ‖F (z)‖F is constant on Ω.
(5) ‖F (z)‖F attains its maximum value at some z0 ∈ Ω.

Proof. It is evident that (1) =⇒ (2), (2) =⇒ (3), (1) =⇒ (4), and (4) =⇒ (5).
The only nontrivial implications (5) =⇒ (1) and (3) =⇒ (1) are consequences of
the maximum Frobenius norm principle and Theorem 5, respectively. �

In view of Corollary 6 (or Theorem 5), if Ω is region of C and F : Ω → Mn

is a nonconstant analytic function such that s1(F (z)) attains its maximum on Ω,
then there is a largest integer r < n such that the functions s1(F (z)), . . . , sr(F (z))
attain their maximum values on Ω. In this case, up to multiplication by (constant)
unitary matrices on the right and the left, F (z) has the block form











s1(F (z1)) . . . 0 0
...

. . .
...

...
0 . . . sr(F (zr)) 0
0 . . . 0 Fr(z)











6In fact, if the functions s1(F (z)), . . . ,sn(F (z)) attain their maximum values at the same point
z0 ∈ Ω, it follows already from Theorem 1 that F (z) must be constant on Ω.
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for some (necessarily nonconstant) analytic function Fr : Ω → Mn−r.
A closer look at the proof of Theorem 5 also reveals the following refinement of

the maximum norm principle. We omit the details.

Corollary 7. Let 1 ≤ m ≤ n, let Ω be a region of C, and let F : Ω → Mn be
analytic. Suppose that, for each k = 1, . . . ,m, the function sk(F (z)) attains its
maximum value on Ω. Then sk(F (z)) is constant on Ω for each k = 1, . . . ,m.

Note that for an arbitrary F (z), it may happen that sn(F (z)) is constant while
sk(F (z)) is not when 1 ≤ k < n. For example, the function F : D \ {0} → M2

defined by

F (z) =

[

1 0
0 z−1

]

,

has s1(F (z)) = |z|−1 and s2(F (z)) = 1 for all z ∈ D \ {0}.
As seen in its proof, the key to obtaining the conclusion of Theorem 4 relies on

choosing a maximizing vector for F (z0). The following theorem is a refinement of
Theorem 4 that relies on choosing instead “all maximizing vectors” for F (z0).

Theorem 8. Let Ω be a region of C and let F : Ω → Mn be analytic. Suppose
there is a z0 ∈ Ω so that ‖F (z)‖ ≤ ‖F (z0)‖ for all z ∈ Ω and set7

d = dim{x ∈ C
n : ‖F (z0)x‖ = ‖F (z0)‖ · ‖x‖}. (9)

Then there are n× n unitary matrices U and V such that

F (z) = ‖F (z0)‖U · V when d = n,

or, for some analytic function R : Ω → Mn−d,

F (z) = U

[

‖F (z0)‖ · Id 0
0 R(z)

]

V when d < n. (10)

In particular, z 7→ F (z)x is constant and F (k)(z0)x = 0 for all k ≥ 1 when x
satisfies ‖F (z0)x‖ = ‖F (z0)‖ · ‖x‖.

Note that one could apply Theorem 8 again to the lower-right matrix-block
function R(z) appearing in (10). More definitively, if s1(F (z)) attains its maximum
at z1 ∈ Ω, then d1 is the largest integer such that

s1(F (z1)) = sd1
(F (z1)),

sd1+1(F (z)) attains its maximum at z2 ∈ Ω, and d2 is the largest integer such that

sd1+1(F (z2)) = sd2
(F (z2)),

then up to multiplication by (constant) unitary matrices on the right and the left,
F (z) has the block form





sd1
(F (z1)) · Id1

0 0
0 sd2

(F (z2)) · Id2
0

0 0 ∗



 .

7Equivalently, d is the dimension of the subspace spanned by the “right-singular vectors”
associated with the largest singular value of F (z0).
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Hence, if every function z 7→ sk(F (z)) attains its maximum at some point of Ω
then, up to multiplication by (constant) unitary matrices on the right and the left,
F (z) admits the block form











sd1
(F (z1)) · Id1

0 . . . 0
0 sd2

(F (z2)) · Id2
. . . 0

...
...

. . .
...

