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RIESZ’S THEOREM FOR LUMER’S HARDY SPACES

MARIJAN MARKOVIĆ

ABSTRACT. In this note we obtain a version of the well-known Riesz’s theorem on con-

jugate harmonic functions for Lumer’s Hardy spaces (Lh)2(Ω) on arbitrary domains Ω:

If a real-valued harmonic function U ∈ (Lh)2(Ω) has a harmonic conjugate V on Ω
(i.e., a real-valued harmonic function such that U + iV is analytic on Ω), then U + iV

also belongs to (Lh)2(Ω), and for the normalized conjugate we have the norm estimate

‖U + iV ‖(Lh)2(Ω) ≤
√
2‖U‖(Lh)2(Ω) , with the best possible constant.

1. ON LUMER’S HARDY SPACES

Let U = {z ∈ C : |z| < 1} be the unit disk and let T = {z ∈ C : |z| = 1} be the unit

circle. For a function f on U and r ∈ (0, 1) we denote by fr the function fr(ζ) = f(rζ),
ζ ∈ U.

The harmonic Hardy space hp, for p ∈ (1,∞), consists of all harmonic complex-valued

functions U on U for which the integral mean

Mp(U, r) =

{
∫

T

|Ur(ζ)|p
|dζ|
2π

}1/p

remains bounded as r approaches 1. Since |U |p is subharmonic on U, the integral mean

Mp(U, r) is increasing in r. The norm on hp is given by

‖U‖p = lim
r→1

Mp(U, r).

The analytic Hardy space Hp is the subspace of hp that contains all analytic functions. For

the theory of Hardy spaces in the unit disk we refer to [1, 2, 3, 7].

There are generalizations of Hardy spaces for other domains in C. The generalizations

we consider here are known as Lumer’s Hardy spaces [1, 2, 4, 5, 6]. We mention below

some facts regarding these spaces that we will need.

The harmonic Lumer’s Hardy space (Lh)p(Ω) contains all harmonic complex-valued

functions U on a domain Ω ⊆ C such that the subharmonic function |U |p has a harmonic

majorant on Ω. In that case, the function |U |p has the least harmonic majorant on Ω. Let it

be denoted by HU . For ζ0 ∈ Ω one introduces a norm on (Lh)p(Ω) in the following way:

(1.1) ‖U‖p,ζ0 = H
1/p
U (ζ0).

The different norms on (Lh)p(Ω) that arise by selecting different elements of the domain

Ω are mutually equivalent. The analytic Lumer’s Hardy space (LH)p(Ω) is the subspace

of (Lh)p(Ω) that consists of all analytic functions. The two spaces (Lh)p(U) and hp

coincide (as do (LH)p(U) and Hp). The norms on these spaces are equal, if we select

ζ0 = 0 for the Lumer case.

Lumer’s Hardy spaces are conformally invariant in the following sense: If Φ is a con-

formal mapping of a domain Ω̃ onto Ω, then a function U belongs to (Lh)p(Ω) if and
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only if Ũ = U ◦ Φ belongs to (Lh)p(Ω̃). The mapping Φ induces an isometric isomor-

phism U → Ũ of the space (Lh)p(Ω) onto (Lh)p(Ω̃), since the equality for the least

harmonic majorants HU ◦ Φ = HŨ implies that ‖U‖p,ζ0 = ‖Ũ‖p,ζ̃0 , where ζ̃0 ∈ Ω̃

satisfies ζ0 = Φ(ζ̃0).

2. RIESZ’S THEOREM FOR LUMER’S HARDY SPACES

The classical Riesz theorem on conjugate harmonic functions says that for every p ∈
(1,∞) there exists a constant cp such that

‖U + iV ‖p ≤ cp‖U‖p,
where U is a real-valued function in hp, V is a harmonic conjugate to U on U, normalized

such that V (0) = 0. See, for instance, [7, Theorem 17.26]. Verbitsky proved [9] that the

best possible constant in the Riesz inequality is

(2.1) cp =

{

sec π
2p , if 1 < p ≤ 2;

csc π
2p , if 2 ≤ p < ∞.

Note that, in particular, we have c2 =
√
2.

Our aim in this section is to prove the Riesz theorem for real-valued harmonic functions

in the Lumer’s Hardy space (Lh)2(Ω) for which there exists a conjugate. We find that the

constant
√
2 is valid for all domains Ω. This is the content of the following theorem.

Theorem 2.1. Let Ω ⊆ C be a domain and ζ0 ∈ Ω. Assume that for real-valued U ∈
(Lh)2(Ω) there exists a harmonic conjugate of U on the domain Ω, denoted by V , and let

it be normalized such that V (ζ0) = 0. Then we have the Riesz inequality

(2.2) ‖U + iV ‖2,ζ0 ≤
√
2‖U‖2,ζ0,

with the best possible constant.

Proof. We will use the following elementary equality, which is easy to check:

(2.3) |z|2 = 2(ℜz)2 −ℜz2, z ∈ C.

