
Morikawa’s Unsolved Problem
Jan E. Holly and David Krumm

Abstract. By combining theoretical and computational techniques from geometry, calculus,
group theory, and Galois theory, we prove the nonexistence of a closed-form algebraic solution
to a Japanese geometry problem first stated in the early nineteenth century. This resolves an
outstanding problem from the sangaku tablets which were at one time displayed in temples
and shrines throughout Japan.

1. INTRODUCTION. During the Edo Period of Japanese history (1603–1867) there
developed a curious practice of hanging wooden tablets with mathematical content
from the eaves of Buddhist temples and Shinto shrines. Many of these tablets, known
as sangaku, have been lost to history, but close to 900 of them have been preserved
[8]. The problems inscribed on the surviving sangaku are mostly of a geometric na-
ture, and they range in difficulty from trivial to unsolved. Solutions to many of these
problems can be found in the books by Fukagawa and Pedoe [4] and Fukagawa and
Rothman [5]; the latter reference also discusses various historical aspects surrounding
the mathematics of the Edo Period.

Unsolved sangaku problems seem to be rare; in fact, we are aware of only two such
problems listed in the literature, both in Fukagawa and Rothman [5, Chapter 7]. One of
the problems mentioned in that text was originally proposed in 1821 and has recently
been solved [6]. The present article concerns the other unsolved problem, which was
proposed by Jihei Morikawa during the same time period.

The main objects involved in Morikawa’s problem are illustrated in Figure 1. Given
a line L and circles C1 and Cr of radii 1 and r ≥ 1, respectively, such that C1 and
Cr are tangent to each other and to L, the problem asks us to express, in terms of r,
the minimum side length µ(r) of a square that can be inscribed in the region between
C1, Cr, and L. Here, “inscribed” means touching all three of C1, Cr, and L.
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µ(r)
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Figure 1. The circles C1 and Cr , the line L, and the minimal inscribed square with side length µ(r). The
original statement of the problem involves circles of radii a and b with b ≥ a, but a scaling of the plane
reduces this general case to the case a = 1.
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A surviving travel diary of mathematician Kanzan Yamaguchi, a contemporary
of Morikawa, includes an entry with some additional information about Morikawa’s
problem and the sangaku containing it. Based on that entry, Fukagawa and Rothman
[5, p. 265] report the following.

The tablet contained no solution, but Morikawa had written, “I will be very
happy if someone can solve this problem.” And so, says Yamaguchi, “I went
to Morikawa’s home with my friend Takeda and asked him what the answer is.
He said that he could not solve the problem yet.” Neither does Yamaguchi’s di-
ary contain a solution and, like Morikawa, we would be very happy if someone
solves this problem. [5, p. 265]

It seems surprising that Morikawa’s problem would have frustrated all attempts at
a solution, considering that the mathematicians of the Edo Period had a strong under-
standing of geometry, were adept in the use of algebra, and even had some knowledge
of basic calculus. One begins to wonder whether the problem can in fact be solved.

The purpose of this article is to address the question of the existence of a closed-
form expression for µ(r). From our analysis in Section 4 it follows that µ(r) is a root
of a polynomial whose coefficients are polynomials in r; in light of this fact, a natural
question is whether µ(r) is expressible by radicals in terms of r. Precise terminology
is defined below, but the question can be stated intuitively as follows: Is there a radical
expression, such as

11
√

3r − π · 3
√
r5 − r + 2i+

4
√

1 + i+ 5
√
r6 − 7

3−
√

2r3 + 9r − 5
,

that for every real number r ≥ 1 can be evaluated to yield µ(r)?
We provide here a negative answer to this question, thus showing that a closed-form

algebraic solution does not exist in the classical sense. In order to state our results
we introduce the following terminology. Recall that if J ⊆ C is a nonempty set and
f : J → C is a function, we say that f is an algebraic function if there exists a nonzero
polynomial q ∈ C[k, x] such that q(c, f(c)) = 0 for every c ∈ J . If, moreover, this
condition is satisfied by a polynomial q whose Galois group over the field C(k) is
solvable — or equivalently, whose splitting field is contained in a radical extension
of C(k) — then we say that f is a radical function.

We can now state our main result.

Theorem (see Theorem 5.4). The function µ : [1,∞) → R is not radical. In fact,
there is no infinite subset J ⊆ [1,∞) such that µ : J → R is radical.

The proof of this theorem makes critical use of computational tools in Galois theory
that have only recently become available due to work of N. Sutherland [9]. In partic-
ular, our argument relies on Sutherland’s implementation in the system MAGMA [1]
of an algorithm for computing geometric Galois groups. Besides this algorithm, the
proof uses elementary geometry as well as calculus and Galois theory.

This article is organized as follows. In Section 2 we provide notation and basic re-
sults about inscribed squares. In Section 3 we show that any minimal inscribed square
must be positioned as in Figure 1, with a corner on each of C1, Cr, and L, and with no
side of the square tangent to these objects. In Section 4 we derive an explicit formula
for a function whose minimum value is µ(r); as a byproduct we obtain a numerical
method for approximating µ(r) given the radius r. In addition, we show that µ(r) can
be expressed in terms of a root of a certain polynomial of degree 10. Finally, in Section
5 we use Galois theory to study this polynomial and thus prove the main theorem.
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2. CONFIGURATIONS FOR INSCRIBED SQUARES. Figure 2 shows the nota-
tion that will be used throughout the article, regardless of which inscribed square is
under discussion. Denoted are the circles (C1, Cr), centers of the circles (O1, Or),
line (L), vertices of the square (V1, Vr, Vup , Vdn), and angle between L and the lower
right side of the square (θ ∈ [0, π/2)). If θ = 0, then Vdn is the lower left vertex. To
facilitate phrasing, the line is considered horizontal as shown, with C1 on the left.

Most of the discussion in Sections 2 and 3 assumes an arbitrary but fixed value
of r ≥ 1. Basic geometric facts [2] are used throughout.

1O

rO

r V

1V

line L

rCcircle

: on line LdnV

upV : highest corner

1C: center of 

rC: center of 

1C(radius of       = 1)

1Ccircle

rC(radius of       = r    1)>

θ

Figure 2. Notation for the line, two circles, and square.

Lemma 2.1. For inscribed squares (for fixed r ≥ 1), let θ ∈ [0, π/2) be as in Fig-
ure 2.

(i) For every θ ∈ [0, π/2), there is a unique inscribed square.
(ii) There exists a minimum side length over the set of inscribed squares. (Thus,

Morikawa’s problem is well-defined.)

Note: Throughout the rest of the article, the side length of the inscribed square at angle
θ ∈ [0, π/2) will be denoted s(θ).

Proof. To prove (i), fix θ ∈ [0, π/2). We find the inscribed square at angle θ as fol-
lows, stated somewhat informally to avoid excessive technicalities.

