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Large Deviations Of Sums Mainly Due To
Just One Summand

Iosif Pinelis

Abstract. We present a formalization of the well-known thesis that, in the case of independent

identically distributed random variables X1, . . . , Xn with power-like tails of index α ∈ (0, 2),
large deviations of the sum X1 + · · ·+Xn are primarily due to just one of the summands.

1. INTRODUCTION, SUMMARY, AND DISCUSSION. Let X1,X2, . . . be

independent identically distributed random variables. For each natural n, let

Sn :=
∑n

1 Xi.

Heyde [3] showed the following: Suppose that, for some sequence (Bn) of positive

real numbers, Sn/Bn converges in distribution to a stable law of index

α ∈ (0, 2) \ {1}, whose support is the entire real line R. (For a definition and ba-

sic properties of stable laws, see e.g. [6, §IV.3].) Then, for any sequence (xn) going

to ∞,

P(|Sn| > xnBn) ∼ P( max
1≤i≤n

|Xi| > xnBn). (1)

As indicated in [3], one-sided analogs of (1) could also be obtained, even in the case

α = 1. However, such a task would involve additional technical difficulties.

The conditions in [3] for (1) imply that the tail of the distribution of each Xi is

power-like – more specifically,

P(|X1| > u) = u−α+o(1) as u → ∞. (2)

This work by Heyde was followed by a large number of publications, including

[4, 5, 7, 1].

The asymptotic equivalence (1) and, especially, its proof suggest the well-known

interpretation that, in the cases of power-like tails as in (2), large deviations of the sum

Sn are mainly due to just one of the summands X1, . . . ,Xn.

In this note, we present a formal version of this interpretation:

Theorem 1. Take any α ∈ (0, 2). Let X1,X2, . . . and Sn be as in the first paragraph

of this note. To avoid technicalities, suppose that the distribution of X1 is symmetric

about 0 and has a probability density function f such that

f(u) ≍ u−1−α as u → ∞ (3)

(cf. (2)). Then

P(Sn > x) ∼ P

(

Sn > x,
⋃

i∈[n]

{

Xi > x, |Sn −Xi| ≤ bx, max
j∈[n]\{i}

|Xj | ≤ cx
}

)

(4)

whenever n ∈ N, x ∈ (0,∞), c ∈ (0, 1), and b ∈ (0, 1) vary in such a way that

n << xα, (5)
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nx−α << c2α, (6)

nx−α << b2cα−2. (7)

Here, as usual, N := {1, 2, . . . } and [n] := {1, . . . , n} for n ∈ N. For positive

expressions E and F (in terms of x, n, c, b), we write (i) E ∼ F if E/F → 1;

(ii) E << F or, equivalently, F >> E if E = o(F )—that is, if E/F → 0;

(iii) E <≍ F or, equivalently, F >≍ E if lim supE/F < ∞; and (iv) E ≍ F if

E <≍ F <≍ E. The “much smaller than” sign << should not be confused with Vino-

gradov’s symbol ≪ (the latter is usually taken to mean the same as <≍).

Proposition 2. For Sn as in Theorem 1 and for all n ∈ N and x ∈ (0,∞), we have

P(Sn > x) → 0 if and only if condition (5) holds. Moreover, if either (5) holds or

P(Sn > x) → 0, then P(Sn > x) ≍ nx−α.

Remark 3. Condition P(Sn > x) → 0 means precisely that P(Sn > x) is a large-

deviation probability for Sn. So, in view of Proposition 2, Theorem 1 concerns all the

large deviations of Sn.

Remark 4. Given (6), for (7) to hold it is enough that b ≍ c or even b >≍ c1+α/2.

Therefore and because the probability on the right-hand side of (4) is non-decreasing

in c and in b, without loss of generality

c << 1 and b << 1. (8)

So, (4) shows that the large deviation event {Sn > x} is mainly due to just one of

the summands X1, . . . ,Xn. More specifically, (4) tells us that, given Sn > x, the

conditional probability that exactly one of the Xi’s is > x while the absolute values

of the other Xi’s and of the sum of the other Xi’s are all o(x) is close to 1.

