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LINEAR ALGEBRAIC TECHNIQUES FOR SPANNING TREE

ENUMERATION

STEVEN KLEE AND MATTHEW T. STAMPS

Abstract. Kirchhoff’s matrix-tree theorem asserts that the number of spanning trees in a

finite graph can be computed from the determinant of any of its reduced Laplacian matrices.

In many cases, even for well-studied families of graphs, this can be computationally or

algebraically taxing. We show how two well-known results from linear algebra, the matrix

determinant lemma and the Schur complement, can be used to count the spanning trees in

several significant families of graphs in an elegant manner.

1. Introduction

A graph G consists of a finite set of vertices and a set of edges that connect some pairs of

vertices. For the purposes of this article, we will assume that all graphs are simple, meaning

they do not contain loops (an edge connecting a vertex to itself) or multiple edges between

a given pair of vertices. We will use V (G) and E(G) to denote the vertex set and edge set

of G, respectively. For example, the graph G with

V (G) = {1, 2, 3, 4} and E(G) = {{1, 2}, {2, 3}, {3, 4}, {1, 4}, {1, 3}}

is shown in Figure 1.

A spanning tree in a graph G is a subgraph T ⊆ G, meaning T is a graph with V (T ) ⊆

V (G) and E(T ) ⊆ E(G), that satisfies three conditions:

(1) Every vertex in G is a vertex in T ;

(2) T is connected, meaning it is possible to walk between any two vertices in G using

only edges in T ; and

(3) T does not contain any cycles.

Figure 1 shows an example and several nonexamples of spanning trees in our example graph

G to illustrate the relevance of each of these conditions.
1
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Figure 1. A graph G (left) and four of its subgraphs (right). Subgraph (a) is

not a spanning tree because it does not include all the vertices of G; subgraph

(b) is not a spanning tree because it is not connected; and subgraph (c) is not

a spanning tree because it contains a cycle on vertices 1, 3, and 4. Subgraph

(d), on the other hand, is a spanning tree.

For our example graph G, it is possible to write down all the spanning trees. This is shown

in Figure 2.
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Figure 2. All the spanning trees in the graph G from Figure 1.

In general, the number of spanning trees in a graph can be quite large, and exhaustively

listing all of its spanning trees is not feasible. For this reason, we need to be more resourceful

when counting the spanning trees in a graph. Throughout this article, we will use τ(G) to

denote the number of spanning trees in a graph G. A common approach for calculating τ(G)

involves linear algebraic techniques and the Laplacian matrix of G.
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If G is a graph with vertex set V = V (G), the Laplacian matrix of G, denoted by L(G)

is a |V | × |V | matrix whose rows and columns are indexed by vertices of G. The entries of

the Laplacian matrix are given by

L(G)(i, j) =















deg(i) if i = j,

−1 if i 6= j and {i, j} ∈ E(G),

0 otherwise.

Here, deg(i) denotes the degree of vertex i in G, which is the number of edges in G that

contain i. It follows from the definition that the rows and columns of L(G) sum to 0, which

means L(G) is always singular. Remarkably, if we delete any row and any column of L(G),

then up to a sign, the determinant of the resulting matrix counts the number of spanning

trees in G. This is the content of Kirchhoff’s matrix-tree theorem [10], which we state more

precisely below. Let L(G)ℓ,m denote the matrix obtained from L(G) by deleting the ℓth row

and mth column. This submatrix is sometimes called a reduced Laplacian of G.

Kirchhoff’s Matrix-Tree Theorem. Let G be a connected graph with vertex set V (G) =

{1, . . . , n}. For any vertices ℓ,m ∈ V (G), not necessarily distinct,

τ(G) = (−1)ℓ+m det(L(G)ℓ,m).

The Laplacian matrix of the graph G from Figure 1, along with the reduced Laplacian

L(G)3,2 are

L(G) =











3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2











and L(G)3,2 =







3 −1 −1

−1 −1 0

−1 −1 2






.

