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NUMBER CUBES WITH CONSECUTIVE LINE SUMS

Peter J. Dukes and Joanna Niezen

January 9, 2021

Abstract. We settle the existence of certain ‘anti-magic’ cubes using combinatorial block designs
and graph decompositions to align a handful of small examples.

1. Introduction

We address the following question:

Does there exist, for every integer n ≥ 2, an n× n× n cube of nonnegative integers whose 3n2 line

sums, in the direction of coordinate axes as shown, are the integers 0, 1, 2, . . . , 3n2 − 1?
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After a few moments of thought, the reader might find a solution for n = 2 similar to the one shown.
The next size, n = 3, can be settled with a little more persistence, or perhaps with the help of a
computer program. A solution for this (and other small examples) are left for the appendix so as
not to spoil the fun of the puzzle. Our main result, stated later as Theorem 4.1, answers the above
question in the affirmative.

The two-dimensional version of the problem is fairly easy to settle. Consider integers arranged in an
n× n grid. The sum of all of the row sums is equal to the sum of all of the column sums. So these
line sums can exhaust the consecutive integers 0, 1, 2, . . . , 2n− 1 only if their total, 1

2 (2n− 1)(2n) =
n(2n− 1), is even. That is, n must be even to admit a number ‘square’ with consecutive line sums.
And indeed, for n even, the array shown below gives a solution. (Blank entries are zero.)

0 0
1 2

2 2
3 4

. . .

n− 2 n− 2

n− 1 n
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Returning to our (three-dimensional) problem, such number cubes have relationships with combi-
natorial designs and graph decompositions. We tour several topics in these areas while setting up
our constructions. A size-n number cube with line sums 0, 1, 2, . . . , 3n2− 1 is called a Sarvate–Beam

cube, abbreviated SBC(n), for its connection with a combinatorial design variant introduced by
D.G. Sarvate and W. Beam, [4].

2. Some related objects

2.1. Latin squares. A Latin square of order n is a n× n array with entries from an n-element set
(often assumed to be [n] := {1, 2, . . . , n}), such that every element appears exactly once in each row
and each column. A latin square of order n = 3 is given below, and it is not hard to extend the
circulant construction to any positive integer n.

1 2 3
2 3 1
3 1 2

Given a Latin square L of order n, we may define a {0, 1}-valued cube L̂ : [n]3 → {0, 1} such that

L̂(i, j, k) =

{
1 if Lij = k,

0 otherwise.

It is simple to check that each of the 3n2 line sums of L̂ equals 1. As a result, we may add a

multiple of L̂ (entrywise) to an SBC(n) to produce a cube with consecutive line sums starting at
any nonnegative integer. We denote an n×n×n cube with line sums a, a+1, a+2, . . . , a+3n2 − 1
by SBCa(n).

Latin squares also facilitate a construction to “inflate” the size of our number cubes.

Lemma 2.1 (see also [2]). If there exists an SBC(n), then there exists an SBC(mn) for every

positive integer m.

Proof. Let L be a Latin square of order m with entries in {0, 1, . . . ,m− 1} and, from the remarks
above, let Ct be an SBC3tn2(n) for t = 0, 1, 2, . . . ,m2 − 1. Arrange these m2 cubes in an m×m×m
array by putting Ckm+i in position (i, j, k) whenever Lij = k. With all other entries equal to zero,
the line sums in the size-mn cube are precisely the line sums in the size-m cubes, which altogether
cover the interval from 0 to 3m2n2 − 1. �

We illustrate the method by building an SBC(6). First, we take nine copies of an SBC12t(2) with
abutting line sums, as shown at left for t = 0, 1, . . . , 8. These are placed (in any order) at the

preimages (i, j, k) ∈ L̂−1(1) arising from a latin square L of order 3, shown with solid dots at right.
The rest of the 6× 6× 6 cube is filled with zeros.
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Although Lemma 2.1 reduces our problem of finding SBC(n) to prime values n, a direct construction
for primes has eluded our efforts. Later, we introduce a more powerful construction that works
equally well for both prime and composite integers.

2.2. Designs. Let v be a positive integer and K ⊆ {2, 3, 4, . . .}. A pairwise balanced design

PBD(v,K) is a pair (V,B), where

• V is a set with |V | = v;
• B is a family of subsets of V , called blocks, where |B| ∈ K for every B ∈ B; and
• any two distinct elements of V appear together in exactly one block.