Indeed, since 2ℜz = z + z, we have

4(ℜz)2 = (z + z)2 = z2 + z2 + 2zz = 2ℜz2 + 2|z|2;
the equality mentioned above then follows.

Let the analytic function U + iV be denoted by F , and let HU be the least harmonic

majorant of the subharmonic function |U |2 on Ω. By applying equation (2.3) for z = F (ζ),
ζ ∈ Ω, we obtain

|F (ζ)|2 = 2(ℜF (ζ))2 −ℜF 2(ζ) = 2|U(ζ)|2 −ℜF 2(ζ)

≤ 2HU (ζ)−ℜF 2(ζ),

which proves that 2HU − ℜF 2 is a harmonic majorant of |F |2 on Ω. It follows that

F ∈ (LH)2(Ω). Moreover, if HF is the least harmonic majorant of |F |2 on Ω, we have

HF (ζ) ≤ 2HU (ζ)−ℜF 2(ζ).

Since F (ζ0) = U(ζ0) is a real number, we obtain

‖F‖22,ζ0 = HF (ζ0) ≤ 2HU (ζ0)−ℜF 2(ζ0) = 2HU (ζ0)− U2(ζ0)

≤ 2HU (ζ0) = 2‖U‖22,ζ0.
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Finally, we conclude that

‖F‖2,ζ0 ≤
√
2‖U‖2,ζ0,

which is what we wanted to prove.

It is not hard to prove that
√
2 is a sharp constant in the Riesz inequality (2.2). Indeed,

consider the unit disk U as the domain Ω. If we again use equation (2.3) for z = F (ζ), we

have

|F (ζ)|2 = 2U2(ζ)−ℜF 2(ζ).

Since ℜF 2 is a harmonic function on U, by applying the equality obtained above and the

mean-value property for harmonic functions, it follows that

M2

2 (F, r) =

∫

T

|Fr(ζ)|2
|dζ|
2π

= 2

∫

T

U2

r (ζ)
|dζ|
2π

−
∫

T

ℜF 2

r (ζ)
|dζ|
2π

= 2M2

2
(U, r)−ℜF 2(0) = 2M2

2
(U, r)− U2(0).

If we now let r → 1, we obtain

‖F‖2 =
√
2‖U‖2

provided that U(0) = 0. �

Note that the constant
√
2 in the Riesz inequality (2.2) does not depend on ζ0 ∈ Ω,

although the norm of a function in the Lumer’s Hardy space (Lh)2(Ω) does. If Ω is a

simply connected domain with at least two boundary points, this is expected, since the

group of all conformal automorphisms of the domain Ω acts transitively on Ω, i.e., for

any ζ̃0 ∈ Ω there exists a conformal automorphism Φ of Ω such that Φ(ζ̃0) = ζ0. As

we have already said, the mapping Φ induces an isometric isomorphism of (Lh)2(Ω) onto

itself. However, for multi-connected domains it is not true, in general, that the group of all

conformal automorphisms acts transitively on a domain.

3. REMARKS ON THE HIGHER-DIMENSIONAL SETTING AND A CONJECTURE

Lumer’s Hardy spaces (Lh)p(Ω) and (LH)p(Ω) on domains Ω in C
n are defined in a

similar way as in the one-dimensional case [4]. However, instead of the harmonic majorant

we have to use a pluriharmonic majorant, i.e., a function that is locally the real part of

an analytic function on Ω. Therefore, the Lumer’s Hardy space (Lh)p(Ω) contains all

pluriharmonic functions U on Ω such that |U |p has a pluriharmonic majorant on Ω. The

analytic Lumer’s Hardy space (LH)p(Ω) is the subspace of (Lh)p(Ω) that consists of all

analytic functions. The norm on (Lh)p(Ω) may be introduced with respect to any ζ0 ∈ Ω
using the least pluriharmonic majorant as in the ordinary case (1.1).

The proof of Riesz’s theorem given in the preceding section may be adapted directly for

Lumer’s Hardy spaces on domains in C
n. Therefore, the Riesz inequality (2.2) remains

valid, with the same constant
√
2, in this setting.

We conjecture that for every p ∈ (1,∞) and every domain Ω ⊆ C
n there holds the

version of Riesz’s theorem: Let F be an analytic function on Ω such that ℑF (ζ0) = 0; if

ℜF ∈ (Lh)p(Ω), then F ∈ (LH)p(Ω) and there is the Riesz inequality

‖F‖p,ζ0 ≤ cp‖ℜF‖p,ζ0 ,

where cp is the Verbitsky constant (2.1).



RIESZ’S THEOREM FOR LUMER’S HARDY SPACES 4

In seventies, Stout [8, Theorem IV.1] proved Riesz’s theorem for Lumer’s Hardy spaces

(LH)p(Ω) on C2-smooth domains Ω ⊆ C
n (without a precise constant in the Riesz in-

equality). In this case there exists an integral representation of the Lumer’s norm of an

analytic function that is used in order to obtain the result.
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