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Abstract

The chromatic polynomial and its generalization, the chromatic symmetric function,
are two important graph invariants. Celebrated theorems of Birkhoff, Whitney, and
Stanley show how both objects can be expressed in three different ways: as sums over
all spanning subgraphs, as sums over spanning subgraphs with no broken circuits, and
in terms of acyclic orientations with compatible colorings. We establish all six of these
expressions bijectively. In fact, we do this with only two bijections, as the proofs in the
symmetric function setting are obtained using the same bijections as in the polynomial
case and the bijection for broken circuits is just a restriction of the one for all spanning
subgraphs.

1 Introduction.

Birkhoff first defined the chromatic polynomial in 1912 for planar graphs [4] with the (ulti-
mately unsuccessful) intention of proving what is now the four color theorem. Indeed, in a
1946 survey on the chromatic polynomial, Birkhoff and Lewis divided attacks on this then-
conjecture into two types, qualitative (Type 1) and quantitive (Type 2), placing the study
of chromatic polynomials at the center of the efforts of Type 2. Even then, the outlook was
not rosy, as they admitted [5, p. 357] (emphasis in original):

These researches have not been as successful as the researches of Type 1 in
yielding results that are directly connected with the four-color problem. It is
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Figure 1: A graph, two colorings, and a spanning subgraph.

certain that the greater generality of the problem here considered has introduced
complications which have so far rendered the solution of the classical four-color
problem more remote by the methods characteristic of Type 2 than it is by the
methods of Type 1.

Despite its failure in leading to a proof of the four color theorem, the chromatic polynomial
has nevertheless become a fundamental object in graph theory. We refer to Read’s still-
excellent 1968 survey [14] or the second part of Biggs’s Algebraic Graph Theory [3] for more
background on the chromatic polynomial and its importance. Our aim here is to explain,
via simple bijections, three classic expressions for the chromatic polynomial—as a sum over
spanning subgraphs, as a sum over spanning subgraphs without broken circuits, and in terms
of acyclic orientations together with compatible colorings. In each case, we show how these
bijections can also be used to prove analogous results for the chromatic symmetric function,
a generalization of the chromatic polynomial defined by Stanley [18] in 1995. First, though,
we need definitions.

Let G = (V,E) be a graph with vertices V and edges E. A coloring of G is a function κ
from V to a set of colors. Here our colors are exclusively the positive integers P and initial
segments thereof, for which we use the notation [t] = {1, 2, . . . , t}. Thus a P-coloring of G
is a function κ : V → P and a [t]-coloring is a function κ : V → [t]. An example of a graph
is shown on the left of Figure 1 and two [4]-colorings of it are shown in the center.

The edge e = uv ∈ E is monochromatic in the coloring κ if κ(u) = κ(v), and a coloring is
proper if none of its edges are monochromatic. Note that only the second coloring shown in
Figure 1 is proper. Indeed, every proper coloring of the graph shown on the left of Figure 1
must give distinct colors to the vertices u, v, and w, but x may be given either its own
distinct color or it may share a color with u or w. Thus the number of [t]-colorings of this
graph is

t(t− 1)2(t− 2),

because there are t(t− 1)(t− 2) ways to choose the colors of u, v, and w, and then there are
t− 1 choices for the color of x (it may have any color except that given to v).

The quantity above is a polynomial in t. It turns out that this is always the case. In fact,
this was the main result of Birkhoff’s seminal paper [4], and he established it by proving the
result we present as Theorem 2.1. Thus we define the chromatic polynomial of the graph G
by

χ(G; t) = the number of proper [t]-colorings of G

for all positive integers t.
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A spanning subgraph of a graph G = (V,E) is a graph on the same set of vertices, but
with a subset of the edges. For example, the graph on the right in Figure 1 is a spanning
subgraph of the graph on the left. We associate each subset S ⊆ E of edges with the
spanning subgraph of G with edge set S, so the spanning subgraph on the right of Figure 1
is denoted by S = {uv, vw}. A connected component, or simply component, K of a spanning
subgraph S is a maximal subset of vertices such that one can reach any vertex in K from
any other by traveling vertex-to-vertex via the edges of S. The components of any graph (or
spanning subgraph) form a partition of its vertices. Returning to the spanning subgraph on
the right of Figure 1, we see that it has two components, one with vertex set {u, v, w} and
the other consisting of the single vertex x. We let

c(S) = the number of components of S.

In our proofs we frequently consider certain improper colorings. Given a spanning sub-
graph S ⊆ E and a coloring κ, we say that κ is monochromatic on the components of S if
κ(u) = κ(v) for all vertices u and v in the same component of S. These are precisely the
colorings such that κ(u) = κ(v) for all uv ∈ S. If κ is a proper coloring, it follows that κ
can only be monochromatic on the components of S if S = ∅. The following lemma, while
trivial to prove, is extremely useful in what follows.

Lemma 1.1. For every graph G = (V,E) and spanning subgraph S ⊆ E, the number of
[t]-colorings of G that are monochromatic on the components of S is tc(S).