Consider all squares, inscribed or not, that make angle θ with L as in Figure 2. Let
s be a side length under consideration for being that of an inscribed square. Imagine
sliding such a square — with angle θ and side length s— along L until the square is to
the right of C1 but is just touching C1. If s is too small, then the square will not reach
Cr. If s is too large, then the square will overlap Cr. By a continuity and monotonicity
argument, there is a unique s such that the C1-touching square will exactly reach Cr.

The existence and uniqueness of an inscribed square follows from that of s above,
along with the fact that the inscribed square clearly cannot be moved left or right and
still be inscribed.

Subsequently, (ii) follows from the facts that s(θ) is continuous on [0, π/2) and
limθ→π/2− s(θ) = s(0).
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Generally in this article, “the square” will mean the inscribed square as given by the
context, unless stated otherwise. Figure 3 shows the types of intersections between the
square and circles as θ increases from 0 to π/2, i.e., as the square rotates (and changes
size as necessary). Each combination of such intersections, as shown in Figure 3, will
henceforth be referred to as a configuration. The configurations as illustrated in Fig-
ure 3 will be denoted Con1, Con2, Con3, etc.

LEGEND

tangent,

not at corner

intersect at corner,

not tangent

tangent at corner

=

=

=

Con1 Con2 Con3

Con10  Con9  Con14   

Con4

Con5

Con6

Con11 Con12Con7

Con8 Con13 

Con15

Con16

Con17

Con18

Con19

to Con1

to Con2 to Con3

Figure 3. Possible configurations, in terms of the square’s types of intersections with the line and circles. In
Section 3 we prove that a minimal square can occur only in Con6, or in Con19 with r = 1, by eliminating all of
the others: Con1,2,3 (Lemma 3.2), Con4,5 (Lemma 3.3), Con7,10,11 (Lemma 3.4), Con12,13,14 (Lemma 3.5),
Con15 (Lemma 3.6), Con16,18 (Lemma 3.7), Con19 (Lemma 3.8), Con8,9,17 (Lemma 3.16).
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Lemma 2.2. Figure 3 shows all possible steps through the configurations as θ in-
creases from 0 to π/2.

Proof. The steps through the configurations obviously depend upon r. For example,
from Con6, the value of r determines which circle first becomes tangent to a side of
the square as θ increases. Small r leads to Con7, large r leads to Con12, and a certain
intermediate value of r leads to Con11. Also note that only r = 1 gives Con9.

The fact that these are the steps through the configurations is generally clear, with
two exceptions: from Con8 to Con9 and Con10, and from Con15 to Con16.

For Con8 to Con9 and Con10, the question is whether the upper right side of the
square could instead rotate past tangency with Cr before the upper left side of the
square becomes tangent toC1. This can happen only if the lower left side of the square
has steeper slope than the line through Vdn and O1 — i.e., the lower left side “points
above” O1 — and the lower right side points above Or. However, this is impossible
because the circle of radius (r + 1)/2 through O1 and Or, as shown in Figure 4, is
tangent to L. Every angle inscribed in a semicircle is a right angle, so since L is below
the new circle except at the point of tangency, Q, the lower sides of the square cannot
both point above their respective circles’ centers. At best, the lower sides can point
exactly at the centers, but only if r = 1 and Vdn = Q.

circle of

radius

(r + 1)  2/

Q

1O

rO

L

rC1C

1

r

Figure 4. Circle with diameter O1-to-Or is tangent to L.

For Con15 to Con16, the question is whether Vup can instead touch C1 before the
lower right side of the square touches Cr. This can happen only if the square with
upper right side tangent at Vr to Cr has Vup touching C1. However, this is impossible.
Any square with upper right side tangent at Vr to Cr must have Vdn at or to the left of
Q in Figure 4 in order for the square to reach C1, but then the square is angled such
that Vup cannot touch C1.

3. CONFIGURATIONS FOR MINIMAL SQUARES. In this section we prove that
a minimal square — i.e., an inscribed square with side length that is minimal over all
orientations — exists only in Con6, and has V1 lower than O1. An exception occurs if
r = 1, where Con19 is the reflection of Con6 and thus also has a minimal square. The
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proof consists of a sequence of lemmas showing that a minimal square cannot be in
any other configuration. The final result is given by Proposition 3.17.

Additional notation is used throughout this section, for the lines perpendicular to
each of C1, Cr, and L at the points of contact with the square under consideration. As
illustrated in Figure 5, these (dashed) lines are denoted T1, Tr, and TL, respectively.
As before, unless stated otherwise we assume an arbitrary but fixed value of r ≥ 1.

Lemma 3.1. For a given inscribed square, if T1 intersects TL above Tr (respectively,
below Tr), then s is a strictly decreasing (respectively, increasing) function of θ at that
square’s angle.

Proof. If T1 intersects TL above Tr, then the lines form a triangle to the right of TL,
such as in Figure 5.

rC

1C

1T

LT
rT

1O

rO

L

θ

Figure 5. Notation: Lines T1, Tr , and TL through points of intersection.

Consider fixing the size of the square, and rotating it counterclockwise about a point
inside the triangle. As the square begins to rotate, it starts to overlap with each of C1,
Cr, and L. Formally, the rate of change of the following are positive: (1) the radius of
C1 minus the distance from O1 to the square, (2) the radius of Cr minus the distance
from Or to the square, and (3) the distance below L to the lowest point on the square.
This means that the difference between the side lengths of an inscribed square and a
fixed-size square is a strictly decreasing function of θ; thus s is a strictly decreasing
function of θ. Similarly, if T1 intersects TL below Tr, then s is a strictly increasing
function of θ.

Lemma 3.2. A minimal square cannot be in Con1, Con2, or Con3.

Proof. Each of these configurations corresponds to θ = 0. For small enough ε > 0,
it is easy to see that for all θ ∈ (0, ε), T1 intersects TL above Tr. Therefore by
Lemma 3.1, s(θ) is strictly decreasing for θ ∈ (0, ε) and thus by continuity s(0) is
not minimal.
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Lemma 3.3. A minimal square cannot be in Con4 or Con5, and a minimal square
cannot be in Con6 with V1 as high or higher than O1.

Proof. Figure 6 illustrates Con4, and the same reasoning applies to the other two con-
figurations. First, note that V1 is higher than O1 in Con4 and Con5 because some part
of the left side of the square is tangent to C1, and that left side has negative slope.
Consider the line L′ tangent to Cr at Vup , and the line L′′ bisecting the angle between
L and L′. Line L′ must intersect C1 (in order to “escape” the region between C1, Cr,
and L), so L′′ is below O1.

1O

line L

line L’’

line L’

dnV

upV

1V

1T

LT rT

rC
1C

Figure 6. Illustration for Lemma 3.3. The line L′′ bisecting the angle between L and L′ is below O1, so V1
is higher than L′′, leading to an application of Lemma 3.1.