It can be checked that det(L(G)) = 0 and det (L(G)3,2) = −8 = (−1)3+2 · 8, which is

consistent with the eight spanning trees we listed in Figure 2.

For the remainder of this article, we will combine two well-known results in linear algebra

with the matrix-tree theorem to obtain elegant explicit formulas for τ(G) in terms of the

number and degrees of its vertices.

2. Tools from linear algebra

Even for simple graphs such as the one in Figure 1, computing the determinant of a reduced

Laplacian can be computationally intensive. Depending on the choice of which row ℓ and

column m are to be crossed out, the determinant of some reduced Laplacians might be easier

to compute than others, but the necessity to make a such a choice may seem unsatisfactory.
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In this section, we present our main result, which will play a central role throughout the

subsequent sections of the article. We proceed with the first of two well-known results from

linear algebra. Recall that the adjugate of an n × n matrix is the transpose of its n × n

matrix of cofactors.

The Matrix Determinant Lemma. Let M be an n×n matrix and let u and v be column

vectors in R
n. Then

det(M + uvT ) = det(M) + vT adj(M)u.

In particular, if M is invertible, then det(M + uvT ) = det(M)
(

1 + vTM−1u
)

.

A proof of the matrix determinant lemma can be found in [9, §0.8.5], where it is referred to

as Cauchy’s formula for the determinant of a rank-one perturbation. The main ingredients

in the proof are the fact that det(·) is a multilinear operator on the rows of a matrix and

the observation that uvT is a rank-one matrix. With this, we are ready to present our main

result.

Lemma 1. Let G be a graph on vertex set V with Laplacian matrix L and let u = (ui)i∈V

and v = (vi)i∈V be column vectors in R
V . Then

det(L+ uvT ) =

(

∑

i∈V

ui

)

·

(

∑

i∈V

vi

)

· τ(G).

Proof. Let 1V,V denote the |V | × |V | matrix of ones and let 1V denote the |V | × 1 column

vector of ones. By Kirchoff’s matrix-tree theorem, every cofactor of L is equal to τ(G),

so adj(L) can be written as τ(G)1V,V = τ(G)1V 1
T
V . Therefore, by the matrix determinant

lemma,

det(L+ uvT ) = det(L) + vT adj(L)u

= 0 + vT
(

τ(G)1V 1
T
V

)

u

=
(

vT1V

) (

1T
V u
)

· τ(G)

=

(

∑

i∈V

vi

)

·

(

∑

i∈V

ui

)

· τ(G).

�

In the case that uvT = 1V,V , this result is credited to Temperley [18].

2.1. The Schur complement of a matrix. Later in this article, there will be instances in

which we partition the vertices of a graph into disjoint subsets as V (G) = V1 ∪ V2. In such

instances, the Laplacian matrix of G can be decomposed into a block matrix of the form
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[

A B

C D

]

,

where the first |V1| rows and columns correspond to the vertices in V1 and the last |V2|

rows and columns correspond to the vertices in V2. In this case, A and D are square matrices

of sizes |V1| × |V1| and |V2| × |V2|, respectively.

Suppose M is any square matrix that can be decomposed into blocks A,B,C,D as above

with A and D square. If D is invertible, then the Schur complement of D in M is defined

as M/D := A − BD−1C. The fundamental reason for using Schur complements is the

following result in [9, §0.8.5].

Lemma 2. Let M be a square matrix decomposed as above into blocks A, B, C, and D with

A and D square and D invertible. Then

det(M) = det(D) · det(A− BD−1C).

When M =

[

a b

c d

]

is a 2× 2 matrix and d 6= 0, Lemma 2 simply says

det(M) = d

(

a− b ·
1

d
· c

)

,

which is just an alternative way of writing the familiar formula for the determinant of a 2×2

matrix.

3. Applications to Complete Graphs

In this section, we demonstrate the applicability of Lemma 1 for enumerating spanning

trees in complete graphs, complete bipartite graphs, and complete multipartite graphs. For-

mal definitions for each of these families of graphs will be given as we progress through this

section, but examples of the complete graph K5, the complete bipartite graph K3,4, and the

complete multipartite graph K2,3,4 are shown in Figure 3.

