
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=uamm20

The American Mathematical Monthly

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uamm20

Gardener’s Hyperbolas and the Dragged-Point
Principle

Robert Dawson, Pietro Milici & Frédérique Plantevin

To cite this article: Robert Dawson, Pietro Milici & Frédérique Plantevin (2021) Gardener’s
Hyperbolas and the Dragged-Point Principle, The American Mathematical Monthly, 128:10,
911-921, DOI: 10.1080/00029890.2021.1982634

To link to this article:  https://doi.org/10.1080/00029890.2021.1982634

Published online: 22 Oct 2021.

Submit your article to this journal 

Article views: 51

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=uamm20
https://www.tandfonline.com/loi/uamm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00029890.2021.1982634
https://doi.org/10.1080/00029890.2021.1982634
https://www.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uamm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00029890.2021.1982634
https://www.tandfonline.com/doi/mlt/10.1080/00029890.2021.1982634
http://crossmark.crossref.org/dialog/?doi=10.1080/00029890.2021.1982634&domain=pdf&date_stamp=2021-10-22
http://crossmark.crossref.org/dialog/?doi=10.1080/00029890.2021.1982634&domain=pdf&date_stamp=2021-10-22


Gardener’s Hyperbolas and the
Dragged-Point Principle

Robert Dawson, Pietro Milici, and Frédérique Plantevin

Abstract. We propose a new simple construction of hyperbolas, via a string passing through
the foci, that shares properties of the classic “gardener’s ellipse” construction and Perrault’s
construction of the tractrix as the locus of a dragged point, subject to frictional forces, at the
end of a link of fixed length. We show that a frictional device such as this, with a single
frictional element, traces the same locus regardless of the friction model, provided only that
this is isotropic. This allows the introduction of a “purely geometrical” principle for tractional
constructions more general than that of Huygens (1693).

1. STRING CONSTRUCTIONS OF HYPERBOLAS. It is well known that an
ellipse is the locus of a point P constrained to move so that the sum |FP | + |PC|
of its distances to two fixed points F, C is a constant. The points are the foci of the
ellipse, and the constant distance is the major axis. When this constraint is realized
physically using a length of cord and two stakes, it provides a very simple way to lay
out an elliptical path or flower bed; it is thus often called the “gardener’s method” of
constructing an ellipse.

We can group the hyperbolae with the ellipses as “bifocal conics.” It is well known
that the ellipses (on the one hand), and the hyperbolae (on the other), with a given pair
of foci, are mutually orthogonal families of curves. (This is the basis of a useful system
of curvilinear coordinates for the plane.)

If the signed difference |FP | − |PC| of the distances, rather than the sum, is con-
strained, the resulting locus is one branch of a hyperbola, a straight line, or, in the lim-
iting case, a ray. (The triangle inequality requires that we must have ||FP | − |PC|| ≤
|FC|.) Again, the points F and C are the foci of the hyperbola. This fact, too, gives
rise to mechanical constructions. These require a little more ingenuity, because the
constraint cannot be modeled by a “law of conservation of string” alone.

One elegant solution was discovered by the Persian mathematician Ibn Sahl at the
end of the first millennium [17]. This is illustrated in Figure 1(a), taken from a wood-
cut in Frans van Schooten’s 1646 treatise De Organica Conicarum Sectionum. The
segment FP is not a taut string but part of a rigid rod FN , fixed at the end F ; the
other segment is a string from C that meets the rod at P and continues beside the rod
to N . As the rod moves, the point P slides on it so that |FP | − |PC| is the difference
between the lengths of the rod and the string, and thus the locus of P is a hyperbola.1

The requirement of a long rigid rod, however, makes this method inconvenient for
landscaping (and other practical applications).

