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Are the Catalan Numbers a Linear
Recurrence Sequence?

Martin Klazar and Richard Horský

Abstract. We answer the question in the title in the negative by providing four proofs.

1. INTRODUCTION. Let N = {1, 2, . . . } be the set of natural numbers, N0 =
{0, 1, 2, . . . } be the nonnegative integers, Z be all integers, Q be the field of frac-

tions, and C be the field of complex numbers. For n ∈ N we set [n] = {1, 2, . . . , n}.

The Catalan numbers

(Cn)n≥1 = (1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, . . . )

are among the most popular sequences in enumerative combinatorics. In [5], R. P. Stan-

ley gives more than 200 mostly combinatorial interpretations of the sequence (Cn).
What would be their simplest self-contained combinatorial definition? Perhaps, for

n ∈ N and n ≥ 2,

Cn =
∣

∣{a ∈ {−1, 1}2n−2 | ∑k
j=1 aj ≥ 0 for k ∈ [2n− 3] and

∑2n−2
j=1 aj = 0}

∣

∣ .

Here a = (a1, a2, . . . , a2n−2) and |X| denotes cardinality of a finite set X . Thus Cn

counts the words built from n − 1 ones and n − 1 minus ones and with all initial

sums nonnegative. Starting from this definition, it is not hard to deduce the recurrence

C1 = 1 and for n ≥ 2,

Cn =
n−1
∑

j=1

CjCn−j

(consider the initial segments with sums equal to 1) and also the closed formula Cn =
1
n

(

2n−2
n−1

)

. From it we easily derive another recurrence, namely C1 = 1 and for n ≥ 1,

Cn+1 =
4n − 2

n+ 1
· Cn .

Could it be that the Cn follow a yet simpler recurrence that for every n ≥ 1,

Cn+k =
k−1
∑

j=0

ajCn+j (1)

where k ∈ N0 and the aj ∈ C are constants? For k = 0 the sum is defined as 0. As

Theorem 3 in Section 4 shows, without loss of generality we may take aj ∈ Q.

Theorem 1. The answer is negative, (Cn) is not a linear recurrence sequence as the

numbers Cn do not satisfy any recurrence of the form (1).
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In the following four sections we give four proofs. Linear recurrence sequences are

sequences

(bn) = (b1, b2, . . . ) ⊂ C

(or with elements lying in another field) satisfying for every n ∈ N a recurrence of

the form (1). They appear frequently in enumerative combinatorics and number theory

and the monograph [1] is devoted to them. One of the best known examples are the

Fibonacci numbers (Fn) = (1, 1, 2, 3, 5, 8, 13, 21, . . . ), satisfying for every n ∈ N

the recurrence Fn+2 = Fn+1 + Fn. It is our (immodest) goal that due to our article

the Catalan numbers become one of the best known nonexamples.

2. A PROOF BY ASYMPTOTICS. The first, if not always the best, thought of an

enumerative combinatorialist facing the task of showing that a sequence of integers is

not a linear recurrence sequence (bn) ⊂ Z is to use the asymptotics of the sequence.

One might say (we warn the reader that this argument is not rigorous) that since

Cn ∼ cn−3/24n and bn ∼ dnsαn as n → ∞ ,

where c > 0 is a real constant, s ∈ N0, and d, α > 0 are real algebraic numbers, (Cn)
is not a linear recurrence sequence because the two asymptotics are incompatible. The

problem with this argument is that while the former asymptotic expression is correct

(it follows for example from the closed formula for Cn and the Stirling asymptotics

for n!), the latter asymptotic expression is in general incorrect. It only holds when the

expression for bn by a power sum (which we recall below) has a so-called dominant

root, a unique root with the maximum modulus α. For linear recurrence sequences

arising in enumerative combinatorics (for example, for the Fibonacci numbers) this is

usually the case, but for a general linear recurrence sequence its power sum need not

have dominant root.

The power sum representation of a linear recurrence sequence (bn) ⊂ C, which

generalizes the well-known Binet formula for the Fibonacci numbers Fn, is an expres-

sion of the form (n ∈ N)

bn =
r

∑

j=1

pj(n)α
n
j ,

where r ∈ N0, pj ∈ C[x] are nonzero polynomials and αj ∈ C are mutually distinct

nonzero numbers, the so-called roots of the power sum; for r = 0 the sum is defined

as 0. For a proof that bn has such an expression see, for example, [4, Chapter 4]. Thus

the correct asymptotics for bn is

bn = nsαn
l

∑

j=1

γjβ
n
j +O(ns−1αn) for n ∈ N ,

where s ∈ N0, α > 0 is the maximum modulus |αj | of a root αj , l ∈ N0, γj ∈ C are

nonzero numbers, and βj ∈ C are mutually distinct numbers with |βj | = 1.

