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ABSTRACT. We study variants of the Frobenius coin-exchange problem: Given n positive relatively prime
parameters, what is the largest integer that cannot be represented as a nonnegative integral linear combination
of the given integers? This problem and its siblings can be understood through generating functions with 0/1
coefficients according to whether or not an integer is representable. In the 2-parameter case, this generating
function has an elegant closed form, from which many corollaries follow, including a formula for the Frobenius
problem. We establish a similar closed form for the generating function indicating all integers with exactly k
representations, with similar wide-ranging corollaries.

1. THE STORY

Imagine we replace the penny in the US currency coins by a 7-cent coin. One might argue that the resulting
new coin system is a bit less practical than the old, but it is also more (mathematically) interesting: now there
are some cent amounts (such as 3 and 8 cents) that cannot be made up using our coins. On the other hand, it
is a charming exercise—because 5 and 7 happen to be relatively prime—that every sufficiently large amount
of money can be changed; in fact, there are twelve cent amounts that cannot be made up with 5- and 7-cent
coins, the largest being 23 cents. (The simple fact that 5 and 7 are relatively prime is crucial—if the greatest
common divisor of our coin denominations were d, we could not change any amount that is not a multiple
of d.)

Naturally, nothing stops us (mathematicians) from generalizing this setting, and so for fixed positive
relatively prime integers a1,a2, . . . ,an, (that is, gcd(a1,a2, . . . ,an) = 1), we say that a nonnegative integer x is
(a1,a2, . . . ,an)-representable if

(1) x = m1a1 +m2a2 + · · ·+mnan

for some m1,m2, . . . ,mn ∈ Z≥0. Let R0 (a1,a2, . . . ,an) be the set of all positive integers that are not
(a1,a2, . . . ,an)-representable. Because a1,a2, . . . ,an are relatively prime, R0 (a1,a2, . . . ,an) is finite, and
so three natural questions about this set are:

• What is the largest number g0 (a1,a2, . . . ,an) in R0 (a1,a2, . . . ,an)?
• What is the cardinality c0 (a1,a2, . . . ,an) of R0 (a1,a2, . . . ,an)?
• What is the sum s0 (a1,a2, . . . ,an) of all elements in R0 (a1,a2, . . . ,an)?

The first question is the linear Diophantine problem of Frobenius (it has many alternative names, such as
the coin-exchange problem and the chicken nuggets problem), and its solution g0 (a1,a2, . . . ,an) is called
the Frobenius number of the parameter set {a1,a2, . . . ,an}. One of the appealing aspects of the Frobenius
problem and its variants is that they can be easily explained. There are many reasons to be interested in
the set R0 (a1,a2, . . . ,an) for fixed a1,a2, . . . ,an; the mathematical basis is the semigroup S0 (a1,a2, . . . ,an)
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generated by a1,a2, . . . ,an, and then R0 (a1,a2, . . . ,an) = Z≥0 \ S0 (a1,a2, . . . ,an). For details about the
Frobenius problem, including numerous applications, we recommend two classic MONTHLY articles [15, 23]
and the monograph [18].

Our three questions about R0 (a1,a2, . . . ,an) are, in general, wide open, but they have strikingly simple
answers for n = 2:

• g0(a,b) = (a−1)(b−1)−1;

• c0(a,b) = 1
2(a−1)(b−1);

• s0(a,b) = 1
12(a−1)(b−1)(2ab−a−b−1).

The first two formulas go back to at least Sylvester; his paper [21] gives both c0(a,b) and a clear indication that
he knew g0(a,b). The third formula is much younger and seems to have first been proved by Brown–Shiue [7].
One can derive all three formulas at once from the following generating function identity.

Theorem 1. Given relatively prime positive integers a and b, let S0(a,b) = {ma+nb : m,n ∈ Z≥0}. Then

∑
j∈S0(a,b)

z j =
1− zab

(1− za)(1− zb)
.