A special class of designs useful for our constructions to follow are the finite planes. From a finite
field Fq of order q, we may construct an affine plane, with elements F

2
q and blocks given by the

affine lines. This produces a pairwise balanced design PBD(q2, {q}). If each of the q + 1 parallel
classes of lines is projectively extended, the result is a projective plane of order q, which is also a
PBD(q2 + q + 1, {q + 1}).

A PBD(v, {3}) is also known as a Steiner triple system; these are known to exist for all positive
integers v ≡ 1, 3 (mod 6). Two interesting small examples come from finite planes. A Steiner triple
system with v = 7 arises from the projective plane of order q = 2. An explicit construction on
V = Z/7Z comes from developing the “base block” {0, 1, 3} additively mod 7, producing a family
B of seven 3-subsets covering every pair exactly once. A Steiner triple system with v = 9 arises
from the affine plane of order q = 3. Here, a convenient presentation is to take as points the nine
elements of a 3 × 3 grid, and as blocks the rows, columns, diagonals, and broken diagonals, giving
twelve 3-subsets in B. More information on finite planes and Steiner triple systems, including their
historical origins, can be found in [1].

In general, Wilson’s theory [6] says that pairwise balanced designs PBD(v,K) exist for all v greater
than some constant v0(K), provided certain congruence conditions hold. The congruence conditions
disappear if, for instance, K contains three consecutive integers. To illustrate Wilson’s theory in
this case, and for later reference, we cite the following result.

Lemma 2.2 ([3]). There exists a PBD(v, {4, 5, 6}) for all v ≥ 24, and also for v ∈ {4, 5, 6, 13, 16, 17,
20, 21, 22}.

In [4], a curious variant of Steiner triple systems was introduced. A Sarvate–Beam triple system of

order v, or SBTS(v), is an assignment f :
(
[v]
3

)
→ Z≥0 of nonnegative integer weights to the 3-subsets

of [v] such that

(2.1) {f̃({i, j}) : 1 ≤ i < j ≤ v} = {0, 1, 2, . . . ,
(
v

2

)
− 1},

where f̃({i, j}) =
∑

k 6=i,j f({i, j, k}). That is, an SBTS(v) is a multiset of 3-element subsets with
the property that the induced frequencies on 2-element subsets cover the range of values from 0 to(
v

2

)
− 1, inclusive. Note that if the right side of (2.1) is changed to {1}, we recover the definition of

a Steiner triple system. For example, an SBTS(5) arises from the following assignment of (positive)
block multiplicities.

block {2, 3, 4} {1, 3, 5} {2, 3, 5} {1, 4, 5} {2, 4, 5} {3, 4, 5}
multiplicity 2 1 3 2 5 2

3



See also [5] for a similar example and [2] for a construction for each v ≥ 4.

2.3. Graph and multigraph decompositions. Taking an alternative viewpoint, a Steiner triple
system on v elements is equivalent to an edge-decomposition of the complete graphKv into triangles.
Correspondingly, an SBTS(v) is an edge decomposition into triangles of a certain multigraph on v
vertices, namely one whose edge multiplicities are 0, 1, 2, . . . ,

(
v
2

)
− 1 (in some arrangement).

For a simple graph G and nonnegative integer a, let Γa(G) denote the set of all multigraphs obtained
by assigning multiplicities a, a+1, . . . , a+ |E(G)|−1 to the edges of G. Let ∆a(G) denote the subset
of Γa(G) consisting of those graphs that admit a triangle decomposition. An SBTS(v) exists if and
only if ∆0(Kv) 6= ∅.

Consider now the complete 3-partite graph Kn,n,n. A triangle decomposition of this graph is equiv-
alent to a Latin square of order n: simply associate each triangle, say on vertices {i1, j2, k3} (where
subscripts indicate partite sets), with the placement of symbol k in position (i, j). Similar to the
above, the existence of a Sarvate–Beam cube of order n is equivalent to showing ∆0(Kn,n,n) 6= ∅.

The direct product graph K3 × Kn resembles Kn,n,n, except that the former is missing the edges
from a family of n vertex-disjoint triangles. A Latin square L whose diagonal entries satisfy Lii = i
is called idempotent. It is easy to see that an idempotent Latin square of order n exists for all
positive integers n 6= 2. Using the off-diagonal entries of an idempotent Latin square of order n, we
see that the graph K3 ×Kn has a triangle decomposition for all n 6= 2.