Let l > 0. For n ∈ N we define

v(n) =
l

∑

j=1

γjβ
n
j
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and prove that lim supn→∞ |v(n)| > 0. Together with the trivial upper bound

|v(n)| = O(1), this saves the argument above and shows that indeed Cn ∼ cn−3/24n

cannot be expressed by a power sum and therefore (Cn) is not a linear recurrence

sequence.

Suppose by way of contradiction that limn→∞ v(n) = 0. This in particular means

that for every k ∈ N there is an nk ∈ N such that all l values |v(nk + 1)|, |v(nk +
2)|, . . . , |v(nk + l)| are at most 1/k. We solve the l linear equations

v(nk + i) =
l

∑

j=1

γjβ
nk+i
j , i = 1, 2, . . . , l ,

for the γj . By Cramer’s rule we get the formulas

γj =
det(Mj,k)

det

(

(

β
nk+i
m

)l

i,m=1

) =:
Aj,k

Bk

, j = 1, 2, . . . , l ,

where the matrix Mj,k arises from the matrix in the denominator by replacing the jth

column with the column (v(nk + 1) · · · v(nk + l))T . It follows from the bounds

|βm| = 1 and |v(nk + i)| ≤ 1/k and the definition of determinant that |Aj,k| ≤ l!/k.

We take the power βnk+1
m out of the mth column of the matrix in the denominator and

obtain a Vandermonde matrix. The formula for the Vandermonde determinant shows

that

|Bk| =
∏

1≤u<v≤l

|βv − βu| =: β > 0 ,

independently on k. Thus |γj | ≤ l!/βk for j = 1, 2, . . . , l. Letting k go to ∞, we get

that all γj = 0, in contradiction with the assumption.

3. A PROOF BY GENERATING FUNCTIONS. This is the shortest of the four

proofs, at least when we take for granted that the Cn have the generating function

C(x) =
∞
∑

n=1

Cnx
n =

1−
√
1− 4x

2
,

and that the generating function of every linear recurrence sequence (bn) ⊂ C is ra-

tional, i.e.,

B(x) =
∞
∑

n=1

bnx
n =

p(x)

q(x)
for some polynomials p, q ∈ C[x] with q(0) 6= 0 .

The formula for C(x) follows easily from the relation Cn =
∑n−1

j=1 CjCn−j . For

a proof of rationality of B(x), we refer again to [4, Chapter 4]. We work in the ring

C[[x]] of formal power series; thus
√
1− 4x means

∑∞

n=0

(

1/2
n

)

(−4)nxn and
p(x)

q(x)

means p(x)q(x)−1 where q(x)−1 is the multiplicative inverse of q(x) in C[[x]].
If (Cn) were a linear recurrence sequence, then C(x) would be rational and we

would have the equality

√
1− 4x =

a(x)

b(x)
for some polynomials a, b ∈ C[x] with b(0) 6= 0 .
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Also, a(x) 6= 0. Hence b(x)2(1 − 4x) = a(x)2. This is impossible, as the left-hand

side has an odd degree but the right-hand side has an even degree. This argument

resembles the well-known proof of the irrationality of
√
2 taught in courses of mathe-

matical analysis. This proof may be the most folkloric one of the four since irrationality

of C(x) is well known; see for example the course notes [3, p. 1].

4. A PROOF BY NUMBER THEORY. To fulfill our promise, before we give the

third proof, we prove a result relating the domain of terms of a linear recurrence se-

quence and the domain of coefficients in the recurrence. The result is well known, at

least to the researchers interested in linear recurrence sequences, but its proof cannot

be found easily in the literature, and thus it may be of some interest to present it here.

We need the next standard lemma from linear algebra (or perhaps from number theory?

see Siegel’s lemma), whose proof we leave to the reader as an exercise.

Lemma 2. Let K be a field, m,n ∈ N with m < n, and ai,j ∈ K for i = 1, 2, . . . ,m
and j = 1, 2, . . . , n be mn elements. Then there exist n elements x1, x2, . . . , xn in

K , not all equal to 0K , such that for every i = 1, 2, . . . ,m,

n
∑

j=1

ai,jxj = 0K .

Theorem 3. Suppose that K ⊂ L is an extension of fields and (bn) ⊂ K is a linear

recurrence sequence given by a recurrence

bn+k =
k−1
∑

j=0

ajbn+j , n ∈ N ,

with k ∈ N0 and all coefficients aj ∈ L. Then (bn) satisfies another recurrence

bn+k′ =
k′−1
∑

j=0

a′
jbn+j , n ∈ N ,

with k′ ∈ N0, k′ ≤ k, and all coefficients a′
j ∈ K .

Proof. For every n ∈ N,

k
∑

j=0

ajbn+j = 0L where ak := −1L .