Theorem 1 seems to have first been proved by Székely–Wormald [22] and independently by Sertöz–
Özlük [19]; its usefulness to our three original questions were noticed already in the aforementioned [7]:
namely, we observe that

p0 (a,b;z) := ∑
j∈R0(a,b)

z j =
1

1− z
− 1− zab

(1− za)(1− zb)

is a polynomial disguised as a rational function, and since

• g0(a,b) equals the degree of p0 (a,b;z),
• c0(a,b) = lim

z→1
p0 (a,b;z), and

• s0(a,b) = lim
z→1

p′0 (a,b;z),

the formulas stated above can be computed by a (patient) calculus student. Theorem 1 is at the heart of this
article, and in the interest of self-containment, we will give a proof below. It is a curious fact—and one that is
the subject of the MONTHLY papers [8, 14]—that we have the alternative form

∑
j∈S0(a,b)

z j =
Φab(z)
1− z

,

where Φn(z) denotes the nth cyclotomic polynomial.
Our goal is to extend the machinery provided by Theorem 1 and its consequences to a recent variant of the

Frobenius problem that has attracted some attention in the research community. Namely, we consider the set
Rk (a1,a2, . . . ,an) consisting of all integers with exactly k representations in the form (1), and ask for

• the largest number gk (a1,a2, . . . ,an) in Rk (a1,a2, . . . ,an),
• the cardinality ck (a1,a2, . . . ,an) of Rk (a1,a2, . . . ,an), and
• the sum sk (a1,a2, . . . ,an) of all elements in Rk (a1,a2, . . . ,an).

These are, naturally, hard questions, but there are again answers for n = 2, both proved in [4]:1

• gk(a,b) = (k+1)ab−a−b
• ck(a,b) = ab for k ≥ 1.

1 The formula for ck(a,b) appears differently in [4]; the difference stems from considering positive vs. nonnegative integers.
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Our main contribution is the following generalization of Theorem 1, which will, among other things, allow us
to add the missing third bulleted item to the above list.

Theorem 2. Given relatively prime positive integers a and b, let Sk(a,b) consist of all integers with more
than k representations in the form ma+nb with m,n ∈ Z≥0. Then

∑
j∈Sk(a,b)

z j =
zabk(1− zab)

(1− za)(1− zb)
.

Consequently, for k ≥ 1, the polynomial indicating all integers with exactly k representations is

pk (a,b;z) := ∑
j∈Rk(a,b)

z j =
zab(k−1)(1− zab)2

(1− za)(1− zb)
.

Naturally, this theorem gives an alternative proof for the above formulas for gk(a,b) (by computing
the degree of pk (a,b;z)) and ck(a,b) (by computing lim

z→1
pk (a,b;z)), and because sk(a,b) = lim

z→1
p′k (a,b;z),

Theorem 2 yields:

Corollary 3. Let a and b be relatively prime positive integers and k≥ 1. Then sk(a,b) = 1
2 ab(2abk−a−b) .

But Theorem 2 reveals more, namely, that the integers in Rk(a,b) (for k ≥ 1) are aligned in a highly
structured way, as we may write

(2) pk (a,b;z) = ∑
j∈Rk(a,b)

z j = zab(k−1)
(

1+ za + z2a + · · ·+ z(b−1)a
)(

1+ zb + z2b + · · ·+ z(a−1)b
)
.

Figure 1 illustrates how the sets Rk(a,b) are intertwined.

· · ·

FIGURE 1. The sets R0(3,5), R1(3,5), R2(3,5), etc.; the shading gets lighter as the index increases.

As an analogue to computing higher moments in statistics, it is natural to ask for higher power sums, or at
least their nature. To this extent, we define

sm
k (a1,a2, . . . ,an) := ∑

j∈Rk(a1,a2,...,an)

jm

and offer Theorem 4 below involving the Bernoulli polynomials Bn(x), defined as usual through

zexz

ez−1
= ∑

n≥0

Bn(x)
n!

zn

(see, e.g., [5, Section 2.4]). The first few Bernoulli polynomials are

B0(x) = 1 ,

B1(x) = x− 1
2 ,

B2(x) = x2− x+ 1
6 ,

B3(x) = x3− 3
2 x2 + 1

2 x ,

B4(x) = x4−2x3 + x2− 1
30 ,

B5(x) = x5− 5
2 x4 + 5

3 x3− 1
6 x ,

B6(x) = x6−3x5 + 5
2 x4− 1

2 x2 + 1
42 .
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The crucial property of Bernoulli polynomials that we will need is (see, e.g., [5, Lemma 2.3])

(3) βk(x) :=
1
k
(Bk(x)−Bk(0)) =

x−1

∑
j=0

jk−1.

