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CONWAY’S SPIRAL AND A DISCRETE GÖMBÖC WITH 21

POINT MASSES

GÁBOR DOMOKOS AND FLÓRIÁN KOVÁCS

Abstract. We show an explicit construction in 3 dimensions for a convex,
mono-monostatic polyhedron (i.e., having exactly one stable and one unstable
equilibrium) with 21 vertices and 21 faces. This polyhedron is a 0-skeleton,
with equal masses located at each vertex. The above construction serves as an
upper bound for the minimal number of faces and vertices of mono-monostatic
0-skeletons and complements the recently provided lower bound of 8 vertices.
This is the first known construction of a mono-monostatic polyhedral solid.
We also show that a similar construction for homogeneous distribution of mass
cannot result in a mono-monostatic solid.

1. Introduction.

Dice have been used since millennia to generate random integers [19]. The most
common geometric form of a dice is a convex polyhedron. Throwing dice is a me-
chanical experiment executed on a horizontal plane, and in the experiment we select
randomly from among the stable equilibrium points lying on the faces of the poly-
hedron. Dice are called fair if the probabilities to rest on any face (after a random
throw) are equal [9], otherwise they are called loaded [6]. Despite being associated
with mechanical experiments with solids, the concept of static equilibrium may also
be defined on polyhedra in purely geometric terms [7]:

Definition 1. Let P be a 3-dimensional convex polyhedron, let intP and bdP
denote its interior and boundary, respectively and let o ∈ intP . Let P be asso-
ciated with some mass distribution µ(P ). Then we say that the pair (P, o) is a
polyhedral solid if o coincides with the center of mass c of µ(P ). We call q ∈ bdP
an equilibrium point of P with respect to o (or, alternatively, an equilibrium point
of the polyhedral solid (P, o)) if the plane H through q and perpendicular to [o, q]
supports P at q. In this case q is nondegenerate ifH∩P is the (unique) vertex, edge,
or face of P , respectively, that contains q in its relative interior. A nondegenerate
equilibrium point q is called stable, saddle-type or unstable, if dim(H ∩P ) = 2, 1 or
0, respectively.

Remark 1. Throughout this paper we will briefly refer to polyhedral solids as
polyhedra.

Remark 2. The definition for static equilibria of convex polygons and polygonal
solids is analogous; however, in that case we only distinguish between (generic)
stable equilibrium points in the interior of the edges and unstable equilibrium points
at the vertices.

Throughout this paper we deal only with nondegenerate equilibrium points with
respect to the center of mass of polyhedral solids; thus, we have o = c, in which case
equilibrium points gain intuitive interpretation as locations on bdP where P may
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be balanced if it is supported on a horizontal surface (identical to the support plane
mentioned in Definition 1) without friction in the presence of uniform gravity.

Definition 2. Polyhedral solids with some special material distributions are de-
fined as polyhedral h-skeletons as follows: 0-skeletons have mass uniformly dis-
tributed on their vertices, 1-skeletons have mass uniformly distributed on the edges,
2-skeletons have mass uniformly distributed on the faces, whereas 3-skeletons have
uniform density. 3-skeletons are also referred to as homogeneous polyhedra. In
two dimensions, we use the term polygonal h-skeleton with h = 0, 1, 2 only and
2-skeletons are also referred to as homogeneous polygons.

As discussed in Definition 1, equilibrium points may belong to three stability
types: faces may carry stable equilibria, vertices may carry unstable equilibria,
and edges may carry saddle-type equilibria. Denoting their respective numbers by
S,U,H , by the Poincaré-Hopf formula [13, 11] for a convex polyhedral solid one
obtains the following relation:

(1) S + U −H = 2,

implying that any two of these numbers determine the third. We will refer to
(S,U)E as the (primary) equilibrium class of the polyhedron P [18, 7]. Analogously,
we denote respective numbers of faces, vertices, and edges of P by F, V,E and for
these the Euler formula

(2) F + V − E = 2,

holds, defining the combinatorial class (F, V )C of the polyhedron. In two dimen-
sions, for convex polygons S = U and F = V always hold, hence equilibrium classes
may be defined by the number of unstable equilibria as (U)E and combinatorial
classes by the number of vertices as (V )C .

1.1. Results on homogeneous monostatic polyhedra. Polyhedral solids in
equilibrium classes (1, U)E and in classes (S, 1)E are collectively called monostatic

[7].