At the beginning of the 17th century, Kepler gave a closely related construction
(Figure 1(b)) [9, Chapter IV, Section 4], in which two taut strings, constrained to pass
through the point P and thence to the foci, are paid out at the same rate. Various ways
to do this in practice suggest themselves: rough ropes sliding together through a gloved
hand, cords held taut by a gardener’s assistant, or cords passed around a common

1See also imaginary.org/film/mathlapse-constructions-by-pin-and-string-conics.
doi.org/10.1080/00029890.2021.1982634
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Figure 1. How to trace a hyperbola with strings. Left: by string and ruler [19, p. 67]. Right: by two strings to
be equally extended.

Figure 2. The gardener’s ellipse: the force at P need not be directed precisely.

capstan. In many ways, this seems like a cruder version of Ibn Sahl’s construction;
we may speculate that Ibn Sahl was aware of both but chose to disseminate the more
sophisticated one.

Physically, the ellipse and hyperbola constructions above are from the field of stat-
ics: while the apparatus must be moved to generate the whole locus, the constraint
is motion-independent, and individual points on the curve may be verified without
motion. The compass and straightedge are both devices of this type; so are linkages
such as the pantograph and Peaucellier’s inverter. While string constructions of this
type require a force to keep the string taut, the precise magnitude and direction of the
force are not crucial. In the “gardener’s ellipse” construction (Figure 2), the gardener
must apply a force at P directed within the angle vertically opposite ∠FPC in order
to keep the string taut; and if this force has a component tangent to the ellipse, it will
serve to move the point P along the string. The nature of the force is not important: it
could be applied by the gardener’s dog, tied to a ring at P , trying to chase the neigh-
bor’s cat. If an acrobat walks along a slack line, then the force of gravity will make his
path an ellipse.

Similarly, in Figure 1(b) the “loose ends” of the cords need not have any partic-
ular direction. Provided that the applied force is within the angle vertically opposite
∠APB, the strings will stay taut and P will move along the hyperbola. Again, the
source of this force is irrelevant: it could be provided by gardener, greyhound, or
gravity.

To these we can contrast purely dynamic constructions, such as the tracing of an
ellipse or hyperbola by an orbiting body, or the (differently positioned) elliptical locus
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of planar simple harmonic motion. These constructions involve the interaction of a
central force and inertia. Usually, such constructions are only predictable enough to
be considered as mechanical constructions when friction (and other dissipative forces)
are small enough to ignore.

2. FRICTIONAL MOTION. If friction predominates and we can ignore inertia,
then we are in the realm of pure frictional motion. The best known mechanical con-
struction of this type is Perrault’s construction of the tractrix (ca. 1670) as the locus
of a pocket watch on a table top attached by a chain of fixed length to a point that is
dragged along a line that does not pass through the watch (Figure 3). A watch on a
flexible chain can only trace the part of the tractrix lying on one side of the cusp; if
the chain is replaced by a rigid link, the entire tractrix may be traced, first pushing and
then pulling.

Figure 3. Perrault’s tractrix.

A long-handled spoon demonstrates this well, but pulling or pushing the rigid han-
dle requires care to exert no torque. This is made easier if the spoon is replaced by a
“hatchet” with a sharp curved blade in line with the handle, allowing the free end of
the device to move in that line much more easily than sideways. A wheel, mounted
in line with the handle, has the same effect; Ferréol [4] uses this to construct (gen-
eralized) tractrices mechanically using an old-fashioned “high-wheeler” bicycle! The
front wheel (which both drives and steers) follows the directrix; the small rear wheel
traces the tractrix. The possibility of constructing a curve given the direction of a trac-
ing wheel is discussed historically in [21], foundationally in [13], and computationally
in [14].

The same spoon, hatchet, or bicycle may be used to approximately integrate the area
inside a simple closed curve, an idea apparently pioneered by H. Prytz around 1875
[16]. The end of the spoon handle is dragged around a closed curve γ , being careful
to exert no torque; when the handle returns to its original position, the bowl will be
displaced from its original spot by an amount approximately proportional to the area
inside γ . The mathematics of this has been described in many places, for instance in
[6] and [18]. It may be noted that neither these calculations, nor Perrault’s, take into
account a specific model of friction. This is important, as physicists distinguish several
very different types of friction.