Figure 3. The complete graph K5 (left), the complete bipartite graph K3,4

(center), and the complete multipartite graph K2,3,4 (right).

The results presented here are all known in the literature, but the proofs seem new and

more elementary than the existing proofs that use Kirchoff’s matrix-tree theorem.
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For any positive integer n, the complete graph Kn is the graph with n vertices, all of

which are connected by edges. The following result, known as Cayley’s formula [4], was first

proved by Borchardt [3] and is widely studied in enumerative combinatorics—for instance,

see [17, §5.3] or [1, §33].

Proposition 1. The number of spanning trees in the complete graph Kn is nn−2.

Proof. The Laplacian matrix L(Kn) has entries of n − 1 on the diagonal and −1 in all off-

diagonal entries. Therefore, L(Kn) + 1n1
T
n = nIn, where In is the n× n identity matrix. By

Lemma 1, n2τ(Kn) = det(nIn) = nn. �

For every pair of positive integers m and n, the complete bipartite graph Km,n has a

vertex set partitioned into two sets, V1 and V2 of sizes m and n, respectively, where every

vertex in V1 is connected to every vertex in V2, but there are no edges among the vertices in

V1 or V2. The next result is a special case of Proposition 3, but its statement is clearer and

its proof is more straightforward, so it warrants presenting this result first. Several proofs

of this result can be found in the literature, for instance by Hartsfield and Werth [8] and

Scoins [16].

Proposition 2. The number of spanning trees in the complete bipartite graph Km,n is

mn−1nm−1.

Proof. Partition the vertex set of Km,n as V1⊔V2 with |V1| = m and |V2| = n so the Laplacian

matrix of Km,n has the block form

L(Km,n) =

[

nIm −1m,n

−1n,m mIn

]

.

Let 1V1
∈ R

m+n be the indicator vector for vertices in V1, meaning each entry indexed by

a vertex in V1 is 1 and all other entries are 0. Similarly, let 1V2
be the indicator vector for

vertices in V2. Then L(Km,n) + 1V2
1T
V1

has the upper-triangular block form

L(Km,n) + 1V2
1T
V1

=

[

nIm −1m,n

0n,m mIn

]

.

Therefore, by Lemma 1, we have

m · n · τ(Km,n) = |V1| · |V2| · τ(Km,n)

= det
(

L(Km,n) + 1V2
1T
V1

)

= det(nIm) · det(mIn)

= nm · nm.

�
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For every k-tuple of positive integers n1, . . . , nk, the complete multipartite graph

Kn1,...,nk
has a vertex set that can be partitioned into k disjoint sets V1, . . . , Vk with |Vi| = ni

for i ∈ {1, . . . , k} such that v ∈ Vi and w ∈ Vj form an edge in G if and only if i 6= j. The

following generalization of Cayley’s formula has several different proofs by Austin [2], Lewis

[12], and Onodera [15].

Proposition 3. Let n1, . . . , nk be positive integers and let n = n1 + · · ·+ nk. The number

of spanning trees in the complete multipartite graph Kn1,...,nk
is given by

τ(Kn1,n2,...,nk
) = nk−2

k
∏

i=1

(n− ni)
ni−1.

Proof. For simplicity, let K = Kn1,n2,...,nk
and let V = V (K) = {v1, v2, . . . , vn} be ordered so

that v1, . . . , vn1
make up V1, vn1+1, . . . , vn1+n2

make up V2, and so on. Then the Laplacian

matrix of K has blocks of the form (n− ni)Ini
on its diagonal and all other entries equal to

−1. This means L(K) + 1V,V = L(K) + 1V 1V T is a block diagonal matrix whose diagonal

blocks have the form (n− ni)Ini
+ 1ni

1T
ni
. By the matrix determinant lemma,

det
(

(n− ni)Ini
+ 1ni

1T
ni

)

= det ((n− ni)Ini
)
(

1 + 1T
ni
((n− ni)Ini

)−1
1ni

)

= (n− ni)
ni

(

1 +
1

n− ni

1T
ni
1ni

)

= (n− ni)
ni

(

1 +
ni

n− ni

)

= (n− ni)
ni−1 · n.