Because V1 is higher than O1 and therefore higher than L′′, the square is tilted in
such a way that Vup is closer than Vdn to the intersection of L′ and L. Therefore, Tr in-
tersects L′′ to the right of where TL intersects L′′; thus the intersection of TL and Tr is
below the intersection of TL and L′′. Meanwhile, T1 has nonnegative slope and there-
fore intersects TL above the intersection of TL and L′′, thus above the intersection of
TL and Tr. Hence by Lemma 3.1, s(θ) is a strictly decreasing function and is therefore
not minimal for these values of θ.

Lemma 3.4. A minimal square cannot be in Con7, Con10, or Con11.

Proof. In each of these configurations, T1 intersects TL below the intersection between
TL and Tr. Therefore by Lemma 3.1, s(θ) is strictly increasing and therefore not
minimal at the corresponding θ.

upV

dnV

1T
LT

rT

rC

1C

θ

Figure 7. Illustration for Lemma 3.5. In Con12, Con13, and Con14, θ > π/4, so TL is to the right of Vup ,
leading to an application of Lemma 3.1.

The proof that a minimal square cannot be in Con8, Con9, or Con17 is substantially
more complicated than the other proofs, and is saved for the end of the section.
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Lemma 3.5. A minimal square cannot be in Con12, Con13, or Con14.

Proof. In each of these configurations, some part of the upper left side of the square is
tangent to C1. Therefore, in order for Vup to reach Cr, θ cannot be particularly small,
and certainly θ > π/4: As seen in Con9 (Figure 3) which has θ = π/4 and r = 1, a
square with θ = π/4 and upper left side tangent to C1 can only just barely reach —
and not even with Vup — the smallest possible Cr, that with r = 1. Then decreasing θ
with the square’s upper left side still tangent to C1 would shrink and move the square
away from Cr, so θ ≤ π/4 is not possible here when r = 1. It is also not possible
when r > 1 because any larger Cr would further prevent the square from reaching it.

Therefore, TL is to the right of Vup , as illustrated in Figure 7 for the case of Con12.
Thus by Lemma 3.1, s(θ) is a strictly increasing function of θ and is therefore not
minimal for these values of θ.

Lemma 3.6. A minimal square cannot be in Con15.

Proof. We prove this by showing that as the square rotates counterclockwise through
the range of Con15, the intersection between T1 and TL moves upward strictly mono-
tonically, and the intersection between Tr and TL moves downward strictly monotoni-
cally. Because it is clear in Con15 that TL’s intersection with T1 is below that with Tr
for the smaller values of θ, and above that with Tr for the larger values of θ, Lemma 3.1
implies that s(θ) strictly increases then strictly decreases as a function of θ, so the re-
sult follows. (This seems to imply that there is a maximal square in Con15. However,
this article does not address maximal squares.)

We give the proof that the intersection between T1 and TL moves upward strictly
monotonically; an analogous proof shows that the intersection between Tr and TL
moves downward strictly monotonically.

1T

LT

rT

1O

q

p

f(p, q)

g(p, q)

Figure 8. For Lemma 3.6, the rectangle determined by the point (p, q).

Consider not just inscribed squares, but inscribed rectangles in general, determined
by the pair (p, q) as shown in Figure 8, where p is the horizontal distance between
O1 and the bottom vertex, and q is the height above L of the intersection between T1

and TL. Let

f(p, q) = length of lower left side of rectangle,

g(p, q) = length of lower right side of rectangle.

For each p there is a unique q, say q = h(p), such that the rectangle is a square, i.e.,
f(p, q) = g(p, q). Our goal is to show that h(p) is a strictly increasing function of p.
We will do this by showing that
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(1) f(p, q) is a strictly increasing function of p,
(2) g(p, q) is a strictly decreasing function of p,
(3) f(p, q) is a strictly decreasing function of q,
(4) g(p, q) is a strictly increasing function of q.

This will complete the proof because if point (p, q) gives a square, then (1) and (2)
imply that increasing p will cause the lower left side to become larger than the lower
right side, so by (3) and (4), q must be increased in order to restore equality of the side
lengths.

ℓ

1

1O

m

p

q

Figure 9. For Lemma 3.6, notation for the proof that f(p, q) is a strictly increasing function of p.

For (1), fix q and note that f(p, q) is `+m− 1 in Figure 9. By similar triangles,
m/q = (1− q)/`. Define a function

j(`) = `+m− 1 = `+
q(1− q)

`
− 1,

which equals f(p, q). An easy calculation shows that j′(`) > 0 because ` > 1/2, and
since p and ` increase together, this gives ∂f

∂p
> 0, thus proving (1).

lower left

side of rectangle

1O

Q

1T

Figure 10. For Lemma 3.6, geometry for the proof that g(p, q) is a strictly decreasing function of p.

For (2), note that g(p, q) is exactly r less than the distance fromOr to the lower left
side of the rectangle. That side is on a line through a point Q below O1. If p increases
while q stays fixed, then as shown in Figure 10, the lower left side of the rectangle is
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1O

lower left

side of rectangle

lower right

side of rectangle

1T

Figure 11. For Lemma 3.6, geometry for proofs that f(p, q) is strictly decreasing, and g(p, q) is strictly
increasing, as functions of q.

still aligned withQ because that side is always parallel to T1. Therefore, as p increases,
the distance fromOr to the lower left side of the rectangle decreases, thus proving (2).

For (3) and (4), note that f(p, q) is exactly 1 less than the distance from O1 to the
lower right side of the rectangle, and g(p, q) is exactly r less than the distance from
Or to the lower left side of the rectangle. If p is fixed and q increases, then as shown
in Figure 11, the lower left side of the square (which is parallel to T1) rotates away
from Or, and the lower right side (which is perpendicular to T1) rotates toward O1.
This proves (3) and (4), thus completing the proof.

Lemma 3.7. A minimal square cannot be in Con16 or Con18.

Proof. In each of these configurations, T1 intersects TL above the intersection between
TL and Tr. Therefore by Lemma 3.1, s(θ) is strictly decreasing and therefore not
minimal at the corresponding θ.

If r = 1, then Con19 is simply the reflection of Con6, so for Con19 we focus on
the case r 6= 1.

Lemma 3.8. If r 6= 1, then a minimal square cannot be in Con19.

Proof. Given a square at angle θ in Con19, we claim that the inscribed square in
the reflected orientation, i.e., at angle π/2 − θ, is smaller. This fact can be seen by
mapping the original square to a horizontal reflection that is positioned so that the
image P ′ of vertex P (= V1) is on Cr, as shown in Figure 12. In the process, vertex
Q (= Vr) is mapped to a point Q′ inside the disk bounded by C1 for the following
reason. The acute angles φ made with the horizontal are the same for the line through
P and Q′ and the line through P ′ and Q, while circle C1 is steeper than Cr at every
height above L between 0 and 1.