Proof. Every such coloring is obtained by independently choosing one of the t available colors
for each component of S.

Since some our results involve signs, it is natural to use sign-reversing involutions to
prove them. Let S be a finite set with an associated sign function sgn : S → {+1,−1}. A
sign-reversing involution on S is an involution ι : S → S that satisfies the following two
conditions.

• If ι(s) = s, then sgn(s) = +1.

• If ι(s) = t and s 6= t, then sgn(s) = − sgn(t).

Immediately from the definition we see that

∑

s∈S

sgn(s) = |Fix ι|,

where Fix ι = {s ∈ S | ι(s) = s} is the set of fixed points of ι, and the vertical bars denote
cardinality.

In order to generalize the chromatic polynomial to the chromatic symmetric function, let
x = {x1, x2, . . . } be an infinite set of commuting variables indexed by the positive integers.
To every P-coloring of the graph G = (V,E) we associate the monomial or weight

xκ =
∏

v∈V

xκ(v).
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For example, both colorings in Figure 1 have monomial xκ = x1x3x3x4 = x1x
2
3x4. The

chromatic symmetric function of G is then

X(G;x) =
∑

κ

xκ,

where the sum is over all proper P-colorings of G. That X(G;x) is a symmetric function
follows from the observation that permuting the labels of the colors in a proper coloring
results in another proper coloring.

By making the substitution

xi =

{

1 if i ∈ [t],
0 if i /∈ [t],

all terms of X(G;x) vanish except those corresponding to proper [t]-colorings of G, which
become equal to 1. Thus X(G;x) reduces to χ(G; t) under this substitution, so the chromatic
symmetric function is indeed a generalization of the chromatic polynomial.

To describe the analogue of Lemma 1.1 in this context, we must introduce a particular
basis for the ring of symmetric functions, the power sum symmetric functions. All bases
of the ring of symmetric functions can be indexed by integer partitions, and these are no
exception. Suppose that λ = (λ1, . . . , λℓ) is a partition of the positive integer n, meaning
that the λi are positive integers called parts satisfying λ1 + · · ·+ λℓ = n and λ1 ≥ · · · ≥ λℓ.
We define pλ = pλ(x) as the product

pλ = pλ1
pλ2
· · · pλℓ

where, for a positive integer k,

pk = xk1 + xk2 + xk3 + · · · .

For example,
p(3,1) = p3p1 = (x31 + x32 + x33 + · · · )(x1 + x2 + x3 + · · · ).

Finally, for a spanning subgraph S ⊆ E of the graph G = (V,E), we let λ(S) denote the
integer partition defined by listing the number of vertices in each component of S in weakly
decreasing order, so λ(S) is a partition of |V | into c(S) parts. For example, the spanning
subgraph shown on the right of Figure 1 has λ(S) = (3, 1). We then have the following
analogue of Lemma 1.1.

Lemma 1.2. For every graph G = (V,E) and spanning subgraph S ⊆ E, we have

∑

κ

xκ = pλ(S),

where the sum is over all P-colorings of G that are monochromatic on the components of S.

Proof. The symmetric function for monochromatic colorings of a component with k vertices
is pk. Since each component of S may be colored independently, the product of the pk for all
parts k of λ accounts for every coloring that is monochromatic on the components of S.
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We could have established Lemma 1.2 first and then derived Lemma 1.1 from it by
substitution as previously described. Indeed, throughout this article we present results in
pairs like this where the first is a specialization of the second. However, instead of establishing
the first from the second by substitution, we establish the second by adapting the bijection
used to prove the first. These adaptations are quite minor. The only differences in the
symmetric function case are that the set of colorings is infinite, and that we have a weight
function that associates a monomial with each coloring. The cancellation we desire, which
results in the equality

∑

s∈S

sgn(s) wt(s) =
∑

s∈Fix ι

wt(s),

still holds so long as the number of elements in S of a given weight is finite and ι is weight-
preserving, meaning that wt(s) = wt(ι(s)) for all s ∈ S.

With this preparation complete, we are ready to construct our bijective proofs. In Sec-
tion 2, we show how χ(G; t) and X(G;x) can both be expressed as sums over all spanning
subgraphs of G. Then in Section 3, we show (using a restriction of the bijection from Sec-
tion 2) how they can both be expressed as sums over only those spanning subgraphs without
broken circuits. Finally, in Sections 4 and 5 we give bijective proofs of Stanley’s results
linking χ(G; t) and X(G;x) to acyclic orientations of graphs. It should be noted that these
two sections are inspired by the work of Blass and Sagan [6]. However, our approach dif-
fers from theirs in several respects. First, we treat both the chromatic polynomial and the
chromatic symmetric function while they only considered the former (the latter not having
been defined when [6] was written). Second, we give an explicit definition of the inverse of
the bijection used in Section 4, while they only described one direction and then showed it
was one-to-one and onto. Finally, we establish Stanley’s theorem on acyclic orientations and
compatible colorings for all negative values of t in Section 5, whereas Blass and Sagan only
considered the case of t = −1.