Therefore, by Lemma 1,

n2τ(G) = det (L(K) + 1V 1V T )

=
k
∏

i=1

det ((n− ni)Ini
)

=

k
∏

i=1

(

(n− ni)
ni−1 · n

)

= nk

k
∏

i=1

(n− ni)
ni−1.

�
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4. Application to Ferrers graphs

In this section, we demonstrate the applicability of Lemmas 1 and 2 for enumerating

spanning trees in a family of bipartite graphs corresponding to integer partitions called

Ferrers graphs.

A partition of a positive integer s is a weakly decreasing list of positive integers that sum

to s. For example, (4, 4, 3, 2, 1) is a partition of 14. We write λ = (λ1, . . . , λm) to denote

the parts of a partition λ. To any partition, there is an associated Ferrers diagram, which

is a stack of left-justified boxes with λ1 boxes in the first row, λ2 boxes in the second row,

and so on. Finally, to any Ferrers diagram there is an associated Ferrers graph, whose

vertices are indexed by the rows and columns of the Ferrers diagram with an edge if there is

a box in the corresponding position. The Ferrers diagram and corresponding Ferrers graph

associated to the partition λ = (4, 4, 3, 2, 1) are shown in Figure 4.

r1

r2

r3

r4

r5

c1 c2 c3 c4

r1 r2 r3 r4 r5

c1 c2 c3 c4

Figure 4. The Ferrers diagram (left) and Ferrers graph (right) corresponding

to the partition (4, 4, 3, 2, 1).

Equivalently, a Ferrers graph is a bipartite graph G whose vertices can be partitioned

as R ⊔ C with R = {r1, . . . , rm} (corresponding to the rows of the Ferrers diagram) and

C = {c1, . . . , cn} (corresponding to the columns) such that

(1) if {rk, cℓ} is an edge in G, then so is {ri, cj} for any i ≤ k and j ≤ ℓ, and

(2) {r1, cn} and {rm, c1} are edges in G.

Ehrenborg and van Willigenburg [6, Theorem 2.1] found the following beautiful formula

counting the number of spanning trees in a Ferrers graph.

Theorem 1. Let G be a Ferrers graph whose vertices are partitioned as V (G) = R⊔C with

R = {r1, . . . , rm} and C = {c1, . . . , cn}. Then

τ(G) =

∏

v∈V (G) deg(v)

mn
=

m
∏

i=2

deg(ri)
n
∏

j=2

deg(cj).

We will give a new proof of this result using Lemmas 1 and 2. To begin, let us explore

some general properties of Laplacians of bipartite graphs through the lens of Lemma 1.
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Let G be a connected bipartite graph whose vertices are partitioned as V (G) = R ⊔ C.

The Laplacian matrix of G can be partitioned as a block matrix with the form

L(G) =

[

DR B

BT DC

]

,

where DR (respectively, DC) is an m × m (respectively, n × n) diagonal matrix whose

diagonal entries encode the degrees of the vertices in R (respectively, C). The matrix B is

an m × n matrix with rows indexed by vertices r ∈ R, columns indexed by vertices c ∈ C,

and B(r, c) = −1 if {r, c} is an edge and a 0 otherwise.

Now we consider a rank-one update to the Laplacian matrix that will be useful in inter-

preting Theorem 1. Consider the matrix

M(G) = L(G) + 1C1
T
R = L(G) +

[

0m,m 0m,n

1n,m 0n,n

]

,

where 1R and 1C are the indicator vectors for R and C in R
V (G). We can decompose

M(G) as

M(G) =

[

DR B

Bop DC

]

,

where DR, B, and DC are defined as in L(G) and Bop = BT + 1n,m. As a consequence of

Lemma 1, det(M(G)) = mn · τ(G).