Therefore, the inscribed square at angle π/2− θ must be smaller than the reflected
square and thus the original square.

To prove that a minimal square cannot be in Con8, Con9, or Con17, preliminary
results and definitions are helpful.

Definition 3.9. Con10+ will refer to Con10 but will also allow r ≤ 1. Con8+ will
refer to the union of Con7, Con8, Con9, and Con10, and will also allow r ≤ 1.

Remark 3.10. A proof that a minimal square cannot be in Con8+ constitutes a proof
for Con8, Con9, and Con17 (as well as Con7, Con10, Con16, and Con18, for which
proofs have already been given) because Con17 with r = r0 ≥ 1 is equivalent to a
version of Con8 with r = 1/r0 ≤ 1.

10



r C1C

P’

Q’ Q (=    )r V

P (=     )upV

φφ

θ

Figure 12. Illustration for Lemma 3.8 showing the horizontal reflection of the square that sends point P on
C1 to a point P ′ on Cr . (Such a reflection is not necessarily about the midline of the square.)

Lemma 3.11. The square in Con10+ has side length less than or equal to M , where

M =
2r

r +
√

8
√
r + 1

,

with equality if and only if r = 1.

Proof. Let P be the point on line L between C1 and Cr such that the distance from
P to the closest point on C1 (along the line through P and O1) equals the distance
from P to the closest point on Cr. The line segment from P to O1 can be viewed
as the hypotenuse of a right triangle, as can the line segment from P to Or, so the
equality of distance can be written using the Pythagorean theorem as follows. Let p be
the distance from P to the intersection of L and C1. Because 2

√
r is the distance from

the intersection of L and C1 to the intersection of L and Cr (see Figure 15), we have

√
1 + p2 − 1 =

√
r2 + (2

√
r − p)2 − r.

By basic geometry, the square in Con10+ must have Vdn to the left of P , unless r = 1,
in which case Vdn = P . Therefore the square has side length less than or equal to√

1 + p2 − 1, with equality exactly if and only if r = 1.
It is straightforward to confirm, by substituting the following into the equation

above, and by noting that this is the desired solution because it lies in (0, 2
√
r) for

r > 0, that

p =

√
8r + 2

√
r

r +
√

8
√
r + 1

,

and then that

√
1 + p2 − 1 =

2r

r +
√

8
√
r + 1

,

which is M in the statement of the lemma.
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Lemma 3.12. For a square in Con17, if the distance from L to the midpoint of the
upper right side of the square is less than or equal to r − r/

√
2, then the square is not

minimal.

Proof. Given such a square in Con17 as shown in Figure 13, we claim that reflecting
the square about its midline — the vertical line through its center point — will cause it
to overlap both C1 and Cr. This will prove the lemma because an inscribed square in
the same orientation as the reflected square is thus smaller than the original square. We
prove the claim by showing that reflecting the square takes vertex P (= Vup) as shown
in Figure 13 to vertex P ′ in the interior of the disk with boundary Cr, and takes Q (=
Vr) to vertex Q′ such that either Q′ or part of the left side of the reflected square is in
the interior of the disk with boundary C1.

P’

Q’ Q (=    )r V

P (=     )upV

1V

rC1C

height of midpoint

of upper right side

of square

midline of square

αα”

α’

  center
of square

slope = 1

α(=   )

α(=   )

Figure 13. For Lemma 3.12, the horizontal reflection of the square about its midline.

First, the line throughP andQ′ has slope 1, and the line throughQ andP ′ has slope
−1, by the following reasoning: In Figure 13, the fact that α′ = α is clear because of
the right angle shown, and α′′ = α because of the symmetry of the reflection. The
line segment between P and Q′ is seen to be the base of an isoceles triangle since
P and Q′ are the same distance from the center of the square. Because α′ = α′′, the
isoceles triangle is symmetric about a line of slope−1 through the center of the square.
Therefore, the base of the triangle, and thus the line through P and Q′, has slope 1.
Similar reasoning shows that the line through Q and P ′ has slope −1.

Next, we claim that the secant line segment intersecting Cr at Q and the point
nearest horizontally to P ′ has slope shallower than −1. (This secant would lie almost
exactly alongCr in Figure 13, and would not be distinguishable in the figure.) To prove
the claim, we note that the midpoint of that secant is at the same height as the upper
right side of the square, no higher than r − r/

√
2 by hypothesis, because the secant’s

endpoints are at the heights of vertices P and Q. A secant has as a perpendicular
bisector a radial line segment of Cr; such a radial line segment for this secant must
reach below a height of r − r/

√
2 since it passes through the secant’s midpoint. Thus,

this radial line segment must have slope steeper than 1, because at slope 1 it would
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reach down only to height r − r/
√

2 with its length r and top endpoint at height r.
The secant, which is perpendicular to it, must therefore have slope shallower than−1.

Therefore, P ′ is in the interior of the disk with boundary Cr.
To show the overlap with C1, we first note that Q′ is at height greater than 1 −

1/
√

2. This is because Vr of a square in Con17 must be higher than that in Con9 or
Con10 (whichever applies, depending on whether r = 1) by the basic geometry of
the counterclockwise rotation toward Con17. Among these three configurations, Con9
with its r = 1 has the lowest Vr, at height 1− 1/

√
2 since θ = π/4.

Now, Q′ lies on the line of slope 1 through P , a line whose lower intersection with
C1 is at height less than 1− 1/

√
2 because 1− 1/

√
2 is where the tangent to C1 has

slope 1. Therefore, Q′ is on the line of slope 1 through P on either the segment from
P to C1 or the segment that lies in the interior of the disk with boundary C1. In the
latter case, the proof of the lemma is complete. The former case can only occur if the
original square is so large that Q′ is above a portion of the top half of C1, because Q′

is straight above V1. In that case, the left side of the reflected square must intersect
the interior of the disk with boundary C1, completing the proof of the lemma, because
the reflected square is also a reflection of the original square about a horizontal line
through its center point. Since the left side of the original square is tangent to C1, and
the horizontal line of reflection is below the center of C1, the reflected left side must
overlap C1 and thus intersect the interior of the disk with boundary C1.

Corollary 3.13. If r ≥ 3, then a minimal square cannot be in Con17.

Proof. Suppose for contradiction that r ≥ 3 and a minimal square is in Con17. Then
the side length, s, must be less than or equal to the side lengths of all squares in all other
configurations, including Con10 which is addressed in Lemma 3.11. In particular, we
must have s ≤M from Lemma 3.11. Let h be the distance from L to the midpoint of
the upper right side of the square. We know that h can be no greater than (

√
5/2)s,

because this is the highest that a midpoint of a side can possibly be, occurring if the
midpoint is straight above Vdn . In summary, h ≤ (

√
5/2)s ≤ (

√
5/2)M . Therefore,

h ≤ r − r/
√

2 if

√
5

2

(
2r

r +
√

8
√
r + 1

)
≤ r − r√

2
,

which is true if r ≥ 3. However, Lemma 3.12 then implies that the square is not mini-
mal. This gives a contradiction.