For our construction to follow, it is helpful to have an SBC-like variant based on K3×Kn. We define
a holey Sarvate–Beam cube, or SBHC(n, 1n) to be a size-n cube where entry (i, j, k) is filled with a
nonnegative integer if and only if i, j, k are pairwise distinct, and such that the 3n(n− 1) nonempty
line sums are 0, 1, 2, . . . , 3n(n− 1)− 1. An SBHC(n, 1n) is equivalent to a triangle decomposition of
a multigraph in the class ∆0(K3 ×Kn). The appendix gives an SBHC(n, 1n) for each n ∈ {4, 5, 6}.

Let Jn denote the graph K3×Kn with one additional triangle, as depicted in Figure 1 for n ∈ {3, 4}.

K3 ×K4

Figure 1. The graphs J3 and J4.

Following the notation for holey Sarvate–Beam cubes above, it is natural to use the notation
SBHC(n, 1n−1) for a triangle decomposition (in cube form) of a multigraph in ∆0(Jn), n = 3, 4.
An example cube for each of these sizes appears in the appendix.

3. A construction

We illustrate the main idea of our construction to follow by building a solution to our problem for
n = 7. In a little more detail, we use a template Steiner triple system on 7 elements and a graph in
∆0(J3) to construct an SBC(7).
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Example 3.1. We claim that K7,7,7 decomposes into seven copies of J3, using a Steiner triple
system with blocks

{0, 1, 3}, {1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 0}, {5, 6, 1}, {6, 0, 2}.

Each element is replaced by three vertices; each block is to be replaced with a copy of J3 so that
the underlined element takes the role of the three filled vertices of J3 in Figure 1. Consider an edge
(i1, j2) of K7,7,7. If i = j, this edge appears in the copy of J3 on the block in which i is underlined.
Otherwise, if i 6= j, this edge is in the copy of J3 corresponding to the block of the triple system
containing {i, j}.

Finally, we turn K7,7,7 into a triangle-decomposable multigraph as follows: the first copy of J3 is
replaced by a graph in ∆0(J3), the second by a graph in ∆21(J3), the third by a graph in ∆42(J3),
and so on. Note that each graph in ∆a(Jk) can be obtained from a corresponding graph in ∆0(Jk)
by increasing the multiplicity of each edge by a. Because every edge of K7,7,7 occurs in some copy
of J3, and because starting values were chosen as multiples of |E(J3)| = 21, we have constructed a
graph in ∆0(K7,7,7).

We present a general construction that captures the above technique.

Construction 3.2. Suppose {G1, . . . , Gb} is an edge decomposition of G. Suppose, for each

i = 1, . . . , b, the graph Gi has a triangle decomposition and also that ∆0(Gi) 6= ∅. Then ∆0(G) 6= ∅;
that is, some multigraph in Γ0(G) has a triangle decomposition.

Proof. Put mi = |E(Gi)| for each i, and ai =
∑

j<i mj . Since each Gi is simple and has a triangle

decomposition, we may increase all edge multiplicities of a graph in ∆0(Gi) to produce a graph in
∆a(Gi) for any nonnegative integer a. Let Hi denote a multigraph in ∆ai

(Gi).

We have that {H1, . . . , Hb} is an edge decomposition of some graph in Γ0(G), call it H , since
the edges of G occur with multiplicities 0, . . . , a1 − 1 in H1, a1, . . . , a2 − 1 in H2, and so on, until
ab−1, . . . , ab−1 in Hb. Since each Hi has a triangle decomposition, it follows that H does as well. �

4. Solution of the problem

We are now ready for our main result. The proof essentially consists of a few direct constructions and
a prescription to apply Construction 3.2 forG = Kn,n,n. The necessary ‘building block’ constructions
can be found in the appendix.

Theorem 4.1. There exists an SBC(n) for every integer n ≥ 2.

Proof. Suppose first that there exists a PBD(n+ 1, {4, 5, 6}). We claim there exists an SBC(n).