On the other hand, B(r, c) = −1 if and only if {r, c} ∈ E(G), Bop(c, r′) = 1 if and only

if {r′, c} /∈ E(G), and the entries of B and Bop equal zero otherwise. Applying Lemma 2 to

M(G) and DC , we see that

det(M(G)) = det(DC) · det(DR −BD−1
C Bop).

We can compute the entries of S := DR − BD−1
C Bop explicitly. Let r and r′ be elements

of R that are not necessarily distinct. The row indexed by r in B has a nonzero entry of −1

for each c ∈ C that is a neighbor of r and the column indexed by r′ in D−1
C Bop has a nonzero

entry of 1
deg(c)

for each c ∈ C that is not a neighbor of r′. Therefore, the entry in row r and

column r′ of BD−1
C Bop is equal to

∑

−1
deg(c)

, where the sum is over all c ∈ C that are incident

with r, but not r′. Consequently, the entries on the diagonal of BD−1
C Bop are all zero. This

proves the following proposition.
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Proposition 4. Let G be a bipartite graph whose vertex set is partitioned as R ⊔ C. Then

mn · τ(G) =
∏

c∈C

deg(c) · det(S),

where S is the m×m matrix with entries given by

S(r, r′) =











deg(r) if r = r′,
∑

c∈N(r)\N(r′)

1

deg(c)
otherwise,

where N(v) denotes the set of neighbors of a vertex v. �

We can now give a simple proof of Theorem 1.

Proof of Theorem 1. Let G be a Ferrers graph as described in the theorem statement and

observe that the vertices in R are naturally ordered such that N(r1) ⊇ N(r2) ⊇ · · · ⊇ N(rm).

This means N(ri) \N(rj) = ∅ for every i > j, and hence the corresponding entries of the S

matrix in Proposition 4 satisfy S(ri, rj) = 0. Thus, the S matrix is upper triangular with

diagonal entries deg(r) for r ∈ R, which means det(S) =
∏

r∈R deg(r). The result follows by

Proposition 4. �

5. Application to Threshold graphs

In this section, we demonstrate the applicability of Lemmas 1 and 2 for enumerating

spanning trees in an important and well-studied family of graphs called threshold graphs ; see

[13].

A graph G on n vertices is a threshold graph if its vertices can be ordered v1, . . . , vn in

such a way that if {vk, vℓ} ∈ E(G) for some 1 ≤ k < ℓ ≤ n, then {vi, vℓ} ∈ E(G) whenever

i < k and {vk, vj} ∈ E(G) for all j < ℓ. For a threshold graph G, we consider a special

vertex vt, where t is taken to be the largest index such that {vi, vt} ∈ E(G) for all i < t.

Because G is threshold, this means {vi, vj} ∈ E(G) for all 1 ≤ i < j ≤ t.1 An example

threshold graph is illustrated in Figure 5.

1For readers who are familiar with the definition of threshold graphs starting from an initial vertex and

inductively adding dominating or isolated vertices, the vertex vt in our definition is the initial vertex, the

vertices v1, . . . , vt−1 are the dominating vertices in G (where vt−1 is the first dominating vertex, vt−2 the

second, and so on), and the vertices vt+1, . . . , vn are the isolated vertices (where vt+1 is the first isolated

vertex, vt+2 the second, and so on).
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6 1

2

34

5

Figure 5. An example threshold graph on six vertices with t = 4.

In this article, we are only interested in connected threshold graphs since disconnected

graphs do not have any spanning trees. An important property of threshold graphs is that

a threshold graph is connected if and only if its highest index vertex, vn, is not an isolated

vertex. In other words, as long as vn has neighbors, the graph is connected.

As with Ferrers graphs, spanning trees in threshold graphs can also be counted by a

beautiful formula, which appears several places in the literature, including proofs by Chestnut

and Fishkind [5], Hammer and Kelmans [7], and Merris [14].

Theorem 2. Let G be a connected threshold graph on n vertices, and let t ≤ n be the largest

index such that {vi, vt} ∈ E(G) for all i < t. Then

(1) τ(G) =
t−1
∏

i=2

(deg(vi) + 1)
n
∏

i=t+1

deg(vi).