Definition 3.14. For a family {J(t)}t∈I of lines or line segments, where I is an in-
terval in R, the pivot at a given t ∈ I is the point about which the line or line segment
is pivoting at t, if such a point exists. In other words, for a given t ∈ I , if there exists
ε > 0 such that u ∈ I ∩ (t− ε, t + ε) implies that J(u) ∩ J(t) consists of a single
point, then the pivot, P , at t is defined by

P = lim
u→t

J(u) ∩ J(t)

if the limit exists. (The limit is one-sided if t is an endpoint of I .)

Lemma 3.15. Let Lφ be the line through the origin having angle φ ∈ (0, π/2) with
the positive x-axis as in Figure 14, define an interval I = (π/2 − φ, π/2), and fix
` > 0. Let {J(β)}β∈I be the family of line segments of length ` with endpoints on the
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x-axis and Lφ, and for which J(β) intersects the x-axis at angle β as in Figure 14.
Then the following hold.

P

ℓ

b

c

β

K(β)K

J(β)J

φL  

γ

x

y

φ

Figure 14. Notation for Lemma 3.15.

(i) For {J(β)}β∈I , the position of the pivot P at β is determined by

b (cotβ) = c (cot γ),

where b and c are the distances along J(β) from P to the x-axis and Lφ, re-
spectively, and γ = π − φ− β is the angle between J(β) and Lφ.

(ii) Let {K(β)}β∈I be the family of lines such that K(β) is the line perpendic-
ular to J(β) through J(β)’s pivot. Then for {K(β)}β∈I , the pivot at β has
y-coordinate

`

(
cos γ + cos(γ − β) cosβ

sin(γ + β)

)
.

Proof. Given such Lφ, `, {J(β)}β∈I , and {K(β)}β∈I , fix a value β0 ∈ I .
To prove (i), let P be the pivot at β0 for {J(β)}β∈I , and let b and c be the

distances along J(β0) from P to the x-axis and Lφ, respectively. Define a family
{H(β)}β∈(0,π/2) of variable-length line segments as those for which H(β) is the
line segment through P with endpoints on the x-axis and Lφ, and that intersects the
x-axis at angle β; e.g.,H(β0) = J(β0). It follows that d(length of H(β))/dβ = 0 at
β = β0 because H(β) and J(β) have the same pivot at β0, so the instantaneous rates
of change of location of their respective endpoints (on the x-axis andLφ) are the same.
LetB(β) andC(β) be the distances alongH(β) from P to the x-axis andLφ, respec-
tively, so B′(β0) + C ′(β0) = 0. Basic trigonometry shows that B(β) = hB/ sinβ
and C(β) = hC/ sin γ, where γ = π − φ− β, and hB and hC are the (shortest) dis-
tances from P to the x-axis andLφ, respectively. Putting all of this together, (i) follows
because b = B(β0) and c = C(β0).

For (ii), we note that K(β) is the line

y = cotβ

(
x−

(
` sin γ

sinφ
− b cosβ

))
+ b sinβ,

i.e., y = (cotβ)x− `
(

sin(φ+ 2β)

sinφ sinβ

)
,

where the second form uses γ = π − φ− β, as well as a substitution for b stemming
from (i) which gives b(cotβ) = (`− b)(cot γ).

14



For all β, the slope of K(β) is greater than zero, so the pivot for {K(β)}β∈I at β0

can be found as follows. For any given y, define the function fy(β) giving the value
of x such that (x, y) is on the line K(β):

fy(β) = (tanβ)y + `

(
sin(φ+ 2β)

sinφ cosβ

)
.

Then the pivot at β0 must have y-coordinate such that f ′
y(β0) = 0. Solving this equa-

tion for y gives (ii).

Lemma 3.16. A minimal square cannot be in Con8, Con9, or Con17.

Proof. Suppose for contradiction that a minimal square exists in Con8+. Noting that
the extended version of Con8 with r = r0 ≤ 1 is equivalent to Con17 with r = 1/r0,
we may apply Corollary 3.13, concluding that r > 1/3.

Let I = [β1, β2] be the set of angles between L and the lower left sides of the
squares in Con8+, and let β0 ∈ I be the maximum such angle of a minimal square
in Con8+. Then we know that β0 6= β2, and that β0 6= β1 unless r = 1, because a
minimal square cannot be in Con7, Con10, Con16, or Con18. Let ` be the side length
of the minimal square, and let {G(β)}β∈I be the family of line segments of length `
with endpoints on L and C1, for which G(β) intersects L at angle β. Let m(β) be
the distance from Or to G(β). Then m′(β0) = 0 because either m(β0) is a minimal
value on an open interval, or the square for β0 is in Con9 so the shortest distance from
Or to G(β0) is the distance from Or to G(β0)’s endpoint at L, which is the pivot for
{G(β)}β∈I at β0.

Let {H(β)}β∈I be the family of lines such that H(β) is perpendicular to G(β)
through G(β)’s pivot. Let h(β) be the vertical distance from Or to H(β), but consid-
ered negative ifH(β) is belowOr. The sign ofm′(β) is the same as the sign of h(β),
because h(β) > 0 means that G(β) is moving away from Or as β increases, and vice
versa. Therefore, h(β0) = 0.

Let L0 be the line tangent to C1 at G(β0)’s endpoint on C1. It follows from this
tangency of L0 and C1 that the pivot at β0 for {G(β)}β∈I is the same as the pivot
at β0 for the family {J(β)}β∈I of line segments of length ` with endpoints on L and
L0 with J(β) intersecting L at angle β. Intuitively, this match of the pivot is because
J(β) acts like G(β) near β0, and can be seen formally by standard ε-δ reasoning. It
also follows that the pivot P at β0 for {H(β)}β∈I is the same as the pivot at β0 for the
family {K(β)}β∈I of lines such that K(β) is perpendicular to J(β) through J(β)’s
pivot.

We now apply Lemma 3.15(ii) to {K(β)}β∈I in order to show that the distance
from L to P is less than r. This distance, the “y-coordinate” of P , is thus given by

y
P

= `

(
cos γ + cos(γ − β) cosβ

sin(γ + β)

)
,

where γ is the angle that J(β) makes with L0. We claim that y
P
≤ `
√

2, and begin
the proof by noting that for angle φ between L and L0 we have φ+ γ + β = π, along
with φ, β ∈ (0, π/2), γ ∈ (0, π/2], and γ + β ∈ (π/2, π). Let v = (γ + β)/2 and
w = (γ − β)/2, and let

f(v, w) = `

(
cos(v + w) + cos(2w) cos(v − w)

sin(2v)

)
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so that y
P
≤ `
√

2 can be proved by showing that f(v, w) ≤
√

2 on the domain de-
fined by v + w ≤ π/2, v − w < π/2, and v ≥ π/4. Although v cannot take the
value π/4 in the geometric interpretation, this extension of the domain of f to include
v = π/4 facilitates phrasing in the proof of a bound.