2 Arbitrary spanning subgraphs.

Both χ(G; t) and X(G;x) can be expressed as sums over the spanning subgraphs of G. In
the case of χ(G; t), this expression is given by the following result of Birkhoff, from which it
follows immediately that the chromatic polynomial is indeed a polynomial.

Theorem 2.1 (Birkhoff [4]). For every graph G = (V,E) and every positive integer t, we
have

χ(G; t) =
∑

S⊆E

(−1)|S|tc(S).

To give a bijective proof of this result, we start by giving a combinatorial interpretation
to the right-hand side. If S ⊆ E is a spanning subgraph of G, then Lemma 1.1 shows the
number of [t]-colorings of V that are monochromatic on the components of S is tc(S). Thus
the right-hand side of Theorem 2.1 can be written as

∑

(S, κ)∈S

(−1)|S|,
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where S is the set of pairs defined by

S = {(S, κ) : S ⊆ E and κ : V → [t] is monochromatic on the components of S}.

At this point the reader is welcome to derive Theorem 2.1 by inclusion–exclusion (it won’t
be difficult), but to practice for our later proofs, we employ a sign-reversing involution ι.

For the rest of this proof—in fact, for the rest of the article—it is necessary to fix a total
ordering on the edges of G. With this order fixed, we describe the edges of G as being first,
last, earlier, or later, referring to their positions in this order. We also define a sign function
on the pairs in S by

sgn(S, κ) = (−1)|S|,

so
∑

S⊆E

(−1)|S|tc(S) =
∑

(S, κ)∈S

sgn(S, κ).

We may now define ι, which is the star of the rest of this section and the next. If κ is
a proper coloring, we define ι(S, κ) = (S, κ). As remarked earlier, this case can only occur
if S = ∅, because otherwise S must have at least one nontrivial component and thus the
proper coloring κ cannot be monochromatic on its components.

Now suppose that κ has at least one monochromatic edge. We take e to be the last such
edge (in the ordering on the edges of G fixed above) and define

ι(S, κ) = (S △ e, κ),

where △ is the symmetric difference operator, removing e from S if it is present and adding
it to S otherwise.

Our proof of Theorem 2.1 is completed with the following proposition, which implies that
∑

S⊆E

(−1)|S|tc(S) =
∑

(S, κ)∈S

sgn(S, κ) = |Fix ι| = χ(G; t).

Proposition 2.2. The mapping ι is a sign-reversing involution on S with

Fix ι = {(∅, κ) ∈ S | κ is a proper coloring of G}.

Proof. First we verify that ι maps S to S. This is clear if κ is a proper coloring, so we
must show that if (S, κ) ∈ S where κ is not proper, then (S △ e, κ) ∈ S, i.e., κ is still
monochromatic on the components of S△ e. If S△ e = S − e, then this holds because each
component of S−e is contained in a component of S. If S△e = S∪e, then either e connects
two vertices of a component of S, or two components of S were merged by the addition of
the edge e. In the former case, κ is clearly still monochromatic on components. In the latter
case, since κ is monochromatic on e, κ must have been the same color on both components
that were merged. Thus in either case, κ is monochromatic on the components of S △ e, so
ι(S, κ) ∈ S for all (S, κ) ∈ S.

The fixed points of ι are precisely the pairs (∅, κ) where κ is a proper [t]-coloring of S.
Moreover, these fixed points have positive sign, as desired. On the other elements of S, ι is
sign-reversing because |S △ e| = |S| ± 1. Finally, ι is an involution because κ, and thus the
definition of the edge e, does not change when passing from (S, κ) to ι(S, κ).
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The proof of the symmetric function analogue requires only minor modifications.

Theorem 2.3 (Stanley [18, Theorem 2.5]). For every graph G = (V,E), we have

X(G;x) =
∑

S⊆E

(−1)|S|pλ(S).

Proof. Let S denote the set of pairs (S, κ) where S ⊆ E and κ is a P-coloring of G that
is monochromatic on the components of S. Since ι does not depend on the range of κ,
its definition extends to pairs where κ has range P without modification, as do both the
statement and the proof of Proposition 2.2.

By defining the weight of a pair (S, κ) ∈ S as

wt(S, κ) = xκ

and appealing to Lemma 1.2, we see that

∑

S⊆E

(−1)|S|pλ(S) =
∑

(S, κ)∈S

sgn(S, κ) wt(S, κ).

Since wt(S, κ) depends only on κ, which does not change in passing from (S, κ) to ι(S, κ),
it follows that ι is weight-preserving. Because ι is (still) sign-reversing, every term in the
sum on the right-hand side of the equation above cancels except those terms corresponding
to pairs (∅, κ) ∈ S where κ is a proper P-coloring of G, and thus

∑

S⊆E

(−1)|S|pλ(S) =
∑

(S, κ)∈S

sgn(S, κ) wt(S, κ) =
∑

(S, κ)∈Fix ι

wt(S, κ) = X(G;x),

proving the theorem.