1.1.1. Monostable homogeneous polyhedra.

Definition 3. Polyhedral solids in equilibrium classes (1, U)E are calledmonostable

[7]. We denote the smallest number of faces among all monostable, convex, homo-
geneous polyhedra by FS and we denote the smallest number of vertices among all
monostable, convex, homogeneous polyhedra by V S .

While monostable, homogeneous polyhedra have attracted considerable mathe-
matical interest, FS and V S are not known. On the other hand, some bounds do
exist. In 1967, Conway and Guy [3] offered the first upper bound for FS and V S

by describing such an object with F = 19 faces and V = 34 vertices to which we
henceforth refer as the Conway-Guy polyhedron. The face and vertex numbers asso-
ciated with the Conway-Guy polyhedron were improved by Bezdek [1] to (18, 18)C

and later by Reshetov [16] to (14, 24)C. These values of F and V determine the
best known upper bounds for a homogeneous monostable polyhedron, so we have
FS ≤ 14, V S ≤ 18. Even less is known about the lower bounds: the only known
result is due to Conway [4] who proved that each homogeneous tetrahedron has at
least two stable equilibria, from which FS , V S ≥ 5 follows.

1.1.2. Mono-unstable homogeneous polyhedra.

Definition 4. Polyhedral solids in equilibrium classes (S, 1)E are called mono-

unstable [7]. We denote the smallest number of faces among all mono-unstable,
convex, homogeneous polyhedra by FU and we denote the smallest number of
vertices among all mono-unstable, convex, homogeneous polyhedra by V U .
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The Conway-Guy polyhedron has, beyond the single stable position on one face,
U = 4 unstable equilibria at the 4 vertices of the very same face. The first example
for a mono-unstable polyhedron was demonstrated in [7], having F = 18 faces
and V = 18 vertices and in the same paper it was proven that a homogeneous
tetrahedron cannot be mono-unstable. Thus, for the minimal numbers FU , V U for
the faces and vertices that a homogeneous, mono-unstable polyhedron may have,
the following bounds apply: 5 ≤ FU ≤ 18, 5 ≤ V U ≤ 18.

1.1.3. Mono-monostatic homogeneous polyhedra.

Definition 5. Polyhedral solids in equilibrium class (1, 1)E are calledmono-monostatic

[7, 18]. We denote the smallest number of faces among all mono-monostatic, con-
vex, homogeneous polyhedra by F ⋆ and we denote the smallest number of vertices
among all mono-monostatic, convex, homogeneous polyhedra by V ⋆.

While the existence of homogeneous, mono-monostatic polyhedra has been proven
[11], no example is known. The only known convex, homogeneous, mono-monostatic
objects are non-polyhedral, the first example is called Gömböc [18]. This implies
that for the minimal numbers F ⋆, V ⋆ for the faces and vertices of a homogeneous
mono-monostatic polyhedron the only known bounds are F ⋆, V ⋆ ≥ 5.

1.2. 0-skeletons and the main result. Here we highlight a new aspect of this
problem: instead of looking at the homogeneous case with uniform mass distribu-
tion, we consider polyhedral 0-skeletons with unit masses at the vertices as intro-
duced in [5].

Remark 3. Definitions 3, 4 and 5 of the monostable, mono-unstable and mono-
monostatic properties apply to all polyhedra, regardless of their mass distribu-
tion. In particular, it applies both to homogeneous polyhedra and to polyhedral
0-skeletons.

Here again we seek the minimal face and vertex numbers to obtain monostatic
polyhedra and the corresponding numbers are defined below.

Definition 6. We denote the smallest number of faces among all monostable
(mono-unstable, mono-monostatic), convex polyhedral 0-skeletons by FS

0 (FU
0 , F ⋆

0 ),
respectively. We denote the smallest number of vertices among all monostable
(mono-unstable, mono-monostatic), convex polyhedral 0-skeletons by V S

0 (V U
0 , V ⋆

0 ),
respectively.

The problem of finding these minima may appear, at first sight, almost ‘un-
sportingly’ easy as compared with the homogeneous case. However, the minimal
vertex number V ⋆

0 and face number F ⋆
0 to produce a mono-monostatic polyhedral

0-skeleton are not known. Even more curiously, the minimal number of vertices for
a mono-monostatic, polygonal 0-skeleton (in 2 dimensions) is not known either.