Straightforward computations show that

∂f

∂v
=
− cos3 β − 3 cos γ cosβ

sin2(γ + β)
< 0

on the domain, so the maximum occurs on the border v = π/4. Let

g(w) = f
(π

4
, w
)

= cos
(
w +

π

4

)
+ cos(2w) cos

(
w − π

4

)
.

The maximum value of g(w) occurs at w = 0, because

g′(w) =
√

8
(
cos3w − cosw − cos2w sinw

)

and w ∈ (−π/4, π/4) on the domain, so g(w) increases then decreases, and more-
over, g′(w) = 0 only at w = 0. Therefore, we have f(v, w) ≤ f(π/4, 0) =

√
2 for

all (v, w) in the domain of f , proving that y
P
≤ `
√

2.
To complete the proof that the distance from L to P is less than r, we note that

because ` is the minimum side length of a square, Lemma 3.11 implies that

y
P
≤ `
√

2 ≤
(

2r

r +
√

8
√
r + 1

)√
2.

Since we know from Corollary 3.13 that r > 1/3, the fact that y
P
< r easily follows.

Now, because H(β0) has positive slope, and pivot P on H(β0) is at a distance less
than r from L, P is below and to the left of Or. Recalling that h(β) is the (signed)
vertical distance from Or to H(β), the fact that pivot P is to the left of Or implies
that h′(β0) < 0. We already know that h(β0) = 0, so there exists ε > 0 such that
β ∈ (β0, β0 + ε) implies h(β) < 0. However, since h(β) and m′(β) have the same
sign, this means m′(β) < 0 on (β0, β0 + ε), contradicting m(β0) being minimal.

Proposition 3.17. A minimal square occurs only in Con6, and possibly in Con19, and
must have V1 lower than O1. Con19 has a minimal square if and only if r = 1.

Proof. This result follows from the lemmas ruling out all other configurations, and the
fact that Con19 is the reflection of Con6.

4. EQUATIONS FOR MINIMUM SIDE LENGTH. In this section we derive equa-
tions toward the pursuit of the minimum side length of an inscribed square, knowing
from Proposition 3.17 that this minimum occurs in Con6 and has V1 lower than O1.
We continue using here the notation introduced at the beginnings of Sections 2 and 3.

Lemma 4.1. In Con6 with V1 lower than O1, s(θ) decreases then increases, both
strictly monotonically, as a function of θ. Thus, there is a unique minimal square
in Con6.

Proof. As θ increases in Con6 with V1 lower than O1, TL moves to the right and V1

moves down, so the intersection between T1 (which has negative slope) and TL moves
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down. Simultaneously, Vr moves up, so the intersection between Tr and TL moves up.
Therefore, as θ increases, the triangle formed by TL, T1, and Tr switches from the right
side of TL to the left side of TL at a unique value, when T1 and Tr intersect TL at the
same point. By Lemma 3.1, s(θ) decreases then increases, both strictly monotonically.

The uniqueness of the minimal square in Con6 follows from this and Proposi-
tion 3.17.

For the equations used in seeking the minimum side length of an inscribed square,
the parameter representing orientation will be the distance, x, from the line L to the
upper left vertex V1 of the square, as shown in Figure 15. It is not difficult to see that
x is related strictly monotonically to θ.

1

1

r

r

1V

upV

1O

rO

line L

b = 2
√
r − x−

√
2x− x2

c =
√
r2 − b2

√
(r + 1)2 − (r − 1)2 = 2

√
r

√
1− (1− x)2 =

√
2x− x2

h = r − x− c

x

x

z

z

Figure 15. Equations used to compute the side length of a square in Con6, given distance x from the line L
to the upper left vertex V1 of the square. Here the side length is denoted z.

Proposition 4.2. The minimum side length, µ(r), of an inscribed square is the mini-
mum value of the function

z(x) =


x2 +

(
r − x−

√
r2 −

(
2
√
r − x−

√
2x− x2

)2
)2



1
2

(1)

on the interval (1 − 1/
√

2, 1). The minimum occurs at a unique point, denoted xm.
Moreover, the function z is strictly decreasing for x < xm and strictly increasing for
x > xm.

Proof. Let (x1, x2) be the interval of values of the distance x from L to V1 such
that the associated square is in Con6 with V1 lower than O1. We know from Proposi-
tion 3.17 that the minimum side length corresponds to some x ∈ (x1, x2).
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If x ∈ (x1, x2), then as illustrated in Figure 15, congruent triangles using x and z
show that Vup is at a horizontal distance x from V1. Therefore, for x ∈ (x1, x2),

z =
(
x2 + h2

) 1
2 ,

where h is the vertical distance from V1 to Vup . Thus by the equations in Figure 15, the
side length is given as a function of x ∈ (x1, x2) by z(x) in equation (1). In addition,
it follows from Lemma 4.1 that on (x1, x2) the minimum occurs at a unique point,
xm, and that z is strictly decreasing for x < xm and strictly increasing for x > xm.

However, the stated domain (1 − 1/
√

2, 1) extends beyond (x1, x2); certainly,
x2 < 1 by definition. Toward the claim that x1 > 1 − 1/

√
2, we suppose for con-

tradiction that x = 1 − 1/
√

2 is possible. Because V1 is distance x from L, x =
1 − 1/

√
2 occurs exactly when the line through O1 and V1 has slope −1. In that

case, 1− 1/
√

2 is also the horizontal distance from V1 to a vertical line tangent to C1

on the right side. Because Vup is horizontal distance x (= 1− 1/
√

2) from V1, Vup is
on that vertical line. This contradicts the fact that Vup is onCr which requires Vup to be
to the right of that vertical line. Noting that x < 1− 1/

√
2 would result in a similar

contradiction, we conclude that x1 > 1− 1/
√

2.
Now considering z in equation (1) as a function of x ∈ (1− 1/

√
2, 1), we know on

(x1, x2) that z represents the side length of an inscribed square, but outside (x1, x2)
we only have equation (1). It is helpful to set up geometric interpretations for the cases
x ∈ (1− 1/

√
2, x1) and x ∈ (x2, 1) in order to complete the proof by showing that z

strictly decreases when x ∈ (1− 1/
√

2, x1) and strictly increases when x ∈ (x2, 1).

1

r

r

h

x

x

z

z

1T

LT

rT

Figure 16. Geometry showing that z given by (1) is not a minimum when x < x1.