• If frictional force is independent of speed, then we have Coulomb friction. This is a
good approximation to the behavior of a body sliding on a dry, rough surface.

• If frictional force is proportional to speed, then we have Stokes friction. This occurs
with lubricated surfaces, and with a body (e.g., a wheel in mud) that has to act on
viscous matter along its track. There is a strong and useful analogy between (on the
one hand) resistors, inductors, and capacitors and (on the other) viscous friction,
masses, and springs.
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• An object in a turbulent fluid exhibits friction proportional to the square or other
(generally convex) function of its speed.

To see what difference the type of friction makes (or doesn’t), we will need to go
back to fundamentals. While Newton’s formulation of mechanics in terms of force is
the one taught explicitly in elementary textbooks, Lagrange gave an alternative foun-
dation in 1788 [10] that will be better for our purposes. To get the flavor of Lagrangian
mechanics, let’s begin with a very familiar example than most readers will have worked
out at some point.

Suppose that you want to find how fast a diver hits the water after a ten-meter dive.
The purely Newtonian solution is to find the acceleration due to gravitational force,
integrate to get velocity as a function of time, and again to get position. Solving the
second equation for time and plugging into the first yields the answer. However, the
lazy physics student (all good scientists are lazy when they can be) soon learns a short-
cut. First, compute how much potential energy becomes kinetic energy during the dive;
then figure out what velocity that corresponds to. Lagrangian mechanics formalizes
this intuition: while mathematically equivalent to Newtonian mechanics, it considers
energy, rather than force, as fundamental.

Consider the nondissipative system described by parameters {q1, . . . , qn}. Let its
kinetic energy be T (q1, . . . , qn, q̇1, . . . , q̇n) (where dots indicate time derivatives) and
its potential energy U(q1, . . . , qn). By hypothesis, the total energy T + U is conserved;
thus T , U , and all linear combinations aT + bU with a �= b carry equivalent infor-
mation. The difference, L := T − U , turns out to be particularly convenient to work
with; it is known as the Lagrangian. A role analogous to that of Newton’s second law
of motion is taken by the Euler–Lagrange equations:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

= 0, j = 1, . . . , n. (1)

(More complete expositions of this approach to classical mechanics can be found in
any upper-level textbook on classical mechanics, for instance, Goldstein [7] or Landau
and Lifshitz [11]. Chapter 19 of Volume 2 of The Feynman Lectures on Physics [5]
contains one of the few truly accessible descriptions.)

Dissipative forces can be introduced by including the Rayleigh dissipation func-
tion, a velocity-dependent pseudopotential suggested by Lord Rayleigh in 1873 [20].
Rayleigh introduced it for Stokes friction: F = 1/2

∑
ki‖vi‖2, where the sum runs

over all frictional elements of the system. The idea can, however, be used with other
friction models [15], letting F = ∑

kif (vi). For instance, for Coulomb friction, we
have F = ∑

ki‖vi‖. (Nondifferentiability at vi = 0 may require careful handling —
see Example 4 .) The modified Lagrange equations are [7, p. 24]:

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj

+ ∂F
∂q̇j

= 0. (2)

In the purely frictional case, we treat inertia (and hence kinetic energy) as negligi-
ble. The Lagrangian is thus just −V , where V (q) is a scalar potential function giving
the generalized forces driving the motion of the system. As this is independent of q̇,
the first term of (2) is zero, and the equations of motion become

∂V

∂qj

+ ∂F
∂q̇j

= 0. (3)

914 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 128



Example 1. (Perrault’s tractrix.) Suppose a pocket watch, originally positioned at
(0, R) on a rough table top, is to be pulled by a chain of length R, the other end of
which moves along the x-axis (Figure 3). The sliding friction of the watch is isotropic.
What is the path followed by the watch? The coordinates will be x (the other end of
the chain) and θ , the angle the chain makes with the x-axis. The position of the watch
is (x − R cos(θ), R sin(θ)). The isotropic friction is described by a Rayleigh function
dependent only on ‖v‖ (or for simplicity on ‖v‖2), hence of the form

F = φ(‖v‖2) = φ(ẋ2 + 2R sin(θ)ẋθ̇ + R2θ̇2) where φ′ > 0.