3 NBC spanning subgraphs.

In 1932, Whitney [21] showed that many of the terms in Theorem 2.1 cancel with each
other. The terms of the summation that remain after this pruning are precisely those that
correspond to spanning subgraphs without broken circuits. In this section we show how
this cancellation can be seen from our bijective proof of Theorem 2.1, and we also establish
Stanley’s symmetric function analogue of Whitney’s result.

First we must define broken circuits. A walk from the vertex v0 to the vertex vk in the
graph G = (V,E) is an alternating sequence v0, e1, v1, e2, v2, . . . , ek, vk of vertices and edges
such that for all i ∈ [k] we have ei = vi−1vi ∈ E. This walk is a path if it does not repeat
any vertices or edges, except possibly the first and the last vertices. Note that we allow both
walks and paths to be edgeless. A walk or a path is closed if v0 = vk, that is, if its first and
last vertices are the same. A cycle, also known as a circuit, is a closed path with more than
one vertex. Just as we conflate spanning subgraphs with their edge sets, we also conflate
paths and cycles with their edge sets. For example, the graph G in Figure 2 has a unique
cycle which we denote as C = {e1, e2, e3}. Graphs not containing cycles can be referred to
as acyclic, but are more commonly called forests.
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Figure 2: A graph with ordered edges e1 < e2 < e3 < e4, a cycle in this graph, the
corresponding broken circuit, and an NBC spanning subgraph (with colors).

Given a fixed total ordering on the edges E of G, a broken circuit is a subset B ⊆ E of
the form

B = C −maxC

where C is a cycle and maxC is the last edge of C. For example, if the edges of the graph
in Figure 2 are ordered e1 < e2 < e3 < e4, then the cycle C = {e1, e2, e3} corresponds to
the broken circuit B = {e1, e2}. A spanning subgraph S ⊆ E is NBC (short for no broken
circuits) if it does not contain any broken circuits. It is frequently helpful to note that
NBC spanning subgraphs are necessarily forests; since they don’t contain broken circuits,
they certainly don’t contain cycles (as every cycle contains its own broken circuit). The
rightmost picture in Figure 2 represents an NBC spanning subgraph (together with colors
that the reader may ignore for now).

Consider a particular pair (S, κ) from the set S in the proof of Theorem 2.1, so S is an
arbitrary spanning subgraph of G and κ is monochromatic on the components of S. Suppose
that S contains a broken circuit, say B = C−maxC. Since the vertices of C lie in the same
component of S (because B ⊆ S), it follows that κ is monochromatic on the vertices of C,
and thus in particular on the edge maxC. Therefore, if S contains the broken circuit B,
then we have ι(S, κ) = (S△ e, κ) for an edge e that is either equal to maxC or occurs after
it in the total ordering on edges of G. It follows that if the broken circuit B is contained in
S, then it is also contained in S △ e. We record this fact below.

Proposition 3.1. The mapping ι restricts to a fixed-point-free sign-reversing involution on
the set of pairs (S, κ) where S is a spanning subgraph containing a broken circuit and κ is
monochromatic on the components of S.

This result shows that the contributions of all such pairs cancel in the summation in
Theorem 2.1, leaving us with only the NBC spanning subgraphs. This establishes Whitney’s
no broken circuits theorem.

Theorem 3.2 (Whitney [21, Section 7]). For every graph G = (V,E), every total ordering
of its edges, and every positive integer t, we have

χ(G; t) =
∑

S⊆E,

S is NBC

(−1)|S|tc(S).

The symmetric function analogue of the no broken circuit theorem follows immediately
from the observation, made in the proof of Lemma 2.3, that the quantity wt(S, κ) = xκ is
preserved by ι because κ does not change.
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Figure 3: A graph, an acyclic orientation, and a compatible coloring (which can be ignored
until Section 5).

Theorem 3.3 (Stanley [18, Theorem 2.9]). For every graph G = (V,E) and every total
ordering of its edges, we have

X(G;x) =
∑

S⊆E,

S is NBC

(−1)|S|pλ(S).

4 Acyclic orientations.

Thus far we have only defined χ(G; t) for positive integers t, where Theorem 2.1 shows that it
is equal to a polynomial. For the rest of the article, we take this polynomial as the definition
of χ(G; t). With this change, we may evaluate χ(G; t) at negative values of t. Our first such
evaluation, below, is a consequence of Whitney’s no broken circuits theorem.

Corollary 4.1. For every graph G = (V,E), every total ordering of its edges, and every
positive integer t, we have

χ(G;−t) = (−1)|V |
∑

S⊆E,

S is NBC

tc(S).

Proof. Theorem 3.2 shows us that

χ(G;−t) =
∑

S⊆E,

S is NBC

(−1)|S|+c(S)tc(S).

If S is an NBC spanning subgraph of G, then since it must be a forest, it has |V | − |S|
components. The result follows immediately.

Stanley has established a beautiful interpretation of the value of χ(G; t) for negative
integers t. Indeed, this relationship is one of the most striking examples of the phenomenon
he later termed combinatorial reciprocity [16]. In this section we give a bijective proof of
this result in the special case of t = −1, following in the footsteps of Blass and Sagan [6]. In
the next section we demonstrate how this special case implies the theorem for all negative
values of t, and also establish the analogous theorem for the chromatic symmetric function.