Figures 16 and 17 illustrate geometric interpretations of z as given by equation (1)
when x belongs to the intervals (1 − 1/

√
2, x1) and (x2, 1), respectively. Here, the

three consecutive vertices still lie on the line and the two circles, although the squares
are no longer inscribed. In both cases, the same equations as in Figure 15 still apply,
and lead to (1). The fact that z strictly decreases when x ∈ (1− 1/

√
2, x1) and strictly
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1

r

r
c

h = r − x− ch = r − x− c

x

z

xz

1T
LT

rT

Figure 17. Geometry showing that z given by (1) is not a minimum when x > x2.

increases when x ∈ (x2, 1) can been seen by the same reasoning as in Lemma 4.1,
this time using T1, Tr, and TL defined as before except that the “point of contact” is
specifically that with the relevant vertex, as shown in Figures 16 and 17. The reasoning
then uses a modified form of Lemma 3.1 that applies to these squares with consecutive
vertices on the line and circles, instead of to inscribed squares, and whose proof is
analogous to that of Lemma 3.1.

Remark 4.3 (approximating µ(r)). From Proposition 4.2, one can deduce an algo-
rithm for computing an approximation of µ(r) given the radius r. Indeed, it suffices
for this purpose to minimize the function z, which can be achieved by applying root-
finding methods to z′.

Proposition 4.4. In the result of Proposition 4.2, i.e., that the minimum side length is
given by µ(r) = z(xm), the number xm is a root of the 10th degree polynomial

f4(f1f7 + f2f6 − 2f3f5)
2 − (f2

3 f4 + f2
5 − f1f4f6 − f2f7)2, (2)

where, letting k =
√
r,

f1(x) = −2x+ 4k

f2(x) = (4k − 2)x+ k4 − 4k2

f3(x) = (6k − 3)x+ k4 − 2k3 − 3k2

f4(x) = −x2 + 2x

f5(x) = 4x3 − (2k2 + 6k + 7)x2 + (2k3 + 3k2 + 10k)x− 2k3

f6(x) = 8x3 + (−4k2 − 16)x2 + (4k3 − 2k2 + 6)x− 4k3 + 8k2 − 4k

f7(x) = (4k2 − 16k)x3 + (−k4 + 4k3 − 10k2 + 40k)x2

+ (2k4 − 8k3 + 4k2 − 20k + 2)x+ 4k2.
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Proof. By Proposition 4.2, µ(r) = z(xm), where z(x) is given by equation (1), and
xm is the unique point in the interval (1− 1/

√
2, 1) such that dz/dx = 0, or equiva-

lently dA/dx = 0 where A(x) = (z(x))2.
It remains to show that xm is a root of (2). Let

g(x) = (−2x+ 4k)
√
f4(x) + (4k − 2)x+ k4 − 4k2,

so that expansion in (1) gives

A(x) = 2
(

(x− k2)
√
g(x) + (−x+ 2k)

√
f4(x) + x2

+ (−k2 + 2k − 1)x+ k4 − 2k2
)
.

Note that

dg

dx
=

(4k − 2)
√
f4(x) + 4x2 − (4k + 6)x+ 4k√

f4(x)
,

which leads to

1

2

dA

dx
=

(x− k2)
(

(2k − 1)
√
f4(x) + 2x2 − (2k + 3)x+ 2k

)

√
g(x)

√
f4(x)

+
√
g(x)

+
x2 − (2k + 1)x+ 2k√

f4(x)
−
√
f4(x) + 2x− k2 + 2k − 1.

In view of the fact that dA/dx = 0 at x = xm, set 1
2
dA/dx = 0, then multiply by√

g(x)
√
f4(x) and separate terms with

√
g(x) from the rest to obtain

(
(2x− k2 + 2k − 1)

√
f4(x) + 2x2 − (2k + 3)x+ 2k

)√
g(x)

= −f3(x)
√
f4(x)− f5(x).

Note that g(x) = f1(x)
√
f4(x) + f2(x), so that squaring both sides and omitting

“(x)” for readability results in
(
f6
√
f4 + f7

)(
f1
√
f4 + f2

)
= f2

3 f4 + 2f3f5
√
f4 + f2

5 .

Separating terms with
√
f4 from the rest gives

(f1f7 + f2f6 − 2f3f5)
√
f4 = f2

3 f4 + f2
5 − f1f4f6 − f2f7.

Squaring both sides and rearranging leads to the final polynomial equation,

f4(f1f7 + f2f6 − 2f3f5)
2 − (f2

3 f4 + f2
5 − f1f4f6 − f2f7)2 = 0.
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This polynomial has degree 10. Terms of higher degree could arise only from f2
5 and

f1f4f6, each of which has degree 6, but both f2
5 and f1f4f6 have 16x6 as their 6th

degree term, so f2
5 − f1f4f6 has degree 5.

In summary, xm is a root of the polynomial in (2).

5. NONEXISTENCE OF A SOLUTION BY RADICALS. In this section we prove
that µ is not a radical function as defined in Section 1. For convenience we work
instead with the function λ defined by λ(c) = (µ(c2))2. It is intuitively clear that if
µ is a radical function then λ is also radical; a formal proof of this fact is given in
a more general context in Lemma 5.1 below. The proof of our main result, Theorem
5.4, shows that λ is not radical on any infinite subset of [1,∞). As a consequence
we obtain the fact that µ cannot be radical on any such set. We refer the reader to [3,
Chapters 13, 14] for the algebraic background assumed in this section.

Lemma 5.1. Let J be a nonempty subset of [1,∞), let n ∈ Z+, and let I = n
√
J be

the set of positive nth roots of elements of J . Suppose that a function f : J → R is
radical, and define g : I → R and h : J → R by g(c) = f(cn) and h(c) = (f(c))n.
Then g and h are radical.

Proof. We begin by showing that g is radical. Let q ∈ C[k, x] be a nonzero polynomial
satisfying q(c, f(c)) = 0 for every c ∈ J , and such that there is a radical extension
R/C(k) containing a splitting field S of q. Let ϕ : C(k)→ C(k) be the embedding
induced by the map k 7→ kn, and let Ω be an algebraic closure of C(k). By basic field
theory (see [7, Chapter V, §2, Theorem 2.8]), we may extend the map ϕ to an em-
bedding ϕ : R→ Ω. DefiningQ(k, x) = q(kn, x) we haveQ(c, g(c)) = 0 for every
c ∈ I . Moreover, since Q is the polynomial obtained by applying ϕ to the coefficients
of q, the above observations imply that Q splits in the field ϕ(S), which is contained
in the radical extension ϕ(R)/C(k). Thus g is a radical function.

