A NOTE ON THE GEOMETRY OF FIGURATE NUMBERS

FRANTIŠEK MARKO

Abstract

We give a short proof of the formula $n^{p}=\sum_{\ell=0}^{p-1}(-1)^{\ell} c_{p, \ell} F_{n}^{p-\ell}$, where $F_{n}^{p-\ell}$ is the figurate number of dimension $p-\ell$, and $c_{p, \ell}$ is the number of ($p-\ell$)-dimensional facets of p-dimensional simplices obtained by cutting the p-dimensional cube. This formula was formulated as Conjecture 16 in [2].

Recall from [2] that the k-dimensional cube $0 \leq x_{1}, \ldots, x_{k} \leq n-1$ is cut into $n!k$-dimensional simplices given by $x_{\sigma_{1}} \geq x_{\sigma_{2}} \geq \ldots \geq x_{\sigma_{k}}$ for a permutation σ of the set $\{1, \ldots, k\}$. The $(k-\ell)$-dimensional facets of these simplices are given by $0 \leq x_{1}, \ldots, x_{k} \leq n-1$ and the conditions $x_{\sigma_{1}} L_{1} x_{\sigma_{2}} L_{2} \ldots L_{k-1} x_{\sigma_{k}}$, where exactly ℓ symbols L_{i} equal " $=$ ", and $k-1-\ell$ symbols L_{i} equal " \geq ". Denote by $c_{k, \ell}$ the number of all such $(k-\ell)$-dimensional facets.

Also, denote bv $F_{n}^{k}=\binom{n+k-1}{n}$ the figure number of dimension k. In Section 5 of [2], we gave a geometric counting argument using the inclusion-exclusion principle in support of Conjecture 16 of [2] stating the following.
Proposition 1. For all positive integers n and $p, n^{p}=\sum_{\ell=0}^{p-1}(-1)^{\ell} c_{p, \ell} F_{n}^{p-\ell}$.
Proof: First we observe that $c_{p, \ell}$ counts the number of surjective maps from the set $\{1, \ldots, p\}$ to the set $\{1, \ldots, p-\ell\}$. Indeed, the $p-1-\ell$ symbols $L_{a_{1}}, L_{a_{2}}, \ldots$, $L_{a_{p-1-\ell}}$ that are equal to " \geq " in the expression $x_{\sigma_{1}} L_{1} x_{\sigma_{2}} L_{2} \ldots L_{p-1} x_{\sigma_{p}}$ separate indices $\{1, \ldots, p\}$ into $p-\ell$ nonempty groups $\left\{\sigma_{1}, \ldots, \sigma_{a_{1}}\right\},\left\{\sigma_{a_{1}+1}, \ldots, \sigma_{a_{2}}\right\}$, $\left\{\sigma_{a_{p-\ell-2}+1}, \ldots, \sigma_{a_{p-1-\ell}}\right\}$, and $\left\{\sigma_{a_{p-1-\ell}+1}, \ldots \sigma_{p}\right\}$. Therefore the expressions $E=$ $x_{\sigma_{1}} L_{1} x_{\sigma_{2}} L_{2} \ldots L_{k-1} x_{\sigma_{p}}$ are in bijective correspondance to maps f_{E} given by $f\left(\sigma_{1}\right)=$ $\ldots=f\left(\sigma_{a_{1}}\right)=1, f\left(\sigma_{a_{1}+1}\right)=\ldots=f\left(\sigma_{a_{2}}\right)=2, \ldots, f\left(\sigma_{a_{p-\ell-2}+1}\right)=\ldots=$ $f\left(\sigma_{a_{p-\ell-1}}\right)=p-\ell-1$, and $f\left(\sigma_{a_{p-\ell-1}+1}\right)=\ldots=f\left(\sigma_{p}\right)=p-\ell$.

According to (6.8) of [3], the number of surjections of a set of m elements onto a set of n elements equals $n!S(m, n)$, where $S(m, n)$ is the Stirling number of the second kind. Thus $c_{p, \ell}=(p-\ell)!S(p, p-\ell)$.

If we substitute $x=-n$ in the formula $x^{p}=\sum_{j=1}^{r} S(p, j) x(x-1) \ldots(x-j+1)$ from Theorem 6.10 of [3], we obtain

$$
n^{p}=\sum_{j=1}^{p}(-1)^{p-j} j!S(p, j) F_{n}^{j}=\sum_{\ell=0}^{p-1}(-1)^{\ell} c_{p, \ell} F_{n}^{p-\ell}
$$

Note that an earlier (and much longer) proof of this statement was given in [1].

References

[1] Cereceda, J.L., Figurate numbers and sums of powers of integers. arXiv:2001.03208
[2] Marko, F., Litvinov, S. (2020). Geometry of figurate numbers and sums of powers of integers. Amer. Math. Monthly. 127:1, 4-22.
[3] DeTemple, D., Webb,W., Combinatorial Reasoning. An Introduction to the Art of Counting. John Wiley \& Sons, 2014.

Pennsylvania State University, 76 University Drive, Hazleton, PA 18202, USA
E-mail address: fxm13@psu.edu