Stanley’s interpretation of χ(G; t) for negative t involves orientations of G, and so we
must introduce oriented (or directed) edges, which we call arcs. Given a pair of distinct
vertices u and v, there are two possible arcs between them, which we denote by −→uv =←−vu and

9



←−uv = −→vu. An orientation of the (undirected) graph G = (V,E) is obtained by replacing each
edge uv ∈ E by one of the arcs −→uv or −→vu. Each such orientation is then an oriented graph,
which we denote by O = (V,A), where A is the set of arcs. Figure 3 shows a graph on the
left and one of its orientations in the center.

The bijection employed in this section proceeds edge-by-edge, so in the intermediate
stages our graphs have both edges and arcs. It is therefore convenient to set our proof in
the context of mixed graphs, whose study dates to a 1966 paper of Harary and Palmer [9].
A mixed graph is a triple M = (V,E,A) where V is a set of vertices, E is a set of edges, and
A is a set of arcs. To eliminate the possibility of confusion, we briefly adapt our definitions
of walks, paths, and cycles to this context.

A walk from v0 to vk in the mixed graph M = (V,E,A) is an alternating sequence v0, c1,
v1, c2, v2, . . . , ck, vk of vertices and edges/arcs such that for all i ∈ [k], either ci = vi−1vi ∈ E
or ci =

−−−→vi−1vi ∈ A. We say that this walk traverses each of these edges and arcs. We further
call this walk a path if it does not repeat any vertices, edges, or arcs, except possibly the
first and last vertices. For an example of this definition, the sequence u, uv, v, vu, u is not
considered to be a path because it repeats the edge uv, while the sequence u, −→uv, v, vu, u is
considered to be a path.

We say that a walk is closed if its first and last vertices are the same, and we call a closed
path a cycle if it has more than one vertex. For example, the sequence u, −→uv, v, vu, u of
the previous paragraph is a cycle. Finally, a mixed graph is acyclic if it does not contain a
cycle. For example, the mixed graph (which also happens to be an oriented graph) in the
center of Figure 3 is acyclic.

One of the basic lemmas of graph theory is that if a graph contains a walk between two
vertices, then it also contains a path between them (to prove this, simply shorten the walk
each time it repeats a vertex). For mixed graphs, we have the following result whose proof
is similar in spirit.

Proposition 4.2. If a mixed graph contains a closed walk that traverses at least one arc,
then it also contains a cycle.

Proof. Suppose that the proposition is not true, so there is an acyclic mixed graph M that
contains a closed walk traversing at least one arc. Let W denote the shortest such walk in
M , and label its vertices and edges/arcs as v0, c1, v1, c2, v2, . . . , ck, vk. Since W is closed,
we have v0 = vk, and since W is not a cycle itself, we must also have vi = vj for indices i < j
satisfying {i, j} 6= {0, k}. Thus W contains two shorter closed walks:

vi, ci+1, vi+1, . . . , cj, vj

and
vj, cj+1, vj+1, . . . , ck, vk, c1, v1, . . . , ci, vi.

These walks together traverse all edges and arcs traversed byW , so at least one of them must
traverse an arc. This, however, contradicts the minimality of W , completing the proof.

Stanley presented the following result as a corollary of Theorem 5.1. However, we appeal
to Proposition 4.3 in our proof of Theorem 5.1.
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Figure 4: Applying the mappings φ1, φ2, φ3, and φ4 to an acyclic orientation of the graph
shown in the top left, where the normal orientations of the edges are as shown in the top
right.

Proposition 4.3 (Stanley [15, Corollary 1.3]). For every graph G = (V,E),

(−1)|V |χ(G;−1) = the number of acyclic orientations of G.

Proof. Fix a total ordering e1 < e2 < · · · < em of the edges of G. Corollary 4.1 then shows
that

χ(G;−1) = (−1)|V |
∑

S⊆E,

S is NBC

1,

or in words, that (−1)|V |χ(G;−1) is equal to the number of NBC spanning subgraphs of G.
It therefore suffices to exhibit a bijection between the NBC spanning subgraphs of G and

its acyclic orientations. DefineMi to be the set of acyclic mixed graphs comprised of

• an NBC subset of the edges {e1, . . . , ei} and

• an orientation of the edges {ei+1, . . . , em}.

Recall that an NBC subset of edges is automatically acyclic. ThusM0 andMm consist of
the acyclic orientations and NBC spanning subgraphs of G, respectively. We establish the
proposition by constructing bijections φi :Mi−1 →Mi for all indices 1 ≤ i ≤ m.

To define these bijections, we need to distinguish between the two orientations of each
edge of G. How we make this distinction is immaterial, so we simply fix one orientation of
each edge ei as normal, denoted by −→ei , and call the opposite orientation ←−ei abnormal. We
may now define φi : Mi−1 → Mi. Take M ∈ Mi−1 and suppose that the edge ei of G
appears as the arc ai in M . The mixed graph φi(M) is obtained by either unorienting ai
(replacing the arc ai with the edge ei) or removing it (deleting the arc ai). The rules by
which we make this choice are as follows. We unorient ai if both

(A) ai is the normal orientation of ei and

(B) unorienting ai does not create a cycle.