0 0 . . . sdκ
(F (zκ)) · Idκ











,

and is hence a constant matrix, as expected by Theorem 5.
Likewise, a completely analogous argument reveals that the refinement of the

maximum norm principle in Corollary 7 is also a consequence of Theorem 8, because
sj(F (z)) = ‖F (z0)‖ for j = 1, . . . , d and sℓ+d(F (z)) = sℓ(R(z)) for ℓ = 1, . . . , (n−
d). We leave the details to the reader.

Proof of Theorem 8. Let Dz0 be the diagonal matrix whose main diagonal entries
are the singular values of F (z0) listed in nonincreasing order. Then we may let
Uz0 and Vz0 be unitary matrices such that F (z0) = Uz0Dz0Vz0 (i.e., an SVD for
F (z0)). Let r denote the largest positive integer such that sr(F (z0)) = ‖F (z0)‖.
Note that, by (7), a vector x satisfies ‖F (z0)x‖ = ‖F (z0)‖ · ‖x‖ if and only if
V ∗
z0(‖F (z0)‖

2I −D2
z0)Vz0x = 0, or equivalently, x belongs to the linear span of first

r columns of V ∗
z0 because V ∗

z0 is unitary. Thus, r = d with d as in (9).
Now, consider the function G(z) = U∗

z0F (z)V ∗
z0 . Clearly, G is analytic on Ω and

satisfies

‖G(z)‖ ≤ ‖F (z0)‖ for all z ∈ Ω.

Since the Cn norm of every column (and row) of a matrix is bounded by its operator
norm, the modulus of every (analytic) entry Gi,j(z) is also bounded by ‖F (z0)‖.
Moreover, if 1 ≤ i ≤ r, then Gi,i(z0) = ‖F (z0)‖ and so Gi,i(z) = ‖F (z0)‖ for all
z ∈ Ω by the (usual) MMP. In particular, the first r columns and r rows of G(z)
have Cn norm at least ‖F (z0)‖. Therefore, Gi,j(z) = 0 when i 6= j and 1 ≤ i, j ≤ r.
In other words, using matrix blocks, this shows that

F (z) = Uz0G(z)Vz0 = Uz0

[

‖F (z0)‖ · Ir 0
0 R(z)

]

Vz0 ,

for some analytic function R : Ω → Mn−r when r < n, while F (z) = ‖F (z0)‖Uz0Vz0

when r = n. This completes the proof of (10).
Finally, if e1, . . . , en denotes the standard basis for Cn and k ≥ 1, then the jth

column V ∗
z0ej of V ∗

z0 satisfies F (z)V ∗
z0ej = ‖F (z0)‖Uz0ej and

F (k)(z)V ∗
z0ej = Uz0

[

0 · Ir 0
0 R(k)(z)

]

ek = 0 · ek = 0

for j = 1, . . . , r. Thus, z 7→ F (z)x is constant and F (k)(z)x = 0 whenever x
belongs to the linear span of first r columns of V ∗

z0 , or equivalently, when x satisfies
‖F (z0)x‖ = ‖F (z0)‖ · ‖x‖. �

4. Minimum singular value principles.

In the case of nonconstant scalar-valued functions, the MMP tells us that the
minimum modulus (of an analytic function on a region) can only be attained at a
zero of the function. This conclusion is often called the minimum modulus principle
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in complex analysis. As a consequence of Theorem 5, we state and prove an analog
of that minimum principle in the context of matrix-valued functions.

Theorem 9. Let Ω be a region of C and let F : Ω → Mn be a nonconstant analytic
function. Then no point z0 ∈ Ω can be a minimum value for all of the functions
sk(F (z)), 1 ≤ k ≤ n, unless F (z0) is not invertible.

Proof. We prove that if there is a z0 ∈ Ω such that F (z0) is invertible and the
functions z 7→ sk(F (z)) attain their minimum at z0 for k = 1, . . . , n, then F (z)
must be a constant function.

To begin, recall that the collection of invertible matrices is open. This implies

F (z) must be invertible for all z sufficiently close to z0. So, G(z)
def
= F−1(z) exists

in some neighborhood Ω0 of z0, detF (z) is nonzero and analytic on Ω0, and the
adjugate (or transpose of the cofactor matrix) adj(F (z)) of F (z) is analytic on Ω0.