Next we show that h is radical. The argument will be given assuming that q is monic
and has no repeated root; the general case can be proved similarly. Let α1, . . . , αd be
the roots of q in S, and let

Q(k, x) = (x− αn1 ) · · · (x− αnd ).

Note that since q has coefficients in C[k], the same holds forQ. (The elementary sym-
metric functions ofαn1 , . . . , α

n
d are polynomials in the elementary symmetric functions

of α1, . . . , αd.) Moreover, as explained below, one can show that Q(c, h(c)) = 0 for
every c ∈ J . Since Q splits in the field C(k, αn1 , . . . , α

n
d ) ⊆ S ⊆ R, this implies that

h is radical.
Fixing c ∈ J , the fact that Q(c, h(c)) = 0 can be seen heuristically first: Since

q(k, x) = (x− α1) · · · (x− αd)

and q(c, f(c)) = 0, we must have f(c) = αi(c) for some i, and thusQ(c, h(c)) = 0.
This argument can be made rigorous by extending the map k 7→ c to a ring homomor-
phism C[k, α1, . . . , αd] → C, so that αi(c) is well-defined. We refer the interested
reader to Section 3 in [7, Chapter VII] for the necessary tools.

Next we prove two preliminary results needed to show that λ is not radical.

Lemma 5.2. Let p(k, x) be the polynomial defined by (2) considering k and x as
indeterminates. As an element of the ring C(k)[x], the polynomial p is irreducible and
has Galois group isomorphic to the symmetric group S10.
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Proof. We rely on a computation carried out using the computer algebra system
MAGMA; the code for our computation is available in the supplemental online ma-
terial. Constructing p(k, x) as an element of the ring Q(k)[x], we use Sutherland’s
algorithm [9] to compute a permutation representation of the Galois group of p over
C(k), and we obtain the group S10. It follows that the Galois group acts transitively
on the roots of p, so p is irreducible over C(k).

By Proposition 4.2 we may regard xm as a function of r defined on the interval
[1,∞), and moreover, we have

µ(r) = z(xm(r)) for all r ≥ 1. (3)

For convenience we will make the change of variable k =
√
r and work instead

with the function ξ : [1,∞) → R be defined by ξ(k) = xm(k2). From Proposition
4.4 we deduce that

p(k, ξ(k)) = 0 for all k ∈ [1,∞). (4)

Furthermore, (3) implies that λ(k) = (z(ξ(k)))
2. Hence, writing ξ for ξ(k), we have

λ(k) = ξ2 +

(
k2 − ξ −

√
k4 −

(
2k − ξ −

√
2ξ − ξ2

)2
)2

.

By manipulating the equation above we obtain a polynomial h ∈ Q[k, x, y] with
the property that

h(k, ξ(k), λ(k)) = 0 for all k ∈ [1,∞). (5)

Explicitly, h is given by the formula

h(k, x, y) =
(
(y − x2 − c21 − c2 + c23 + c4)

2 + 4c23c4 − 4c21c2 + 4c21c
2
3 + 4c21c4

)2

− c4
(
8c21c3 + 4c3(y − x2 − c21 − c2 + c23 + c4)

)2
,

where c1 = k2 − x, c2 = k4, c3 = 2k − x, and c4 = 2x− x2.

Lemma 5.3. Let Ω be an algebraic closure of the field C(k). Suppose that α, β ∈ Ω
satisfy p(k, α) = h(k, α, β) = 0. Then C(k, α) ⊆ C(k, β).

Proof. We rely on a number of computations in MAGMA; the code used for all com-
putations is available in the supplemental online material. Let F = Q(k, α). To prove
the lemma it suffices to show that F ⊆ Q(k, β). Regarding p as an element of the ring
Q(k)[x], note that p is irreducible by Lemma 5.2, and α is a root of p by hypothesis,
so we may identify F with the field Q(k)[x]/(p(k, x)). Constructing F in MAGMA
and factoring1 the polynomial h(k, α, y) over F , we find that this polynomial has two
roots in F and two roots that are quadratic over F . Note that β must be one of these
four roots since h(k, α, β) = 0.

Suppose that β ∈ F . Computing the minimal polynomial of β over Q(k) we obtain
a polynomial of degree 10; thus [Q(k, β) : Q(k)] = 10. Since β ∈ F and

[F : Q(k)] = deg(p) = 10,

1The algorithm used by MAGMA to factor polynomials over algebraic function fields is discussed in [10].
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this implies that F = Q(k, β). In particular, F ⊆ Q(k, β) as desired.
Now suppose that β is quadratic over F . Then a minimal polynomial computation

shows that [Q(k, β) : Q(k)] = 20. Since [F (β) : F ] = 2 and [F : Q(k)] = 10, this
implies that F (β) = Q(k, β), so again F ⊆ Q(k, β).

We can now prove the main theorem of this article.

Theorem 5.4. There is no infinite subset J ⊆ [1,∞) such that µ : J → R is radical.

Proof. As above, let Ω denote an algebraic closure of the field C(k). By Lemma 5.1,
in order to prove the theorem it suffices to show that λ is not radical on any infinite
subset of [1,∞). Suppose for contradiction that I ⊆ [1,∞) is an infinite set such that
λ : I → R is radical. Then there is a nonzero polynomial q(k, y) ∈ C[k, y] whose
Galois group over C(k) is solvable, and such that

q(k, λ(k)) = 0 for all k ∈ I. (6)

Regarding q and h as elements of the ring C[k, x, y], let

f(k, x) = Resy (h(k, x, y), q(k, x, y)) ,

where Resy denotes the resultant as polynomials in y. By (5) and (6), for every k ∈ I
the polynomials h(k, ξ(k), y) and q(k, ξ(k), y) have a common root, namely λ(k);
hence

f(k, ξ(k)) = 0 for all k ∈ I. (7)

Similarly, letting

g(k) = Resx (f(k, x), p(k, x)) ∈ C[k],

equations (4) and (7) imply that g(k) = 0 for every k ∈ I . Since I is an infinite set,
we must have g = 0. Therefore, f and p have a common root α ∈ Ω. Given that
f(k, α) = 0, the definition of f implies that q(k, y) and h(k, α, y) have a common
root β ∈ Ω. Note that the assumptions in Lemma 5.3 are satisfied.

Let N ⊂ Ω be the splitting field of q(k, y) over C(k) and let F = C(k, α). By
Lemma 5.3 we have F ⊆ C(k, β) and therefore F ⊆ N . Letting L ⊂ Ω be the split-
ting field of p(k, x) over C(k), we have L ⊆ N since F ⊆ N and L is the Galois
closure of the extension F/C(k). Since the extension L/C(k) is Galois, the group
Gal(L/C(k)) is a quotient of Gal(N/C(k)). The definition of q(k, y) implies that
the latter group is solvable, so the former is, too. This contradicts Lemma 5.2 (since
the group S10 is not solvable), and thus completes the proof of the theorem.
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