We set

B = {b = (bn, bn+1, . . . , bn+k) | n ∈ N} ⊂ Lk+1 and d = dimL(B) ∈ N0 ,

where we understand Lk+1 to be a vector space over L. Since for every tuple b ∈ B
the nonzero (k + 1)-tuple a = (a0, a1, . . . , ak) satisfies 〈a, b〉 = 0L (scalar product),

we have d < k + 1. Let B0 ⊂ B be a maximal linearly independent subset; thus

dimL(B0) = |B0| = d and every tuple b ∈ B is an L-linear combination of the tu-

ples in B0. Since B0 ⊂ Kk+1, by the previous lemma there exists a nonzero vector

a∗ ∈ Kk+1 such that 〈a∗, b〉 = 0K for every b ∈ B0. Every tuple in B is a linear
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combination of the tuples in B0, and therefore we have that 〈a∗, b〉 = 0K even for

every b ∈ B. Let a∗ = (a∗
0, a

∗
1, . . . , a

∗
k) and k′ ∈ N0 be maximum with a∗

k′ 6= 0K .

For j = 0, 1, . . . , k′ − 1 we set a′
j = −a∗

j/a
∗
k′ ∈ K . Then for every n ∈ N,

bn+k′ =
k′−1
∑

j=0

a′
jbn+j .

Thus by Theorem 3 for any linear recurrence sequence of integers we may assume

that the recurrence coefficients are fractions.

We proceed to the third proof and assume for contradiction that for some k in N0

and a0, a1, . . . , ak−1 in Q, ak = −1, the relation

k
∑

j=0

ajCn+j = 0 (2)

holds for every n ∈ N. We make use of the fact that the odd Cn are infinite in number

but increasingly isolated. The reader can see that of the numbers C1, C2, . . . , C12

given in the Introduction, odd ones are C1, C2, C4, and C8. Indeed, in general

Cn is odd if and only if n = 2m for some m ∈ N0 .

This follows easily from the relation Cn =
∑n−1

j=1 CjCn−j . Indeed, it shows that if

n > 1 is odd then Cn is even (but C1 = 1), and that if n is even then Cn ≡ C2
n/2 ≡

Cn/2 modulo 2. The equivalence now follows by writing an n ∈ N as n = 2mr with

m ∈ N0 and odd r ∈ N. This result on parity of Cn is certainly well known but we do

not know any reference to its origin.

Multiplying the above relation (2) by an appropriate natural number, we clear the

denominators and assume without loss of generality that the numbers a0, a1, . . . , ak

are mutually coprime integers. In particular, some coefficient al must be odd. We take

a large enough n ∈ N such that n+ l is the sole power of 2 among n, n+ 1, . . . , n+
k. The above relation is then impossible because the sum contains exactly one odd

summand, alCn+l, all other summands are even, and the sum should equal to 0.

5. A PROOF BY POLYNOMIALS. We thought of this proof as the last one but

in retrospect it is quite natural. We assume for contradiction that for some k ∈ N0,

a0, a1, . . . , ak−1 ∈ C, and ak = −1, the relation

k
∑

j=0

ajCn+j = 0

holds for every n ∈ N. We substitute for each Cn+j the formula 1
n+j

(

2n+2j−2
n+j−1

)

and

after simplification get that p(n) = 0 for a nonzero polynomial p ∈ C[x] and every

n ∈ N, which is impossible. This may be viewed as a very simple instance of the

polynomial methods exposed in L. Guth’s book [2].

In more detail, for a variable x and k ∈ N0 we consider the descending products

(x)0 := 1 and for k > 0,

(x)k := x(x− 1)(x − 2) · · · (x− k + 1) .

January 2014] THE CATALAN NUMBERS 5
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It is a monic polynomial in x with degree k. As we said, in the above displayed relation

we set

Cn+j =
1

n+ j
· (2n+ 2j − 2)!

(n+ j − 1)!2

and, to get rid of common factors and denominators, multiply it by

(n + k)k+1 ·
(n+ k − 1)!2

(2n − 2)!
.

From this we get the relation

p(n) :=
k

∑

j=0

aj ·
(n+ k)k+1

n+ j
· (n + k − 1)2k−j · (2n+ 2j − 2)2j = 0

holding for every natural number n. The remaining crucial step is to show that p(x) is

not the zero polynomial. This is not so obvious because each of the k + 1 summands

(without aj) is a nonzero polynomial in n with the same degree 3k and a cancellation

might occur. But the evaluation at x = n := −k shows that

p(−k) = (−1) · (−1)k · 1 · (−2)2k 6= 0

because all other terms vanish except for j = k. Thus p(x) 6= 0 and we get the con-

tradiction showing that (Cn) is not a linear recurrence sequence.
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