The first related results have been reported in [2] where V U
0 ≥ 8 was proven

(implying, via the theorem of Steinitz [17], the lower bound FU
0 ≥ 6). This result

also implies the bounds F ⋆
0 ≥ 6, V ⋆

0 ≥ 8 for mono-monostatic polyhedral 0-skeletons.
In this paper we explain the background and show some constructions which

may inspire further research. In particular, by providing an explicit construction of
a mono-monostatic polyhedral 0-skeleton with 21 faces and 21 vertices, we prove

Theorem 1. F ⋆
0 , V

⋆
0 ≤ 21.

Our example, illustrated in Figure 1(c) and defined on line 3 of Table 1, appears
to be the first discrete construction of a mono-monostatic object and it may help
to inspire thinking about the bounds F ⋆, V ⋆ for the homogeneous case.
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The paper is structured as follows. In Section 2 we explain the geometric idea
behind Conway’s classical construction and how this idea may be generalized in
various directions. In Section 3, by relying on an idea by Dawson [4], we describe the
construction for a mono-monostatic 0-skeleton in two dimensions, having V0 = 11
vertices and then we proceed to prove Theorem 1 by providing the construction
of the mono-monostatic 0-skeleton in three dimensions. In Section 4 we show the
connection to other problems, including the mechanical complexity of polyhedra,
and also point out why the particular geometry of our constructions may not be
applied to the construction of a homogeneous mono-monostatic polyhedron. In
Section 5 we draw conclusions.

2. The geometry of Conway spirals.

Figure 1. Construction of symmetric, mono-monostatic polygons
and polyhedra; a) geometry of the Conway spiral P0, . . . , Pn. P0 is
fixed at z = 1 and each radius OPi is perpendicular to the corre-
sponding edge Pi−1Pi. The geometry of the spiral is uniquely de-
scribed in terms of n angular variables α1, . . . , αn: αi = constant

results in a classical Conway spiral; b) 2D mirror-symmetric mono-
monostatic polygon with 11 vertices for n = 5 and k = 2, see Ta-
ble 1, line 6 for numerical data; c) 3D mono-monostatic polyhedron
with 5-fold rotational symmetry for n = 4 and k = 5, see Table 1,
line 3 for numerical data.

2.1. The classical Conway double spiral and the Conway-Guy monos-

table polyhedron. The essence of the Conway-Guy polyhedron is a remarkable
planar construction to which we will briefly refer as the Conway spiral, illustrated
in Figure 1(a) and which we define below.
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Definition 7. A Conway n-spiral is an open polygonal curve with n + 1 vertices
P0, . . . , Pn with ∠OPiPi−1 = π/2, i = 1 . . . n, where the point O is the origin of
the coordinate system, all points Pi with coordinates (xi, yi, zi) lie in the plane
[xz], the coordinates of P0 are (x0, y0, z0) = (0, 0, 1) and all remaining vertices Pi,
i = 1, 2, . . . n have positive x coordinates. The central angles αi are defined for
i = 1, 2, . . . n as αi = ∠PiOPi−1 and the central angle αn+1 is given as αn+1 =
π−

∑n
i=1 αi. We say that the edge PiPi−1 (i = 1, 2, . . . n) belongs to the upper part

of the Conway n-spiral if and only if xi ≥ xi−1.

This leads to the construction of a special class of convex polygons which we
define below.

Definition 8. A double Conway n-spiral is a convex polygon with 2n+ 1 vertices
which is obtained by reflecting a Conway spiral to the [yz] plane. The coordinates
for the center of mass c are denoted by [xc, yc, zc].

Due to reflection symmetry, for double Conway spirals both with homogeneous
material distribution and also for 0-skeletons, we have xc = yc = 0. We also note
that, due to the special design, the double Conway spiral (both for homogeneous
material distribution and for 0-skeletons) is monostatic in the [xz] plane if and only
if zc < 0. The most straightforward construction of a Conway spiral uses uniform
central angles:

Definition 9. We call a Conway n-spiral classical if all central angles αi =
∠PiOPi−1, (i = 1, 2, . . . n+ 1) are equal, i.e., we have

(3) α1 = α2 = · · · = αn+1.