Thus, G(z) = F (z)−1 = det−1(F (z)) adj(F (z)) is analytic on Ω0 as well.
By the singular value decomposition, at each z ∈ Ω0, the singular values of G(z)

are the reciprocals of those of F (z); more specifically,

sk(G(z)) = 1/sn−k+1(F (z)) for k = 1, . . . , n, and z ∈ Ω0.

Therefore, the assumption of the theorem is equivalent to stating that the functions
z 7→ sk(G(z)) attain a maximum on Ω0 at z0. By Theorem 5, G(z) and F (z) must
be constant on Ω0. Finally, applying the identity theorem (e.g., [7, Theorem 10.18])
to each entry of F (z) implies that F (z) is constant throughout Ω, as desired. �

Corollary 10. Let Ω be a region of C and let F : Ω → Mn be a nonconstant
analytic function. If every function sk(F (z)), 1 ≤ k ≤ n, attains a minimum value
at z0 ∈ Ω, then det(F (z0)) = 0.

Remark. Notice that sn(F (z0)) = 0 if and only if z0 is a zero of detF (z); indeed,
with an SVD of A ∈ Mn, we see that

n
∏

k=1

sk(A) = | det(A)|. (11)

Thus, Corollary 10 states that if every function sk(F (z)), 1 ≤ k ≤ n, attains a
minimum value at z0 ∈ Ω, then sn(F (z0)) = 0.

To illustrate Theorem 9, it suffices to take F : D → M2 as in (2); indeed, the
functions s1(F (z)) = 1 and s2(F (z)) = |g(z)| attain their respective minimum
values at any zero z0 of g and F (z0) is certainly not invertible.

In light of Theorems 5 and 9, one may ask whether the singular values of a
matrix-valued analytic function could attain minimum values at distinct points.
The following result gives an affirmative answer.

Theorem 11. If F : C → M2 denotes the function defined by

F (z) =

[

1 z
0 z − 1

]

, (12)

then s1(F (z)) has a minimum at z1 = 0 and s2(F (z)) has a minimum at z2 = 1.

Proof. The remark following the proof of Theorem 3 shows that s1(F (z)) has a
minimum at z1 = 0; indeed, z 7→ F (z)x0 is constant when x0 = [1, 0]T . On the
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other hand, if z2 = 1, then

F (z2) =

[

1 1
0 0

]

satisfies s2(F (z2)) = 0 because detF (z2) = 0. In particular, s2(F (z)) has a mini-
mum at z2 = 1. �

Finally, it is worth mentioning that a singular value of a matrix function may
attain its minimum value at specified locations. For instance, when g and h are
analytic, the function defined by

K(z) =

[

g(z) 1
0 h(z)

]

(13)

satisfies s2(K(z)) = 0 at every zero of g and h.

5. Return to the resolvent and matrix exponential.

With the wisdom acquired about the norms and singular values of analytic
matrix-valued functions, we now return to the resolvent and matrix exponential
of a given matrix. To simplify our notation, let RA(z) denote the resolvent of
A ∈ Mn at z, i.e.,

RA(z) = (A− zI)−1 for z ∈ C \ σ(A).

Also, set LA(z) = A− zI.
Let Ω be a region of C \σ(A). By Theorem 5, the singular values sk(LA(z)) and

likewise sk(RA(z)) cannot all attain a maximum value on Ω as functions. Recalling
that

sk(RA(z)) = 1/sn−k+1(LA(z)) when 1 ≤ k ≤ n, (14)

it follows that the functions sk(RA(z)) cannot all attain a maximum nor a minimum
on Ω; in fact, this holds for k = 1 and k = n, respectively, as shown below.8

Theorem 12. If A ∈ Mn and Ω is any region of C \ σ(A), then

s1(RA(z)) < sup
ζ∈Ω

s1(RA(ζ)) and sn(RA(ζ)) > inf
ζ∈Ω

sn(RA(ζ)) for all z ∈ Ω.

In particular, the functions s1(RA(z)) and sn(RA(z)) are nonconstant on Ω.

