arXiv:2001.08065v2 [math.NT] 4 Jun 2021

ON ARITHMETIC PROGRESSIONS OF POWERS
IN CYCLOTOMIC POLYNOMIALS

HUNG VIET CHU

ABSTRACT. We determine necessary conditions for when powers corresponding to
positive/negative coefficients of ®,, are in arithmetic progression. When n = pq for
any primes ¢ > p > 2, our conditions are also sufficient. Finally, we generalize the
result when n = pq to the so-called inclusion-exclusion polynomials first introduced
by Bachman.

1. INTRODUCTION AND MAIN RESULTS.

For integers n > 1, the nth cyclotomic polynomial is defined as

n

e.(X) = ] xX-e).

m=1,(m,n)=1

It is well known that ®,, is in Z[X| with degree ¢(n), where ¢ is the Euler totient
function. In the study of cyclotomic polynomials, we can reduce our enquiry to the
case when n is odd, square-free, and composite by [10, Remark 2.2]. Much work has
been done to characterize ®,, (see [1, 3. 16, [10]), and many nice results are achieved
when n has a small number of prime divisors (see [4, 5, [7]). In particular, we know an
explicit formula for ®,,:

D, (X) = (ZX”) <Z qu) — (S X”’) <§ qu> X7P (1.1)

i=r+4+1 Jj=s+1

where r, s are nonnegative and pr + qs = (p — 1)(¢ — 1). For its derivation, see [7].
Clearly, r and s, when 0 < r < ¢, are uniquely determined as follows:

pr = (p—1)(g—1)modq (1.2)
s = ((p—Dg—1)—pr)/q. (1.3)

If we expand the products in (L)), the resulting monomial terms are all different [[7].
Our first main result shows necessary conditions when powers of X are in arithmetic
progression. Two examples are

Po(X) = X2 XM x? - XB X0 Xt X3 X 41,
@33(X) — X20—X19+X17—X16+X14—X13+"'—X4+X3—X—|—1.
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Observe that powers corresponding to positive coefficients of ®5;(X) are in arithmetic
progression, and powers corresponding to negative coefficients of ®33(.X) are in arith-
metic progression. Our theorems provide necessary conditions for when these arith-
metic progressions appear. Let ¢, ;, be the coefficient of X* and define

St =1k :cupe>0}tand S, = {k: c, <0}

Theorem 1.1. Let n be an odd, square-free, composite number. Write n = pips - - - py,
where py < py < --- < p;. Then the following hold.

(i) If t is odd, then S is not in arithmetic progression.

(ii) Ift is even and St is in arithmetic progression, then ps = 1 mod p;.

Theorem 1.2. Let n be an odd, square-free, composite number. Write n. = pips - - - py,
where py < py < --- < p;. Then the following hold.

(1) Ift is odd, then S, is not in arithmetic progression.

(i1) Ift is even and S, is in arithmetic progression, then p, = —1 mod p;.

We have the following two corollaries.

Corollary 1.3. Let n be an odd, square-free, composite number. Then S, and S, are
not simultaneously in arithmetic progression.

Proof. Write n = pips -+ -py, Where p; < py < -+ < p;. If t is odd, Theorem [l
says that S is not in arithmetic progression. Suppose that ¢ is even and that both S
and S, are in arithmetic progression. By items (ii) of Theorem [[.I]and Theorem [[.2]
po = mip; + 1 = mop; — 1 for some my, ms € N. Hence, 2p, = (my + my)p1, which
implies that either p; = 2 or p; divides p,. Both cases are impossible. 0

Corollary 1.4. Let 2 < p < q be primes. Then S;:Z forms an arithmetic progression if
and only if ¢ = mp + 1 for some m € N, and S, forms an arithmetic progression if
and only if ¢ = mp — 1 for some m € N.

Proof. Due to similarity, we only prove the result for S;jl. The forward implication
follows directly from Theorem [L1] item (ii). For the backward implication, we use
formula (II). Suppose that ¢ = mp + 1 for some m € N. Then formulas (I.2) and
(L3) giver = m(p—1) and s = 0. Combined with formula (L.I), this clearly indicates
that S is in arithmetic progression of difference p. U

Finally, we generalize Corollary [[.4]to a family of inclusion-exclusion polynomials
introduced by Bachman [2]]. An inclusion-exclusion polynomial is defined as
(X —1)(X% —1)
(Xo—1)(Xb—1)
where a,b are relatively prime natural numbers; F,; can also be interpreted as the

semigroup polynomial of the numerical semigroup generated by a and b [9]. When a
and b are odd primes, P, ;(X) = ©(X).