Remark 5. In contrast with (1), the condition n → ∞ is not required in Theorem 1;

in particular, n may be fixed there. However, it is clear that condition (5) in Theorem 1

necessarily implies that x → ∞. In another distinction from (1), in Theorem 1 the

common distribution of the Xi’s is not required to be in the domain of attraction of a

stable law.

2. PROOFS.

Proof of Theorem 1. This proof is based on two lemmas. To state the lemmas, let us

introduce the following notations:

p0(n, x) :=P

(

Sn > x, max
j∈[n]

|Xj | ≤ cx
)

, (9)

p≥2(n, x) :=P

(

Sn > x,
⋃

i∈[n]

⋃

j∈[n]\{i}

{|Xi| > cx, |Xj | > cx}
)

, (10)

p1,0(n, x) :=P

(

Sn > x,
⋃

i∈[n]

{

cx < |Xi| ≤ x, max
j∈[n]\{i}

|Xj | ≤ cx
}

)

, (11)

p1,1,−(n, x) :=P

(

Sn > x,
⋃

i∈[n]

{

Xi < −x, max
j∈[n]\{i}

|Xj | ≤ cx
}

)

, (12)

p1,1,+(n, x) :=P

(

Sn > x,
⋃

i∈[n]

{

Xi > x, max
j∈[n]\{i}

|Xj | ≤ cx
}

)

. (13)

2 © THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121



Mathematical Assoc. of America American Mathematical Monthly 121:1 October 29, 2021 12:51 a.m. arxiv.tex page 3

Lemma 6. For n and x as in the conditions of Theorem 1 (that is, for n ∈ N and

x ∈ (0,∞) such that (5) holds), we have

P(Sn > x) >≍ nP(X1 > x) ≍ nx−α. (14)

Proof. By (3),

P(X1 > u) ≍ u−α as u → ∞. (15)

So, in view of (5), nP(X1 > x) ≍ nx−α << 1. Now (14) follows from [2, inequal-

ity V, (5.10)], which immediately implies P(Sn > x) ≥ 1
4
(1− e−2n P(X1>x)) (since

the distribution of X1 is symmetric and absolutely continuous).

Lemma 7. For n, x, and c as in the conditions of Theorem 1,

p0(n, x) << nx−α, (16)

p≥2(n, x) << nx−α, (17)

p1,0(n, x) << nx−α, (18)

p1,1,−(n, x) << nx−α. (19)

Proof. For all natural i, let

Yi := Xi 1(|Xi| ≤ cx),

where 1(A) denotes the indicator of an assertion A, so that 1(A) = 1 if A is true,

and 1(A) = 0 if A is false. Then the Yi’s are independent identically distributed

symmetric random variables. Also, by (6) and (5), (cx)2α >> nxα >> 1, so that

cx >> 1. Therefore, in view of (3), for some real A > 0 we have

EY 2
1
<≍

∫ A

0

u2f(u) du+

∫ cx

A

u2u−1−α du ≍ (cx)2−α.

Therefore, with

Tn :=
n
∑

1

Yi,

by (9), Markov’s inequality, and (8),

p0(n, x) ≤ P(Tn > x) ≤
ET 2

n

x2
=

nEY 2
1

x2
<≍ c2−α n

xα
<< nx−α. (20)

So, (16) is proved.

Next, by (10), (15), and (6),

p≥2(n, x) ≤

(

n

2

)

P(|X1| > cx, |X2| > cx) <≍ n2(cx)−2α << nx−α,

which proves (17).
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Further, using (11), (3), and Markov’s inequality as in (20), we have

p1,0(n, x) = nP(Sn > x, cx < |X1| ≤ x, |X2| ≤ cx, . . . , |Xn| ≤ cx)

≤ nP(cx < |X1| ≤ x, Y2 + · · ·+ Yn > x−X1)

≍ n

∫ x

cx

u−1−α
P(Y2 + · · ·+ Yn > x− u) du <≍ I,

(21)

where

I :=

∫ x

cx

g(u) du, g(u) := nu−1−α min
(

1,
n(cx)2−α

(x− u)2

)

.