If a force F , represented by a potential V (x), is applied to the chain, the equations of
motion are thus

∂V

∂x
+ ∂F

∂ẋ
= −F + φ′(ẋ2 + 2R sin(θ)ẋθ̇ + R2θ̇2)(2ẋ + 2R sin(θ)θ̇) = 0

and

∂V

∂θ
+ ∂F

∂θ̇
= φ′(ẋ2 + 2R sin(θ)ẋθ̇ + R2θ̇2)(2R sin(θ)ẋ + 2R2θ̇ ) = 0.

Assuming that the watch is moving, the second equation is satisfied if and only if
dθ/dx = θ̇/ẋ = − sin(θ)/R, which may be solved by separation of variables. The
first equation relates F to the speed of the watch’s motion; if we are only interested in
the locus, we do not need to solve it.

We note that in this problem the locus is independent of the function φ. This is a
feature of a significant class of such problems.

3. TRACTIONAL CONSTRUCTIONS: FROM MECHANICS TO GEOME-
TRY. Starting with the tractrix, what became known as “tractional motion” [2] was
recognized as a method by which curves might be mechanically constructed. In the
early modern period, the lack of a geometrical counterpart for algebraic objects was
seen as a crisis for the earlier geometric foundation: a first widely accepted answer
to such a problem is given by Descartes’ 1637 Géométrie, which provided a general
method to rephrase geometrical problems in the language of algebra and vice versa
[3].

As a consequence, the Cartesian canon distinguished between geometrical (alge-
braic) curves and mechanical (transcendental) curves, with only the first considered to
be within the subject matter of geometry. At the end of the 17th century, geometers like
Huygens and Leibniz looked for a general class of constructions to justify the intro-
duction of the transcendental curves that Descartes had excluded. For them, the ideas
behind Perrault’s construction constituted the key to solving inverse-tangent problems
(i.e., finding the curve whose tangent satisfies certain conditions). For instance, in Per-
rault’s formulation of the tractrix construction, the friction of the watch on the base
plane ensures that the chain always remains straight and tangent to the curve defined
by the watch. While Newton, as his correspondence shows, had already found the
equation of the tractrix by 1676, he took the study of tractional motion no further.

However, as noted above, friction is not a single phenomenon, but a complicated
class of phenomena, the study of which is a branch of physics (tribology) in itself.
Therefore, to have any simple geometric model, tractional motion must be rephrased
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so as to avoid physical entities, as evident in Huygens’ achievement of a “purely geo-
metrical” principle [8, Lettre de Huygens à H. Basnage de Beauval, February 1693,
pp. 407–422]:

On a horizontal plane consider a physical point attached to an inextensible string or an inflexi-
ble rod. While pulling the other extremity (of the string or of the rod), if the point makes some
resistance with the plane by its weight or other physical properties, this point moves along a
trajectory in which the taut string or the rod are always tangent to the described curve.

This principle allows the frictional element of a simple tractional system to be
treated as a “black box,” allowing the mechanism to be analyzed geometrically with
no knowledge of the form of (isotropic) friction involved.

This setting is the basis for some generalizations of the tractrix: by making one
extremity of the string or rod move along an arbitrary curve called the directrix, one can
find generalized tractrices; these were used in 1736 by Euler to solve quadratic first-
order ODEs (Riccati’s equation, named for Jacopo Riccati (1676–1754)). But even
stronger generalizations had already been proposed by Leibniz in the same year as
Huygens’ publication: a universal machine to solve first-order ODEs [1, pp. 112–114]
(an ideal device, not meant to be physically constructed) can be obtained by varying the
length of the string. A general geometric theory of generalized tractrices by Vincenzo
Riccati (1707–1775, the son of Jacopo) has only recently been re-evaluated [21].