Otherwise, we remove ai. An example of applying the mappings φi is shown in Figure 4,
where the label above each arrow indicates which of (A) or (B) was violated if the arc was
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removed (there is no such label if the arc satisfied both (A) and (B) and thus was unoriented
instead).

We must check that φi produces members ofMi. It follows immediately thatM ′ = φi(M)
is acyclic because rule (B) prevents the creation of a cycle. However, how does φi avoid
creating broken circuits? The answer is that were M ′ to contain a broken circuit, then—
since M ∈ Mi−1 and thus does not itself contain a broken circuit—the last two edges in
the corresponding cycle of G must be ei and ej for some j > i. However, M contains some
orientation of ej , so unorienting ai would result in a cycle. Therefore rule (B) ensures that
ai is removed, and thus M ′ cannot contain a broken circuit. This verifies that M ′ ∈Mi.

Our proof is completed by constructing the inverse of φi, which we denote by ψi :Mi →
Mi−1. Given a mixed graph M ′ ∈Mi, the mixed graph M = ψi(M

′) is obtained by adding
one of the orientations of edge ei to M

′ (and removing ei if it is present in M
′). We give ei

the abnormal orientation if both

(A′) ei is not an edge of M ′ and

(B′) adding ←−ei to M ′ does not create a cycle.

Otherwise, we give ei the normal orientation.
Again we must check that M ∈Mi−1. Orienting an edge cannot cause M to contain an

NBC set, so we need only check that M is acyclic. This follows from (B′) if ei was oriented
abnormally. If ei was oriented normally, then either (A′) or (B′) was violated. If it was (A′)
that was violated, then ei ∈M

′, and M is acyclic because orienting an edge that is already
present cannot create a cycle.

This leaves us to consider the case where ei was oriented normally because condition (B′)
was violated. Suppose ←−ei =

←−uv, so the fact that condition (B′) was violated means that M ′

contains a path from u to v, which we denote by P . If P were to consist entirely of edges,
then P ⊆ {e1, e2, . . . , ei−1} because M

′ ∈ Mi. However, in this case ei is the greatest edge
of the cycle P ∪ ei of G, so P is a broken circuit. As this contradicts our assumption that
M ′ ∈ Mi, it follows that P must traverse at least one arc. Therefore, if M ′ were to also
contain a path from v to u, then this path together with P would be a closed walk that
traversed at least one arc. Proposition 4.2 would then imply that M ′ contains a cycle, a
contradiction. We may therefore conclude that M ′ does not contain a path from v to u.
Thus orienting ei as

−→ei =
−→uv, as it is oriented in M = ψi(M

′), does not create a cycle.
It remains only to check that ψi ◦ φi and φi ◦ ψi are the identity mappings onMi−1 and

Mi, respectively. We show only one of these, as the other is similar. Consider ψi(φi(M))
where M ∈ Mi−1, and let M ′ = φi(M). There are two cases, depending on whether M ′

is obtained from M by unorienting ei or by removing it. In the first case ei was oriented
normally in M and ei is an edge of M ′. Thus (A′) is violated and ψ(M ′) is obtained by
orienting ei normally, as desired.

For the second case, suppose that ei was removed, so either (A) or (B) was violated. If
(A) was violated, then ei was abnormally oriented inM and we must show that ψi(M

′) adds
the arc back in that orientation, or in other words, that both (A′) and (B′) are satisfied. We
know that (A′) is satisfied because ei was removed from M due to its abnormal orientation.
We also see that (B′) holds because orienting ei as

←−ei results in the mixed graph M which
was assumed to be acyclic. For the final subcase, assume that (A) holds but (B) does not.
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This means that ei was oriented normally in M but was removed because (B) was violated.
Thus the cycle that violates (B) must be created by the possibility of traversing ei in its
abnormal orientation since, by assumption, the normal orientation of ei is part of M which
is acyclic. In this case (B′) is violated, and ei is added back to M ′ in its normal orientation,
as desired.

5 Multi-colored acyclic orientations.

Proposition 4.3 is a consequence of a more general result in Stanley’s 1973 paper [15]. Here,
by adapting an idea essentially due to Vo [20, Section 3], we show how this more general
result follows bijectively from Proposition 4.3, and then establish the chromatic symmetric
function analogue. Observe that it is not at all clear algebraically that Proposition 4.3
implies the more general Theorem 5.1, but viewing the results combinatorially makes this
implication possible.

Suppose that O = (V,A) is an orientation of the graph G = (V,E) and that κ is a
coloring of G (by [t] or by P). We say that O and κ are compatible if

−→uv ∈ A implies κ(u) ≤ κ(v),

that is, if all the arcs of O point in the direction of weakly increasing values of κ. It is
convenient to display such pairs by labeling the vertices of O with their values under κ.
Using this convention, we see a compatible pair on the right in Figure 3. We can now state
the generalization of Proposition 4.3 to all negative values of t.