Pa,b(X) =

Theorem 1.5. Let 1 < a < b be coprime natural numbers. Then P,,(X) is a poly-
nomial. Furthermore, the exponents of the monomials with positive coefficient are in
arithmetic progression if and only if b = 1 mod a. The exponents of the monomials with
negative coefficient are in arithmetic progression if and only if b = —1 mod a.
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2. PROOFS OF THEOREMS [[LI]AND .21

We modify a powerful technique, which was used by Schur [8] to prove there ex-
ist cyclotomic polynomials with coefficients arbitrarily large in absolute value. The
following lemma is the key ingredient.

Lemma 2.1. Let n be an odd, square-free, composite number. Write n. = pips - - - py.
Then modulo XP2*2,

P1—1 yi +1 Y .
, — XP2 _ XP2
d,(X) = { img X' — XPr—XP iftis odd;

Yoo X =y Xl X2 — Xt f s even.

Proof. By [10, Lemma 1.2], we can write: ®,(X) = [],, (X¢ - 1)#/9) where yu(n)
denotes the Mobius function. Modulo X?212, we have

D, (X) = (X — D (XPr — 1)rn/po)(xpz _ 1 )m(n/p2) H (X4 —1)Hn/d)

din
d>p2

= (X — 1)u(n) (XPr — 1)u(n/p1)(sz _ 1)u(n/:nz)(_1)f7
where £ =) 4, p(n/d).

d>p2
If t is odd, u(n) = —1 and p(n/p1) = p(n/p2) = 1. Since it is well known that
> gn H(d) = Oforall n > 1, we get £ = —1. Thus,
(X7 - 1)(X” — 1)

P, (X) = — <1 = —(1+ X+ 4+ X)X —1)

=1+ X4 4 X0 - XP2— xPrL
If t is even, we get u(n) = 1, u(n/p1) = p(n/ps) = —1 and ¢ = 1. Therefore,
1 1
1— Xr1— Xre
= (X DA+ XP 4 X2 4 (1 +XP2 X2 4.0

ZXim _ ZXimH + XP2 _ xPHl,
i=0

1=0

D,(X) = —(X —1)

We have finished our proof. U

Lemma 2.2. Let n be an odd, square-free, composite number. Write n. = pips - - - py.
Suppose 2p1 + 2py > ¢(n) + 2, where ¢ is the Euler totient function. Then t = 2.

Proof. Suppose that ¢ > 3. Then
p(n)+2 > (pr—1)p2—1(ps—1)+2 > 6(p1 — 1)(p2 — 1) +2
= 6p1p2 — 6(p1 +p2) + 8.

Hence, 2p;+2ps > ¢(n)+2 implies that 4(p;+p2) > 3p1pa+4, which is a contradiction
since p1py > 4p, and 2pyps > 4p,. Therefore, t = 2. 0

We are ready to prove Theorems [I.1]and
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Proof of Theorem[L 1l If t is odd and S;" is in arithmetic progression, then by Lemma
2.1lit must be that S = {0,1,2,..., ¢(n)}. However, X?? and X?>T! have coefficient
—1, a contradiction. Therefore, S;" is not in arithmetic progression.

If ¢ is even, Lemma 2.1] guarantees that 0 and p; are in S;". Suppose that S;' is in
arithmetic progression. If py € S, then p; divides po, a contradiction. So, X?> must
be cancelled out by X™**+! for some m. Therefore, p, = mp; + 1, as desired. O

Proof of Theorem If ¢ is odd, Lemma[2 1] says that p, and p;+ 1 are in S;, . Suppose
that S, is in arithmetic progression. Then S, = {p2,p2 + 1,...,¢(n) — p2}. Thus,
the number of powers with negative coefficients is exactly ¢(n) — 2p, + 1. Hence,
—(¢(n) — 2py + 1) is an upper bound for the sum of these coefficients. By symmetry
of cyclotomic polynomials, we have

S;:_ = {03172a"'7p1 - 1,@5(”) — D1 + 1,,@5(77,) - 17¢(n)}

Thus, the number of powers with positive coefficient is exactly 2p;. Since each coeffi-
cientis 1, the sum of them is 2p;. Using the fact that ,,(1) = 1if n is not a prime power,
we know that 2p; — (¢(n) —2pa+1) > 1, which is equivalent to 2p; +2ps > ¢(n)+2.
By Lemma[2.2] we have ¢ = 2, which contradicts the assumption that ¢ is odd.