However, Huygens’ tractional principle requires that the geometry of the mecha-
nism yields the direction of motion of the dragged point in a trivial fashion. There
are problems for which the traction can still be given by a purely geometric analysis,
without resorting to explicit frictional models and force calculations, even when the
direction of motion cannot be read directly from any element of the mechanism. We
will derive a generalized version of Huygens’ tractional principle for a larger class of
tractional mechanisms, which includes for instance the “gardener’s hyperbola” device
in Figure 7.

We note in passing that there are two rather trivial cases in which the tractional
elements of a system may simply be ignored. If the system has only one degree of
freedom, and the motive force is strong enough to overcome the combined static fric-
tion of all dragged points, then the locus of motion trivially follows that single degree
of freedom. Thus, the friction of the pencil on the paper may be ignored when we
consider the geometry of a compass.

Second, if some constraints of the system are inequalities (as in the inextensible
chain of Perrault’s watch), then we may have a “tensioning” force that acts to turn them
into equalities. In the case of the gardener’s ellipse (see Figure 2), frictional forces can-
not do this; but the first construction in Section 4 (Figure 6) illustrates a case in which
friction has such a role. Such forces are, again, usually ignored in a geometric analysis.

Consider a planar mechanism with two degrees of freedom, driven by a force that
can be represented (at least locally) by a smooth potential V and with a dragged point
subject to frictional forces. We find orthogonal coordinates (q1, q2) such that V (k, q2)

is constant for each k; then ∂V/∂q1 = F(t) and ∂V/∂q2 = 0. Suppose furthermore
that the system is constrained by a single dragged point exerting an isotropic frictional
force −f (‖v‖)(v/‖v‖). This force is representable by a Rayleigh pseudopotential

F = �(‖v‖2)

where � is an increasing function: �(x) = x for Stokes’s viscous friction, �(x) =√
x for Coulomb’s dry sliding friction, etc.
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As the coordinate system is orthogonal, ‖v‖2 = a(q1, q2)q̇1
2 + b(q1, q2)q̇2

2. (If the
coordinates are conformal, then a = b.) So the second equation of motion becomes

∂V/∂q2 + ∂F/∂q̇2 = 0 + 2� ′(‖v‖2)b(q1, q2)q̇2 = 0.

As � ′ and b never vanish, we conclude that q̇2 = 0, so that the locus of the system
is a curve orthogonal to the level curves of q1. Equivalently, the instantaneous dis-
placement of the dragged point is minimized, subject to the instantaneous change in
q1. Note that this conclusion is independent of a, b, �, and F ; we will refer to it as the
dragged-point principle. When applicable, it allows the locus of a dragged point to be
computed without invoking dynamics.

Example 2. (The tractrix, redux.) We analyze Perrault’s watch using the dragged-point
principle. First, though it is on a flexible chain, friction acts as a tensioning force, so we
may treat the chain as a rigid link of length R. Second, ∂V/∂θ = 0; so we take q2 = θ

and choose q1 to make the coordinate system orthogonal. Then the watch moves along
a trajectory orthogonal to the family of circles (x − a)2 + y2 = R2 which may be
found by integrating y dx = (x − a)dy or, by eliminating a and separating variables:

√
R2 − y2

y
dy = dx.

Limitations of the principle. There are, however, limitations on this principle. It does
not give the speed of motion; it cannot be applied if inertia is significant; and it fails
if the frictional force is nonisotropic. Moreover, if there are two or more frictional
elements, the principle is insufficient to predict the dynamics of the system: the details
of the pseudopotentials �j become important.

Example 3. (Frictional Atwood’s machine.) A person is snowshoeing at 1 m/s towing
two children on sleds, using a single towrope passing through a frictionless carabiner
(Figure 4). The coefficient of (Stokes) friction of one sled is k1, that of the other is
k2 = 2k1. How fast does each child move?

Figure 4. A frictional Atwood’s machine, top view.