Next,

ux := x− n1/2(cx)1−α/2 ∼ x, (22)

by conditions (6) and (8) on c. It follows that

I = I1 + I2 + I3,

where

I1 :=

∫ x/2

cx

g(u) du ≤

∫ ∞

cx

nu−1−αn(cx)
2−α

(x/2)2
du ≍

( n

xα

)2

c2−2α << nx−α,

again by the mentioned conditions on c;

I2 :=

∫ ux

x/2

g(u) du ≤

∫ ux

−∞

n(x/2)−1−αn(cx)
2−α

(x− u)2
du

≍
( n

xα

)3/2

c1−α/2 << nx−α,

once again by the conditions on c; and, in view of the definition of ux in (22),

I3 :=

∫ x

ux

g(u) du ≤ (x − ux)nu
−1−α
x ≍

( n

xα

)3/2

c1−α/2 << nx−α,

as in the bounding of I2. So, the bound on p1,0(n, x) in (18) follows immediately from

(21) and the bounds on the integrals I1, I2, I3.

Finally, in view of the definition of p1,1,−(n, x) in (12),

p1,1,−(n, x) = nP

(

Sn > x, X1 < −x, max
j∈[n]\{1}

|Xj | ≤ cx
}

)

≤ nP

(

Sn −X1 > x, X1 < −x, max
j∈[n]\{1}

|Xj | ≤ cx
}

)

≤ nP(Tn − Y1 > x, X1 < −x)

= P(Tn − Y1 > x)nP(X1 < −x) <≍
nc2−α

xα

n

xα
<< nx−α.
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The <≍ comparison here is obtained by bounding P(Tn − Y1 > x) similarly to the

bounding of P(Tn > x) in (20) and using the symmetry of the distribution of X1, the

condition x → ∞, and the relation (15); the << comparison in the above multiline

display follows, yet again, by the conditions on c. So, (19) is proved as well.

This completes the proof of Lemma 7.

Now we can complete the proof of Theorem 1. Note that

P(Sn > x) = p0(n, x) + p≥2(n, x) + p1,0(n, x) + p1,1,−(n, x) + p1,1,+(n, x).

So, by Lemmas 7 and 6,

P(Sn > x) ∼ p1,1,+(n, x). (23)

Finally, the difference between p1,1,+(n, x) and the probability on the right-hand

side of (4) is

≤ nP

(

X1 > x, |Sn −X1| > bx, max
j∈[n]\{1}

|Xj | ≤ cx
}

)

≤ nP(X1 > x)P(|Tn − Y1| > bx)

<≍ P(Sn > x)
n(cx)2−α

(bx)2
<< P(Sn > x);

the <≍ comparison here is obtained using the >≍ comparison in (14) and bounding

P(Tn − Y1 > bx) similarly to the bounding of P(Tn > x) in (20); and the latter <<
comparison follows by (7). Now (4) follows from (23).

The proof of Theorem 1 is complete.

Proof of Proposition 2. Suppose first that condition (5) holds. Then, by (23), (13), and

(14), P(Sn > x) ∼ p1,1,+(n, x) ≤ nP(X1 > x) ≍ nx−α <≍ P(Sn > x), so that

P(Sn > x) ≍ nx−α → 0.

On the other hand, if P(Sn > x) → 0, then, by the inequality P(Sn > x) ≥
1
4
(1 − e−2n P(X1>x)) in the proof of Lemma 6, we have nP(X1 > x) → 0, and

hence P(X1 > x) → 0 and x → ∞. So, P(Sn > x) >≍ nP(X1 > x) ≍ nx−α,

by (15). Thus, P(Sn > x) → 0 implies (5), which in turn implies P(Sn > x) ≍
nx−α → 0.
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