Before we give a new proof of this theorem, let us point out a familiar example. In

the special case that t = n, the threshold graph in question is the complete graph Kn.

In this case, each vertex has degree n − 1, so the expression in equation (1) simplifies to

τ(G) =
∏n−1

i=2 n = nn−2 as we saw in Cayley’s formula.

Proof. We begin with a few observations: First, since G is connected, deg(vn) > 0 as noted

above, which implies that deg(vi) > 0 for all i. Next, recall that {vi, vj} ∈ E(G) for all

i < j ≤ t and, because t was chosen to be the largest index such that {vi, vt} ∈ E(G)

whenever i < t, it follows that {vk, vℓ} /∈ E(G) whenever t ≤ k < ℓ. Therefore, we know

that the Laplacian matrix L(G) can be partitioned into blocks as

L(G) =

[

A B

BT D

]

,

where A is the (t−1)× (t−1) matrix whose diagonal entries are deg(vi) for i < t and whose

off-diagonal entries are all −1, D is the (n − t + 1) × (n − t + 1) diagonal matrix whose

diagonal entries are deg(vj) for j ≥ t, and B records the adjacencies {vi, vj} with i < t and

j ≥ t.
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Now let U = {v1, . . . , vt−1} and V = {v1, . . . , vn}, and consider the matrix L(G) + 1V 1
T
U ,

where 1V is the |V | × 1 vector of ones and 1U is the indicator vector for U in V . By Lemma

1,

det(L(G) + 1V 1
T
U) = (t− 1) · n · τ(G).

On the other hand,

L(G) + 1V 1
T
U =

[

A′ B

Bop D

]

,

where A′ = A + 1U×U is a diagonal matrix with diagonal entries deg(vi) + 1 for i < t

and Bop = BT + 1(V \U)×U . Note that, for all i < t and j ≥ t, B has a nonzero entry

B(i, j) = −1 if and only if {vi, vj} ∈ E(G) and Bop has a nonzero entry Bop(j, i) = 1 if and

only if {vi, vj} /∈ E(G). Since the diagonal matrix D is invertible by our assumption that

deg(vi) > 0 for all i, we can apply Lemma 2 to get that

det(L(G) + 1V 1
T
U) = det(D) det(A′ − BD−1Bop).

As in the proof of Theorem 1, we can explicitly compute the entries of BD−1Bop. For

i < j < t, the entry in the row indexed by vertex vi and column indexed by vj is equal to
∑

−1
deg(vk)

, where the sum is over all vk with k ≥ t such that vk ∈ N(vi) and vk /∈ N(vj).

Because G is a threshold graph, the set of such vk is empty when i < j, which means

A′ −BD−1Bop is an upper-triangular matrix with diagonal entries deg(vi) + 1 for 1 ≤ i < t.

Since D is a diagonal matrix with diagonal entries deg(vk) for k ≥ t, we know that

(t− 1) · n · τ(G) = det(L(G) + 1V 1
T
U) =

t−1
∏

i=1

(deg(vi) + 1)
n
∏

i=t

deg(vi).

To complete the proof, we observe that because G is threshold and deg(vn) > 0, it must

be the case that {v1, vn} ∈ E(G), hence {v1, vj} ∈ E(G) for all 1 < j ≤ n. Therefore,

deg(v1) + 1 = n. Similarly, by our choice of t, we see that deg(vt) = t − 1. The result now

follows by cancelling appropriate terms from both sides. �

6. Conclusion

We have shown that the matrix determinant lemma and method of Schur complements can

be used to simplify spanning tree enumeration for several families of graphs. While they may

not shed as much light on spanning tree enumeration as a bijective proof would, they do give

simpler, more direct proofs than other purely linear-algebraic approaches using the matrix-

tree theorem. Our methods also extend naturally to weighted spanning tree enumeration

[11]. Which other families of graphs are amenable to having their spanning trees counted by

Lemma 1? We hope you can tell us!
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