Proof. To obtain a contradiction, assume instead there are points z0, w0 ∈ Ω such
that

s1(RA(z0)) ≥ s1(RA(ζ)) or s1(LA(w0)) ≥ s1(LA(ζ)) for all ζ ∈ Ω

(see (14)). By Theorem 3,

R′
A(z0)x0 = 0 or L′

A(w0)y0 = 0 (15)

when x0 and y0 are maximizing vectors for RA(z0) and LA(w0), respectively. On
the other hand, as

RA(z)−RA(z0) = RA(z)[(A− z0I)− (A− zI)]RA(z0)

for any z ∈ Ω, we have

R′
A(z0) = lim

z→z0
RA(z)RA(z0) = R2

A(z0)

8The first inequality in Theorem 12 was observed by Daniluk [3] for resolvents of operators on
a complex Hilbert space.
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and clearly L′
A(w0) = −I. However, these equations, together with (15), imply

that

x0 = L2
A(z0)R

2
A(z0)x0 = L2

A(z0)R
′
A(z0)x0 = 0

or y0 = −L′
A(w0)y0 = 0, which are impossible because ‖x0‖ = ‖y0‖ = 1. �

We now turn to the matrix exponential. Recall that given T ∈ Mn, the matrix

exponential of T is the n× n matrix defined by

exp(T )
def
=

∞
∑

n=0

1

n!
T n.

It is not difficult to verify that the series above converges for any T ∈ Mn (say,
under the operator norm), and exp(T ) is invertible in Mn with inverse exp(−T ).

For A ∈ Mn, we see that the map z 7→ exp(zA) is a well-defined matrix-valued
function, analytic on the entire complex plane C, and

d

dz
[exp(zA)] = A exp(zA) = exp(zA)A.

Furthermore, a straightforward verification9 reveals that

(zI −A)−1 =

∫ ∞

0

e−zt exp(tA) dt when Re z > ‖A‖, (16)

while term-by-term integration of the power series representations for the exponen-
tial and the resolvent gives

exp(tA) =
1

2πi

∫

Γr

etξ(ξI −A)−1 dξ, (17)

where Γr denotes any circle of radius r > ‖A‖ centered at the origin.
In addition to the intimate relationship between the resolvent and the matrix

exponential (as described in (16) and (17)), intuition from the case of scalar-valued
functions may suggest that, in analogy to Theorem 12, the functions s1(exp(zA))
and sn(exp(zA)) should not attain their maximum and minimum values, respec-
tively,10 over any region Ω of C. This is in fact false. Notice that

exp(zA) =

[

1 0
0 ez

]

with A =

[

0 0
0 1

]

provides a counterexample; indeed, computation reveals that

s1(exp(zA)) = max{1, eRe z} and s2(exp(zA)) = min{1, eRe z}.

Thus, s1(exp(zA)) and s2(exp(zA)) are constant when Re z < 0 and Re z > 0,
respectively.

Finally, we would like to propose a question for further investigation. Given an
analytic function F : Ω → Mn such that ‖F (z)‖ attains its maximum in Ω, Theorem
8 not only describes the structure of F , it also implies that ‖F (z)‖ = ‖F (z0)‖ for
all z ∈ Ω. So, in a sense, it is rare for ‖F (z)‖ to attain its maximum. Instead, what
may be less rare is for ‖F (z)‖ to attain a minimum value (see Theorem 11).

9Indeed, when Re z > ‖A‖, the function t 7→ exp(t(A − zI)) has operator norm equal to

e−Re(zt)‖ exp(At)‖, which tends to zero as t → ∞, and so the integral over [0,∞) of its derivative
equals the identity matrix.

10After all, for fixed a ∈ C, |eza| cannot attain its maximum nor minimum values over any
region Ω.
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In fact, the remark made after the proof of Theorem 3 already gives a sufficient
condition for ‖F (z)‖ to have a minimum at z0, namely when z 7→ F (z)x0 is con-
stant for some maximizing vector for F (z0). Furthermore, by completely analogous
reasoning, a sufficient condition for sn(F (z)) to attain a maximum at z0 is that
z 7→ F (z)x0 is constant for some minimizing11 vector for F (z0). For example, in
light of this, it may be verified that s1(F (z)) has a minimum at z = 0 and s2(F (z))
has a maximum at z = 0 when F (z) is the function in (12). This leads one to
wonder what necessary and sufficient conditions permit s1(F (z)) to attain a mini-
mum and sn(F (z)) to attain a maximum over a region Ω? Is it more attainable to
consider the special case F (z) = (A− zI)−1? How about when F (z) = exp(zA)?
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