A Law of Conservation of Symbols

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be twice continuously differentiable, and $\frac{\partial f}{\partial x} \frac{\partial f}{\partial y} \equiv 0$. Then $\frac{\partial^2 f^2}{\partial x \partial y} \equiv 0$. **Proof:** We first show $\frac{\partial^2 f}{\partial x \partial y} \equiv 0$. Let $p \in \mathbb{R}^2$. We consider the following cases: (1) If $\frac{\partial f}{\partial x}(p) \neq 0$, then by continuity $\frac{\partial f}{\partial x} \neq 0$ in a neighbourhood N of p. In $N, \frac{\partial f}{\partial y} \equiv 0$, and so $\frac{\partial^2 f}{\partial x \partial y} \equiv 0$, giving in particular $\frac{\partial^2 f}{\partial x \partial y}(p) = 0$. (2) If $\frac{\partial f}{\partial x} \equiv 0$ in a neighbourhood N of p, then $\frac{\partial^2 f}{\partial y \partial x} \equiv 0$ in N. As $f \in C^2$, $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} \equiv 0$ in N. In particular $\frac{\partial^2 f}{\partial x \partial y}(p) = 0$. (3) If $\frac{\partial f}{\partial x}(p) = 0$, but $\frac{\partial f}{\partial x}$ does not identically vanish in a neighbourhood of p, then there exists a sequence of points $(p_n)_n$ that converges to p, such that $\frac{\partial f}{\partial x}(p_n) \neq 0$. By $(1), \frac{\partial^2 f}{\partial x \partial y}(p_n) = 0$. As f is twice continuously differentiable, $\frac{\partial^2 f}{\partial x \partial y}(p) = \lim_{n \to \infty} \frac{\partial^2 f}{\partial x \partial y}(p_n) = \lim_{n \to \infty} 0 = 0$. Moreover, $\frac{\partial^2 f^2}{\partial x \partial y} = \frac{\partial}{\partial x}(\frac{\partial f^2}{\partial y}) = \frac{\partial}{\partial x}(2f\frac{\partial f}{\partial y}) = 2\frac{\partial f}{\partial x}\frac{\partial f}{\partial y} + 2f\frac{\partial^2 f}{\partial x \partial y} = 0 + 0 = 0$. —Submitted by Amol J. Sasane Mathematics Department, London School of Economics

doi.org/10.XXXX/amer.math.monthly.122.XX.XXX MSC: Primary 26B05, Secondary 97I40; 97I60

January 2014]