If ¢ is even, Lemma 2.1l says that 1 and p; + 1 are in S,,. If po + 1isin S, , p;
must divide po, a contradiction. So X?>*! must be cancelled by X™! for some m € N.
Therefore, po = mp; — 1. O

3. PROOF OF THEOREM [L.3]

We first prove that P, ;,(X) is a polynomial and then consider powers of monomials
with positive coefficients.

Lemma 3.1. For 1 < a < band ged(a,b) = 1, there exists a unique 3 < m < b such
that b divides (m — 1)a — 1.

Proof. Because (a,b) = 1, there exist r and s such that sa + tb = 1. All integral
solutions of the equation xa + yb = 1 are of the form (x,y) = (r + tb, s — ta) for some
t € 7Z. Hence, there is a unique solution with 1 < x = rg+tob < b. Setm = ro+tob+1.
By definition, b divides (m — 1)a — 1. It remains to show 3 < m < b or equivalently,
1 <rg+tehb <b. If rg+1tob = 1; then b divides a — 1, which contradicts 1 < a < b. So
ro+tob > 1. If ro +tob = b, then b divides 1, which contradicts b > 1. So ro +tgb < b.
This completes the proof. 0

Proof of Theorem[[.3l We write
(X — 1)(xeb-D) 4 xo=2) 1 ... 4 1)
Xb—1 .

It suffices to prove that f(X) := (X — 1)(X*®=1 4 X®=2) 1 ... 4 1) can be written
as (X® —1)g(X) for some polynomial f(X). We have

f(X) _ (Xab—a—i-l + Xab—2a+1 4ot X) _ (Xflb—fl + Xab—2a 4+ .. 4 1) (3.1)

Let 3 < m < b be chosen such that b divides (m — 1)a — 1. By Lemma[3.1], m exists
and is unique. Foreach 1 < k < m — 1, we have

Pa,b(X) =

Xab—lm—l—l . Xab—(b—l—k—m—l—l)a _ Xa(m—k—l) (Xab—((m—l)a—l) o 1>’ (32)
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which is divisible by X — 1. For each m < k < b, we have
Xab—ka—i—l . Xab—(k—m+l)a _ Xab—ka+l(1 . X(m—l)a—l) (3 3)
— , )

which is divisible by X® — 1. From (3.), (3.2)), and (3.3), we know that P, ;,(X) is a
polynomial. Furthermore, letting ¢ := ((m — 1)a — 1)/b > 1. we can write

m—1 b
Pop(X) = > X h oy (X) = Y 0 xebthetly(X), (3.4)
k=1 k=m

where u(X) = XD X020y ] and 0(X) = X4 XEDP 4.4

Next, we prove that exponents of monomials with positive coefficients are in arith-
metic progression if and only if b = 1 mod a. Forward implication: By (3.4), the two
largest powers with positive coefficients are a(m —2)+(a—£¢—1)b and a(m—3)+ (a—
¢ — 1)b. (Note that the two monomials having these powers are not cancelled.) Hence,
we have an arithmetic progression of difference a. If u(X') has exactly one summand
ora—/{—1=0,thenb = 1mod a. Assume thata — ¢ — 1 > 0. Because ged(a, b) = 1,
it follows that X @(m=2+(e=t=2)b mygt get cancelled. Then there exist 1 < j < ¢ and
m < k < b such that

alm—=2)+ (a—0—2)b = (ab—ka+ 1)+ bl — j).

Replacing b¢ = (m — 1)a — 1 and simplifying, we arrive at a(k —m) + 1 = b(2 — j),
which gives j = 1. So a(k—m)+1 = b and thus, b = 1 mod a. Backward implication:
straightforward calculations show m = b — (b — 1)/a + 1 and ¢ = a — 1. Hence,
u(X) = 1 and we have

m—1 b
Py (X) = ZXa(m—k—l) _ Z Xab—lm—i-l(X(Z—l)b L XEb 4 1).
k=1 k=m

Since the power of each monomial in the second sum is (1 — 2b) mod a, no summand
in the first sum gets cancelled. Therefore, the powers of monomials with positive coef-
ficient are in an arithmetic progression. We have shown that exponents of monomials
with positive coefficients are in arithmetic progression if and only if b = 1 mod a. As
the proof for negative coefficients is similar, we omit it. U
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