If we delete one element from the hypothesized PBD, the result is a pairwise balanced design
on n elements with a ‘parallel class’ A of blocks with sizes in {3, 4, 5}, and other block sizes in
{4, 5, 6}. Replace every element x with three vertices x1, x2, x3. Replace every block B, where
|B| = m ∈ {3, 4, 5, 6}, either by the graph Km,m,m if B ∈ A, or by K3×Km otherwise. The result is
an edge decomposition of Kn,n,n into graphs isomorphic to Km,m,m for m ∈ {3, 4, 5}, and K3 ×Km

for m ∈ {4, 5, 6}. From Construction 3.2 and our examples given in the appendix, it follows that
∆0(Kn,n,n) 6= ∅; that is, there exists an SBC(n).
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In view of Lemma 2.2, the preceding construction leaves as exceptions n ∈ {7, . . . , 11, 13, 14, 17, 18, 22}.
Except for n = 7, 11, 13, 17, each of these values has a prime divisor less than or equal to 5, and
so an SBC(n) exists by Lemma 2.1 and the Sarvate–Beam cubes of order 2, 3, and 5 given in the
appendix. An SBC(7) was built in Example 3.1. We turn to the remaining three values.

For n = 11, we start with an affine plane of order three, or PBD(9, {3}), and extend two parallel
classes using one new element for each to produce a PBD(11, {2, 3, 4}). The block set is, say,

{1, 2, 3,∞1}, {1, 4, 7,∞2}, {1, 5, 9}, {1, 6, 8},
{4, 5, 6,∞1}, {2, 5, 8,∞2}, {2, 6, 7}, {2, 4, 9},
{7, 8, 9,∞1}, {3, 6, 9,∞2}, {3, 4, 8}, {3, 5, 7}, {∞1,∞2}.

Blocks with one underlined element are replaced with J3 or J4 according to the block size. The
underlined element takes the role of filled vertices as in Example 3.1. The remaining blocks of size
three are replaced with K3 ×K3. The block of size two is replaced with K2,2,2. The above set of
graphs decompose K11,11,11, and each satisfies the assumptions of Construction 3.2. This gives an
SBC(11).

For n = 13, we take a projective plane of order three, or PBD(13, {4}), with blocks

x+ {0, 1, 3, 9}, x = 0, 1, 2, . . . , 12,

where addition, mod 13, distributes into the block. Using this cyclic structure, it is possible to
underline exactly one element from each block, as shown. Accordingly, replace each block with a
copy of J4. This gives a covering of the edges of K13,13,13 as needed for Construction 3.2, and hence
an SBC(13).

For n = 17, we start with an affine plane of order four and extend one parallel class to produce a
PBD(17, {4, 5}). Explicitly, the blocks can be taken as

{1, 2, 3, 4,∞}, {1, 5, 9, 16}, {2, 5, 11, 15}, {3, 5, 7, 12}, {4, 5, 8, 14},
{5, 6, 10, 13,∞}, {1, 6, 7, 8}, {2, 6, 12, 14}, {3, 6, 9, 15}, {4, 6, 11, 16},
{7, 9, 11, 14,∞}, {1, 10, 14, 15}, {2, 7, 10, 16}, {3, 8, 10, 11}, {4, 9, 10, 12},
{8, 12, 15, 16,∞}, {1, 11, 12, 13}, {2, 8, 9, 13}, {3, 13, 14, 16}, {4, 7, 13, 15}.

We have again underlined each element exactly once. The first block is to be replaced by K5,5,5.
Blocks with exactly one underlined element are to be replaced by J4. Other blocks are replaced by
K3×K4 and K3×K5 according to the size. Similar to before, we have covered the edges of K17,17,17

so as to satisfy the hypotheses of Construction 3.2. The result is an SBC(17). �

Appendix

Apart from the simple case of SBC(2), our proof requires only seven explicit cubes or cube-variants.
Layers of the n× n× n cube are given in separate n× n grids and line sums appear in bold text.

SBC(3) (underlying graph K3,3,3; see also [2])

0 1 12 13

2 3 1 6

0 10 5 15

2 14 18

0 14 8 22

0 5 0 5

3 7 0 10

3 26 8

0 1 0 1

7 11 3 21

4 0 20 24

11 12 23

0 16 20

9 19 4

7 17 25
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SBC(5) (underlying graph K5,5,5)