Theorem 4. Let a and b be relatively prime positive integers, k ≥ 1, and m≥ 0. Then

sm
k (a,b) = ∑

λ+µ+ν=m

(
m

λ µ ν

)
aλ+µbλ+ν(k−1)λ

βν+1(a)βµ+1(b) .

This generalizes the above results for ck(a,b) (which is the case m = 0) and sk(a,b) (the case m = 1),
and it gives the asymptotic statement that sm

k (a,b) is a polynomial in k of degree m with leading coefficient
(ab)m+1.

There are other concepts and results hidden in our generating functions. To give a taste, we recall that
Sk (a1,a2, . . . ,an) consists of all integers with more than k representations in the form (1), for general n. Thus
Z≥0 \Sk (a1,a2, . . . ,an) consists of all nonnegative integers with at most k representations. We define

• g≤k (a1,a2, . . . ,an) as the maximal integer in Z≥0 \Sk (a1,a2, . . . ,an);
• c≤k (a1,a2, . . . ,an) as the cardinality of Z≥0 \Sk (a1,a2, . . . ,an);
• s≤k (a1,a2, . . . ,an) as the sum of all elements in Z≥0 \Sk (a1,a2, . . . ,an).

In words, g≤k (a1,a2, . . . ,an) is the largest integer with at most k representations, c≤k (a1,a2, . . . ,an) is the
number of integers with at most k representations, and s≤k (a1,a2, . . . ,an) is the sum of all integers with at
most k representations.

The following result can be proved directly from the first part of Theorem 2. (We note that the formulas
for g≤k(a,b) and c≤k(a,b) are not new.)

Corollary 5. Let a and b be relatively prime positive integers and k ≥ 0. Then
• g≤k(a,b) = (k+1)ab−a−b;

• c≤k(a,b) = 1
2(a−1)(b−1)+abk;

• s≤k(a,b) = 1
2 a2b2k2 + 1

2 (ab−a−b)abk+ 1
6 a2b2− 1

4 (a+b−1)ab+ 1
12

(
a2 +b2−1

)
.

We remark that g≤k (a1,a2, . . . ,an) = gk (a1,a2, . . . ,an) holds only for n = 2; in fact, for general n these
two invariants can differ quite a bit [3, 20].

2. PROOFS

Proof of Theorem 1. Let
r(a,b; j) :=

∣∣{(m,n) ∈ Z2
≥0 : ma+nb = j

}∣∣ ,
the number of representations of j in terms of a and b. By a simple geometric series argument,

(4) ∑
j≥0

r(a,b; j)z j =
1

(1− za)(1− zb)
.

We claim that

(5) r(a,b; j)≤ 1 for j < ab and r(a,b; j) = r(a,b; j−ab)+1 for j ≥ ab ,

and so, in particular, any integer ≥ ab belongs to S0(a,b). There are several ways to prove (5), for example,
by considering the set

M j := {m ∈ Z≥0 : ma+nb = j for some n ∈ Z≥0} .
Then M j ⊂ [0, j

a ] (because m,n ∈ Z≥0), and indeed, if m ∈M j, then M j = [0, j
a ]∩ (m+bZ), which follows

from basic number theory (and here the condition gcd(a,b) = 1 is vitally important). Thus, for j < ab, the set
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M j contains at most one element. For j ≥ ab, we have the implication m ∈M j−ab =⇒ m ∈M j, by replacing
n with n+a. Moreover, the set difference M j \M j−ab = ( j

a −b, j
a ]∩ (m+bZ) contains precisely one point,

and (5) follows.
By (5),

∑
j∈S

z j =
ab−1

∑
j=0

r(a,b; j)z j + ∑
j≥ab

(r(a,b; j)− r(a,b; j−ab))z j =
(

1− zab
)

∑
j≥0

r(a,b; j)z j.

Theorem 1 follows now with (4). �

Proof of Theorem 2. We proceed by induction on k; the base case is Theorem 1. For the induction step,
assume that

∑
j∈Sk−1(a,b)

z j =
zab(k−1)(1− zab)

(1− za)(1− zb)
.