Theorem 5.1 (Stanley [15, Theorem 1.2]). For every graph G = (V,E) and every positive
integer t we have

(−1)|V |χ(G;−t) =

|{(O, κ) | O is an acyclic orientation of G and κ a compatible [t]-coloring}|.

Proof. Fix a total ordering of the edges of G, so by Corollary 4.1 we have

(−1)|V |χ(G;−t) =
∑

S⊆E,

S is NBC

tc(S).

Lemma 1.1 shows that this sum counts pairs (S, κ) where S is an NBC spanning subgraph
of G and κ is a [t]-coloring that is monochromatic on the components of S. We would like to
construct a bijection between such pairs and pairs of the form (O, κ), where O is an acyclic
orientation of G and κ is a compatible [t]-coloring. To prove the theorem, we construct, for
every [t]-coloring κ of G, a bijection Φ between the sets

Oκ = {O : O is an acyclic orientation of G compatible with κ} and

Sκ = {S : S ⊆ E is NBC and κ is monochromatic on the components of S}.

Note that when t = 1, there is only one coloring of G (the constant coloring), and
every acyclic orientation is compatible with this coloring. Thus in this case Φ must restrict
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to a bijection from acyclic orientations of G to its NBC spanning subgraphs. Indeed, we
constructed just such a bijection in the previous section, although any such bijection will do
for our purposes here.

For each i ∈ [t], define
Vi = {v ∈ V | κ(v) = i},

and let Ei denote the set of (monochromatic) edges of G between vertices in Vi. Note that
E1 ∪ E2 ∪ · · · ∪ Et needn’t contain all of the edges of G, but for every S ∈ Sκ we have

S ⊆ E1 ∪ E2 ∪ · · · ∪ Et

because κ is monochromatic on the components of S. Similarly, for each orientation O ∈ Oκ,
we know how the edges outside E1∪E2∪· · ·∪Et are oriented because O and κ are compatible.
Indeed, any edge uv where u ∈ Vi, v ∈ Vj, and i < j must be oriented as −→uv. Let C denote
the set of these arcs.

We may now define Φ. Take some orientation O ∈ Oκ, and for each i ∈ [t], let Oi

denote the sub-orientation consisting of all arcs of O between vertices of color i, so Oi is
an orientation of the spanning subgraph Ei. Because we are assuming Proposition 4.3, we
know that for each Ei, there is a bijection from the acyclic orientations of Ei to its NBC
spanning subgraphs. Let this bijection be denoted by φ(i). Thus φ(i)(Oi) is an NBC spanning
subgraph of Ei for every i ∈ [t]. We may now define Φ(O) simply by

Φ(O) = φ(1)(O1) ∪ φ
(2)(O2) ∪ · · · ∪ φ

(t)(Ot).

Note that the components of φ(i)(Oi) are subsets of Ei. This implies that κ is monochro-
matic on the components of Φ(O). This fact also allows us to see that Φ(O) is an NBC
spanning subgraph—if Φ(O) were to contain a broken circuit, then that broken circuit would
lie in a single component, and thus it would be contained in φ(i)(Oi) for some i, but this is
a contradiction. It follows that Φ(O) ∈ Sκ.

Next we construct the inverse of Φ, which we call Ψ. To define it, consider an NBC
spanning subgraph S ∈ Sκ. Because κ is monochromatic on the components of S, we know
that S ⊆ E1 ∪ E2 ∪ · · · ∪ Et. For each i ∈ [t], let Si = S ∩ Ei, so Si is an NBC spanning
subgraph of Ei. For each i ∈ [t], let ψ(i) denote the inverse of the bijection φ(i). We then
define Ψ(S) by

Ψ(S) = C ∪ ψ(1)(S1) ∪ ψ
(2)(S2) ∪ · · · ∪ ψ

(t)(St)

where C is the set of arcs defined earlier (whose orientations are determined by compatibil-
ity).

We need to make sure that Ψ(S) is acyclic. Suppose, toward a contradiction, that this
orientation contains a cycle. The vertices visited by this cycle cannot all have the same
color since each ψ(i)(Si) is acyclic. Thus we may label the vertices visited by the cycle as v0,
v1, v2, . . . , vk = v0 where κ(v0) < κ(v1). However, the fact that κ is compatible with this
orientation implies that

κ(v0) < κ(v1) ≤ κ(v2) ≤ · · · ≤ κ(vk) = κ(v0).

This contradiction—that κ(v0) < κ(v0)—establishes that the orientation is acyclic, showing
that Ψ(S) ∈ Oκ. It follows that Φ is a bijection with inverse Ψ since the analogous statement
is true of the φ(i) and ψ(i). This completes the proof.
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To state the symmetric function analogue of Theorem 5.1, we first need to introduce a
well-known involution ω on the ring of symmetric functions. When λ = (λ1, . . . , λℓ) is a
partition of n into ℓ parts, we define

ω(pλ) = (−1)n−ℓpλ.

We then extend ω to the entire ring linearly.

