A NOTE ON THE GEOMETRY OF FIGURATE NUMBERS

FRANTIŠEK MARKO

ABSTRACT. We give a short proof of the formula $n^p = \sum_{\ell=0}^{p-1} (-1)^{\ell} c_{p,\ell} F_n^{p-\ell}$, where $F_n^{p-\ell}$ is the figurate number of dimension $p-\ell$, and $c_{p,\ell}$ is the number of $(p-\ell)$ -dimensional facets of *p*-dimensional simplices obtained by cutting the *p*-dimensional cube. This formula was formulated as Conjecture 16 in [2].

Recall from [2] that the k-dimensional cube $0 \leq x_1, \ldots, x_k \leq n-1$ is cut into n! k-dimensional simplices given by $x_{\sigma_1} \geq x_{\sigma_2} \geq \ldots \geq x_{\sigma_k}$ for a permutation σ of the set $\{1, \ldots, k\}$. The $(k - \ell)$ -dimensional facets of these simplices are given by $0 \leq x_1, \ldots, x_k \leq n-1$ and the conditions $x_{\sigma_1}L_1x_{\sigma_2}L_2\ldots L_{k-1}x_{\sigma_k}$, where exactly ℓ symbols L_i equal " = ", and $k - 1 - \ell$ symbols L_i equal " \geq ". Denote by $c_{k,\ell}$ the number of all such $(k - \ell)$ -dimensional facets.

Also, denote by $F_n^k = \binom{n+k-1}{n}$ the figure number of dimension k. In Section 5 of [2], we gave a geometric counting argument using the inclusion-exclusion principle in support of Conjecture 16 of [2] stating the following.

Proposition 1. For all positive integers n and p, $n^p = \sum_{\ell=0}^{p-1} (-1)^{\ell} c_{p,\ell} F_n^{p-\ell}$.

Proof: First we observe that $c_{p,\ell}$ counts the number of surjective maps from the set $\{1, \ldots, p\}$ to the set $\{1, \ldots, p-\ell\}$. Indeed, the $p-1-\ell$ symbols $L_{a_1}, L_{a_2}, \ldots, L_{a_{p-1-\ell}}$ that are equal to " \geq " in the expression $x_{\sigma_1}L_1x_{\sigma_2}L_2\ldots L_{p-1}x_{\sigma_p}$ separate indices $\{1, \ldots, p\}$ into $p-\ell$ nonempty groups $\{\sigma_1, \ldots, \sigma_{a_1}\}, \{\sigma_{a_1+1}, \ldots, \sigma_{a_2}\}, \{\sigma_{a_{p-\ell-2}+1}, \ldots, \sigma_{a_{p-1-\ell}}\}, \text{ and } \{\sigma_{a_{p-1-\ell}+1}, \ldots, \sigma_p\}$. Therefore the expressions $E = x_{\sigma_1}L_1x_{\sigma_2}L_2\ldots L_{k-1}x_{\sigma_p}$ are in bijective correspondance to maps f_E given by $f(\sigma_1) = \ldots = f(\sigma_{a_1}) = 1, f(\sigma_{a_1+1}) = \ldots = f(\sigma_{a_2}) = 2, \ldots, f(\sigma_{a_{p-\ell-2}+1}) = \ldots = f(\sigma_{a_{p-\ell-1}}) = p-\ell-1$, and $f(\sigma_{a_{p-\ell-1}+1}) = \ldots = f(\sigma_p) = p-\ell$.

According to (6.8) of [3], the number of surjections of a set of m elements onto a set of n elements equals n!S(m,n), where S(m,n) is the Stirling number of the second kind. Thus $c_{p,\ell} = (p-\ell)!S(p, p-\ell)$.

If we substitute x = -n in the formula $x^p = \sum_{j=1}^r S(p, j)x(x-1)\dots(x-j+1)$ from Theorem 6.10 of [3], we obtain

$$n^{p} = \sum_{j=1}^{p} (-1)^{p-j} j! S(p,j) F_{n}^{j} = \sum_{\ell=0}^{p-1} (-1)^{\ell} c_{p,\ell} F_{n}^{p-\ell}. \qquad \Box$$

Note that an earlier (and much longer) proof of this statement was given in [1].

References

- [1] Cereceda, J.L., Figurate numbers and sums of powers of integers. arXiv:2001.03208
- [2] Marko, F., Litvinov, S. (2020). Geometry of figurate numbers and sums of powers of integers. Amer. Math. Monthly. 127:1, 4-22.
- [3] DeTemple, D., Webb, W., Combinatorial Reasoning. An Introduction to the Art of Counting. John Wiley & Sons, 2014.

PENNSYLVANIA STATE UNIVERSITY, 76 UNIVERSITY DRIVE, HAZLETON, PA 18202, USA *E-mail address:* fxm13@psu.edu