Let q1, q2 be the positions of the children, and F the force exerted by the snowshoer,
whose location is 1

2 (q1 + q2) + c . Then V = −(F/2)(q1 + q2) + c and ∂V/∂q1 =
∂V/∂q2 = −F/2. We also have F = 1

2

(
k1q̇

2
1 + k2q̇

2
2

)
. The equations of motion are

thus

∂V

∂qj

+ ∂F
∂q̇j

= −F/2 + kj q̇j = 0
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so that

q̇1 = 2q̇2 = −F/(2k1).

So child 1 travels twice as fast as child 2; that is, at 4/3 m/s and 2/3 m/s, respectively.

Example 4. (Frictional Atwood’s machine, continued.) Suppose instead that the sleds
are on a rough sidewalk, subject to Coulomb friction. How fast does each child move?

The Rayleigh function F = ∑
kj‖q̇j‖ for Coulomb friction is nondifferentiable

when q̇j = 0; to avoid problems, we will replace ‖q̇j‖ on [−ε, ε] by a continuously
differentiable concave function g with g′(−ε) = −kj and g′(ε) = kj as in Figure 5.
By the intermediate value theorem, g′ takes every value between −kj and kj . We now

Figure 5. Modification of the Coulomb friction pseudopotential.

have F = k1|q̇1| + k2|q̇2| unless |q̇j | < ε. For q̇j > ε, the equations of motion are

∂V

∂qj

+ ∂F
∂q̇j

= −F/2 + kj = 0.

But this implies k1 = F/2 = k2 = 2k1, which is inconsistent. The only solution (if the
adult is moving) puts |q̇2| < ε, in which range ∂F/∂q̇2 can take smaller values. We
interpret this as saying that child 2 does not move, while child 1 travels twice as fast as
the adult. Note in particular that the locus of child 2 is not the same as in the previous
example.

4. AN APPLICATION: GARDENER’S HYPERBOLAS. We present two trac-
tional constructions for a hyperbola. The mechanism in Figure 6 is in fact only a
very minor variation on Kepler’s method. The segments FP and PC are shortened
simultaneously from the points F and C, via rings or pulley blocks, and an object
at P slides tractionally. The sum T1 + T2 of the tensions at P lies within the angle
∠FPC; the velocity vector is parallel to that, and so long as the stabilizing force vec-
tor is within the opposite angle, it will always keep the lines taut, so we do not need
to assume exactly isotropic friction. Neither the magnitude nor the exact direction of
the frictional force is critical; any minor variation will be compensated for by changed
tension in one or both lines. As with the gardener’s ellipse of Figure 2, this is a static
construction; individual points may be verified without drawing the curve.

While it looks superficially similar, the mechanism in Figure 7 is a true tractional
device (and does require that friction be isotropic, though the force law still does not
need to be specified). Here there is a frictionless ring at P , allowing the tension in the
lines to equalize. The lines could run as in Figure 6, or for simplicity we can make the
end at F fast, stand at C, and pull the cord.
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Figure 6. A gardener’s hyperbola: the force at P is approximate and may be provided by friction.

Figure 7. Another gardener’s hyperbola: the force at P must be parallel to that of friction.

Let the foci be (−R, 0) and (R, 0), so the string lengths are given by l2
1 =

(x + R)2 + y2 and l2
2 = (x − R)2 + y2 (where x and y are the Cartesian coordinates

of the point). We adopt elliptic-hyperbolic coordinates with q1 = l1 + l2 and q2 =
l1 − l2; this is an orthogonal coordinate system [12]. The force F applied to the cord is
represented by a potential W with ∂W/∂q1 = −F and ∂W/∂q2 = 0. By the dragged-
point principle, the equations of motion are satisfied if and only if the point moves so
as to minimize displacement for a given change in q1. Clearly such motion is along
a level curve of q2: thus the difference between the string lengths is constant, and the
locus is an arc of a hyperbola.