Now (5) implies for j ≥ ab and k ≥ 1

j ∈ Sk(a,b) ⇐⇒ j−ab ∈ Sk−1(a,b)

(we stress once more that this heavily depends on a and b being relatively prime), and so by induction
hypothesis,

∑
j∈Sk(a,b)

z j = ∑
j∈Sk−1(a,b)

z j+ab

= zab zab(k−1)(1− zab)

(1− za)(1− zb)

=
zabk(1− zab)

(1− za)(1− zb)
.

The formula for pk (a,b;z) now follows from the fact that Rk(a,b) = Sk−1(a,b)\Sk(a,b). �

Proof of Theorem 4. We start by noting that the operator ∆ := z d
dz is very useful in studying our power sums,

as

∆z j = z
d
dz

z j = j z j

and thus
sm

k (a,b) = lim
z→1

∆
m pk (a,b;z) .

The operator ∆ satisfies the same product rule as the derivative, and so by (2),

∆
m (pk (a,b;z)) = ∑

λ+µ+ν=m

(
m

λ µ ν

)
∆

λ

(
zab(k−1)

)
∆

µ

(
b−1

∑
j=0

z ja

)
∆

ν

(
a−1

∑
j=0

z jb

)
and thus

sm
k (a,b) = ∑

λ+µ+ν=m

(
m

λ µ ν

)
(ab(k−1))λ

(
b−1

∑
j=0

( ja)µ

)(
a−1

∑
j=0

( jb)ν

)

= ∑
λ+µ+ν=m

(
m

λ µ ν

)
aλ+µbλ+ν(k−1)λ

(
b−1

∑
j=0

jµ

)(
a−1

∑
j=0

jν

)
.

We finish by substituting for the expressions in the last two parentheses using (3). �
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3. MUSINGS ABOUT n≥ 3

The reader might have noticed the striking similarities between the rational generating function in Theo-
rem 1 and that in (4); however, this is an artifact of the case n = 2. While it is true that the general counting
function

r(a1,a2, . . . ,an; j) :=
∣∣{m ∈ Zn

≥0 : m1a1 +m2a2 + · · ·+mnan = j
}∣∣

comes with the generating function

∑
j≥0

r(a1,a2, . . . ,an; j)z j =
1

(1− za1)(1− za2) · · ·(1− zan)
,

and also that

(6) ∑
j∈S0(a1,a2,...,an)

z j =
h(z)

(1− za1)(1− za2) · · ·(1− zan)

for some polynomial h(z), the form of h(z) is simple only for n≤ 2. At any rate, Denham [10] discovered the
remarkable fact that for n = 3, the polynomial h(z) has either 4 or 6 terms. He gave semi-explicit formulas
for h(z), from which one can deduce a semi-explicit formula for the Frobenius number g0(a1,a2,a3). This
formula was independently found by Ramı́rez-Alfonsı́n [17]. Denham’s theorem implies that the Frobenius
number in the case n = 3 is quickly computable, which was previously known [9,11,12]. Bresinsky [6] proved
that for d ≥ 4, there is no absolute bound for the number of terms in h(z), in sharp contrast to Denham’s
theorem.

On the computational side, Barvinok–Woods [2] proved that for fixed n, the rational generating function
(6) can be written as a short sum of rational functions; in particular, (6) can be efficiently computed when
n is fixed. A corollary of this fact is that the Frobenius number can be efficiently computed when n is
fixed, a theorem originally due to Kannan [13]. The analogous result for the generalized Frobenius numbers
gk (a1,a2, . . . ,an) is due to Aliev–De Loera–Louveaux [1]. On the other hand, Ramı́rez-Alfonsı́n [16] proved
that trying to efficiently compute the Frobenius number is hopeless if n is left as a variable.

As a final note, while our results give a clear picture what kind of functions to expect for n = 2—e.g.,
sk(a,b) is linear in k and s≤k(a,b) is quadratic in k—it is unclear to us how this generalizes to n≥ 3. Some
basic structural results would undoubtedly shed new light on generalized Frobenius numbers and their
relatives.
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