16 9 6 9 1 41

14 0 0 6 27 47

4 13 5 14 0 36

20 2 0 2 5 29

7 8 41 0 4 60

61 32 52 31 37

0 0 10 2 0 12

1 2 2 1 0 6

0 0 0 2 0 2

0 60 14 0 0 74

0 7 8 49 3 67

1 69 34 54 3

15 34 2 6 15 72

35 0 3 0 2 40

13 13 16 1 2 45

0 0 0 0 0 0

8 2 7 0 1 18

71 49 28 7 20

10 0 0 0 5 15

1 6 5 5 0 17

2 0 0 39 14 55

5 2 32 12 0 51

41 5 1 12 11 70

59 13 38 68 30

5 7 6 25 0 43

2 1 1 15 4 23

29 0 4 2 0 35

37 0 20 0 0 57

0 0 8 2 0 10

73 8 39 44 4

46 50 24 42 21

53 9 11 27 33

48 26 25 58 16

62 64 66 14 5

56 22 65 63 19

SBHC(4, 14) (underlying graph K3 ×K4)

. . . .

. . 14 0 14

. 1 . 2 3

. 18 9 . 27

19 23 2

. . 26 8 34

. . . .

22 . . 9 31

2 . 6 . 8

24 32 17

. 4 . 25 29

1 . . 0 1

. . . .

5 0 . . 5

6 4 25

. 16 0 . 16

9 . 21 . 30

0 12 . . 12

. . . .

9 28 21

20 26 33

10 35 0

22 13 11

7 18 15

SBHC(5, 15) (underlying graph K3 ×K5)

. . . . .

. . 0 45 3 48

. 0 . 10 1 11

. 3 0 . 3 6

. 24 0 4 . 28

27 0 59 7

. . 49 9 0 58

. . . . .

1 . . 9 2 12

6 . 2 . 2 10

19 . 0 25 . 44

26 51 43 4

. 8 . 27 1 36

3 . . 10 27 40

. . . . .

3 12 . . 19 34

12 10 . 0 . 22

18 30 37 47

. 9 1 . 15 25

42 . 2 . 2 46

4 4 . . 0 8

. . . . .

7 1 49 . . 57

53 14 52 17

. 22 0 19 . 41

0 . 0 1 . 1

0 9 . 0 . 9

33 0 21 . . 54

. . . . .

33 31 21 20

39 50 55 16

45 2 56 32

5 13 19 3

42 15 23 24

38 35 49 29

SBHC(6, 16) (underlying graph K3 ×K6)

. . . . . .

. . 6 12 1 9 28

. 5 . 4 12 16 37

. 2 3 . 0 2 7

. 3 11 1 . 36 51

. 19 2 4 2 . 27

29 22 21 15 63

. . 1 0 1 1 3

. . . . . .

5 . . 0 0 0 5

8 . 1 . 14 16 39

70 . 0 0 . 14 84

5 . 43 0 32 . 80

88 45 0 47 31

. 7 . 1 24 16 48

29 . . 7 5 1 42

. . . . . .

3 52 . . 10 1 66

0 11 . 0 . 1 12

3 0 . 9 4 . 16

35 70 17 43 19
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. 3 0 . 13 16 32

2 . 0 . 43 36 81

40 10 . . 6 11 67

. . . . . .

7 18 42 . . 20 87

8 21 20 . 12 . 61

57 52 62 74 83

. 21 56 0 . 1 78

0 . 0 9 . 0 9

0 12 . 5 . 9 26

2 4 0 . . 66 72

. . . . . .

38 1 0 10 . . 49

40 38 56 24 76

. 38 7 0 37 . 82

48 . 5 2 4 . 59

15 50 . 1 2 . 68

1 0 4 . 1 . 6

9 1 2 1 . . 13

. . . . . .

73 89 18 4 44

69 64 1 75 34

79 11 30 53 46

60 77 10 20 36

14 58 8 25 85

86 33 55 2 71

54 41 65 23 50

SBHC(3, 12) (underlying graph J3)

3 6 5 14

2 . 1 3

2 13 . 15

7 19 6

16 . 0 16

. . .
2 . . 2

18 0

1 11 . 12
8 . . 8

. . .
9 11

20 17 5

10 1

4 13

SBHC(4, 13) (underlying graph J4)

1 13 4 2 20

1 . 19 10 30

25 7 . 0 32

6 1 1 . 8

33 21 24 12

3 . 0 1 4

. . . .

3 . . 15 18

25 . 0 . 25

31 0 16

1 4 . 31 36

22 . . 4 26

. . . .

6 1 . . 7

29 5 35

1 0 18 . 19

0 . 9 . 9

10 3 . . 13

. . . .

11 3 27

6 17 22 34

23 28 14

38 10 15

37 2 1
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