As in Example 1, this construction is independent of the friction model; we merely
require that the frictional force be parallel in a negative sense to the motion vector,
with friction large enough that inertia may be ignored. (Given the complex mechanical
properties of turf, this is a good thing for outdoor constructions!) Another surprising
feature is that because we idealize the line as perfectly flexible, so that the tensions
in the two segments are equal, there is no requirement that it be inextensible! In a
real-world application, light polypropylene or nylon cord (both notoriously stretchy),
or even shock cord, will serve. In contrast, it is easily seen that the mechanisms of
Figures 2 and 6 will not work unless the lines are inextensible.

5. CONCLUSIONS. We have shown that if an inertialess planar device with two
degrees of freedom and a single frictional element traces a curve, that curve is inde-
pendent of the (isotropic) friction model. This is not true in general for devices with
more than one such element. As an application of this, we presented two constructions
for the hyperbola, one a variation on the classic string constructions given by Ibn Sahl
and Kepler, the other more essentially tractional.
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[10] Lagrange, J. L. (1788). Mécanique Analytique. Paris, France: Chez la Veuve Desaint.
[11] Landau, L. D., Lifshitz, E. M. (1976). Mechanics (Vol. 1 of Course of Theoretical Physics), 3rd ed.

(Sykes, J. B., Bell, J. S., trans.). Oxford, UK: Pergamon Press.
[12] Lebedev, N. N., Skal’Skaya, I. P., Uflyand, Ya. S. (1966). Problems in Mathematical Physics (Rob-

son, A. R. M., trans.). International Series of Monographs in Pure and Applied Mathematics, Vol. 84.
Oxford, UK: Pergamon Press.

[13] Milici, P. (2015). A geometrical constructive approach to infinitesimal analysis: Epistemological poten-
tial and boundaries of tractional motion. In: Lolli, G., Panza, M., Venturi, G., eds. From Logic to Prac-
tice. Boston Studies in the Philosophy and History of Science 308. Cham, Switzerland: Springer, pp.
3–21.

[14] Milici, P. (2020). A differential extension of Descartes’ foundational approach: A new balance between
symbolic and analog computation. Computability. 9(1): 51–83.

[15] Minguzzi, E. (2015). Rayleigh’s dissipation function at work. European J. Phys. 36(3): 035014.
[16] Prytz, H. [writing as ‘Z’] (1886). Stangplanimetret. Den Tekniske Forenings Tidsskrift. 10: 23–28.
[17] Rashed, R. (1990). A pioneer in anaclastics: Ibn Sahl on burning mirrors and lenses. Isis. 81: 464–491.
[18] Satterly, J. (1921). The hatchet planimeter. Jour. Roy. Ast. Soc. Can. 15: 221–243.
[19] van Schooten, F. (1646). De Organica Conicarum Sectionum In Plano Descriptione Tractatus:
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Pollock’s Generalized Tetrahedral Numbers Conjecture

The nth tetrahedral number Ten = (
n+2

3

)
represents the sum of the first n trian-

gular numbers. In the song “The Twelve Days of Christmas,” Ten counts the total
number of gifts received after day n.

A longstanding conjecture of Pollock (from [4]) is that every positive integer may
be expressed as the sum of at most five tetrahedral numbers. To date, only 241 posi-
tive integers have been found requiring five tetrahedral numbers (see [3]). Recently,
progress has been made (in [1]) on a related conjecture of Pollock from the same
19th century paper.

Here we instead consider generalized tetrahedral numbers Ten = (n+2)(n+1)n
6 ,

defined for all integers n. These are the generalized binomial coefficients
(
n+2

3

)
, as

popularized in [2]. With these we can prove the following.

Theorem. Every integer may be expressed as the sum of at most four generalized
tetrahedral numbers.

Proof. For arbitrary n ∈ Z, we have Ten + Ten−2 + Te−n−1 + Te−n−1 =
1
6 ((n + 2)(n + 1)n + n(n − 1)(n − 2) + 2(−n + 1)(−n)(−n − 1)) = n.
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