Theorem 5.2 (Stanley [18, Theorem 4.2]). For every graph G, we have

ω(X(G;x)) =
∑

(O,κ)

xκ,

where the sum is over all pairs (O, κ) where O is an acyclic orientation of G that is compatible
with the P-coloring κ.

Proof. From Theorem 3.3 we have that

X(G;x) =
∑

S⊆E,

S is NBC

(−1)|S|pλ(S).

All spanning subgraphs S appearing in this sum are forests (because they are NBC), so λ(S)
is a partition of |V | into |V | − |S| parts. Thus, applying ω to the equation above yields

ω(X(G;x)) =
∑

S⊆E,

S is NBC

(−1)|S|(−1)|V |−(|V |−|S|)pλ(S) =
∑

S⊆E,

S is NBC

pλ(S).

By Lemma 1.2, the right-hand side of this equation is the weight generating function for
pairs (S, κ) where S is an NBC set and κ is monochromatic on the components of S. Since
the bijection Ψ of the previous proof preserves colorings, it also preserves the quantity xκ,
so this bijection shows that

∑

S⊆E,

S is NBC

pλ(S) =
∑

(O, κ)

xκ,

finishing the proof of the theorem.

6 Concluding remarks.

Even after more than a century of study, several questions about the chromatic polynomial
remain open. To name a particularly natural and tantalizing one, which was raised by Read
in his 1968 survey [14, Section 9] and then again (independently, it seems) by Wilf [22]
eight years later: which polynomials are chromatic polynomials? Of course, the analogous
question for chromatic symmetric functions is just as natural.

Although the problem of characterizing the chromatic polynomials remains unsolved, we
at least have a description of their coefficients via Theorem 3.2. In particular, since every
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Figure 5: From left to right, the butterfly (or bowtie), the kite, the net, and X169.

NBC set S is a forest, if |V | = n and |S| = k, then c(S) = n− k. Thus Whitney’s theorem
shows that

χ(G; t) =
∑

k≥0

(−1)kakt
n−k

where ak is the number of NBC spanning subgraphs of G with k edges. One can now ask if
the coefficient sequence a0, a1, . . . , an has any interesting properties. Call such a sequence of
real numbers log-concave if

a2k ≥ ak−1ak+1

for all 0 < k < n. Log-concave sequences abound in combinatorics, algebra, and geometry,
as can be seen from the survey articles of Stanley [17], Brenti [8], and Brändén [7]. In 2012,
Huh [11] stunned the combinatorial community by using deep results from algebrac geometry
to prove that the coefficient sequence of χ(G; t) is always log-concave. A weaker property
had been conjectured by Read [14] in 1968.

As we have seen, mixed graphs arise naturally in the study of the chromatic polynomial.
Beck, Bogart, and Pham [2] have extended the definition of chromatic polynomials to this
context. Specifically, they define the strong chromatic polynomial of the mixed graph G =
(V,E,A) to be the number of [t]-colorings κ satisfying

(a) κ(u) 6= κ(v) if uv ∈ E and

(b) κ(u) < κ(v) if −→uv ∈ A.

They show that this is a polynomial in t. They also prove an analogue of Proposition 4.3 for
these polynomials, phrased in the language of hyperplane arrangements. (Given any graph
G with vertex set [n], one associates a set of hyperplanes where ij ∈ E corresponds to the
hyperplane xi = xj . It is then easy to see that the acyclic orientations of G correspond
to the regions obtained by removing the hyperplanes from R

n.) Beck, Blado, Crawford,
Jean-Louis, and Young [1] later introduced the weak chromatic polynomial of a mixed graph,
which counts colorings satisfying the weak version of the inequality in (b). They establish a
mixed graph analogue of Theorem 5.1 for these polynomials.

Finally, we would be remiss if we did not mention a question of Stanley’s that remains
open despite significant interest. First, in terms of the definitions we have established, a
tree is a forest with a single connected component. For any tree T on n vertices, it is
easy to see that χ(T ; t) = t(t − 1)n−1, so we say that the chromatic polynomial does not
distinguish trees. However, Stanley [18, p. 170] asked whether the opposite is true for the
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chromatic symmetric function. Specifically, if T1 and T2 are nonisomorphic trees, is it true
that X(T1;x) 6= X(T2;x)? Stanley repeated this question as Exercise 7.47.b in Volume 2 of
Enumerative Combinatorics [19]. It has since become known as the tree conjecture. A series
of researchers have verified the tree conjecture by computer for small trees; at present the
record belongs to Heil and Ji [10], who have shown that the conjecture holds for all trees on
29 or fewer vertices. If true, the tree conjecture would imply that the chromatic symmetric
function is a complete tree invariant.

Note that the chromatic symmetric function does not distinguish all graphs. The example
Stanley [18] gives is that the chromatic symmetric functions of the butterfly and the kite are
equal (see Figure 5). Orellana and Scott [13] have observed that the chromatic symmetric
function also does not distinguish unicyclic graphs (those with a single cycle). The example
they present is the net and the graph that we refer to—following the Information System on
Graph Classes and Their Inclusions [12] for lack of a better name—as X169 (also shown in
Figure 5).
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