In a classical Conway spiral all triangles PiPi−1O are similar and the original
Conway-Guy polyhedron [3] relies on a classical double Conway spiral. Classical
Conway spirals form a discrete family of open polygons, parametrized by the integer
n, and this also holds for classical double Conway spirals. None of these polygons
associated with homogeneous material distribution is monostatic in the [xz] plane,
i.e., we have zc > 0 for all values of n, since convex monostatic, homogeneous
polygons do not exist [8]. Still, the classical double Conway spiral may be regarded
as a best shot at a homogeneous, monostatic polygon with reflection symmetry. The
same intuition suggests that a classical double Conway spiral may need minimal
added ‘bottom weight’ to become monostatic.

Conway and Guy added this bottom weight by extending the shape into 3D as
an oblique prism and they computed the minimal value of n necessary to make this
homogeneous oblique prism (with the cross-section of a classical Conway spiral)
monostable as n = 8, resulting in a homogeneous, convex polyhedron with 34
vertices and 19 faces.

2.2. The exponential Conway double spiral and Dawson’s monostable

simplices in higher dimensions. The idea of the Conway spiral may be gener-
alized to bear more fruit. In [4] Dawson, seeking monostatic simplices in higher
dimensions, considered the following version:

Definition 10. We call a Conway spiral exponential if the central angles αi =
∠PiOPi−1, (i = 1, 2, . . . n+ 1) are given by

(4) αi = b1−iα1, i = 1, 2, . . . n and αn+1 = αn

and we refer to this open polygon as an exponential Conway n-spiral with parameter
b.
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Dawson considered the double exponential Conway spiral with 2n + 1 vertices
embedded into a 2n-dimensional space, with the mirror images of the vertex Pi

defined as P−i. He regarded the vertex vectors xi = OPi, i = −n,−n + 1 . . . n
of the exponential double Conway spiral as the face vectors of a 2n-dimensional
simplex. (Face vectors xi (i = 1, 2, . . . F ) may be associated with any polyhedron
having F faces fi, (i = 1, 2, . . . F ) in the following manner: xi is orthogonal to
the face fi and has magnitude proportional to the area of fi). Since in this case
these vectors are coplanar, the simplex is degenerate (infinite). However, Dawson
also added a small, generic 2n-dimensional perturbation to the coordinates of the
vertices of the spiral, to obtain the set of face vectors for a generic 2n-dimensional
simplex. To qualify as face vectors, any set of vectors must be balanced [15], i.e.,
we must have

(5)
n
∑

i=−n

xi = 0.

Dawson proved [4] that for a homogeneous simplex (or a simplex interpreted as a 0-
skeleton) supported on a horizontal plane, in the presence of gravity, the condition
for tipping from face fi to fj can be written as

(6) |xi| < |xj | cos θij ,

where θij is the angle between xi and xj . By using this tipping condition he
found that for n = 5, b = 1.5 the exponential Conway spiral (4) yields a set of
balanced vectors in the [xz] plane, the small generic, 10-dimensional (‘out of plane’)
perturbation of which defines a 10-dimensional, homogeneous monostable simplex.

3. Mono-monostatic 0-skeletons.

3.1. Double Conway spirals and planar 0-skeletons. Instead of considering
double Conway spirals as homogeneous polygons, we can regard them as planar
polygonal 0-skeletons. Since there are relatively many vertices with negative z
coordinate and relatively few ones with positive z coordinate, this interpretation
appears to be a convenient manner to add ‘bottom weight’ to the double Conway
spiral. In this interpretation as planar 0-skeletons, one may ask whether mono-
monostatic double Conway spirals exist and, if yes, what is the minimal number of
their vertices necessary to have this property. Dawson’s result leads to the following

Proposition 1. Mono-monostatic polygonal 0-skeletons with V = 11 vertices exist.

Proof. We will prove the proposition by showing that a 0-skeleton generated by the
exponential double Conway 5-spiral with parameter b = 1.5 is mono-monostatic.
Since static balance equations for such a 0-skeleton coincide with (5) and, based on
the results presented in [2], the tipping condition (6) is equivalent to prohibit an
unstable equilibrium at vertex vi, we can see that Dawson’s geometric construction,
the 0-skeleton generated by the exponential double Conway 5-spiral with parameter
1.5, has zc < 0 and thus it defines a polygon with V = 11 vertices which is mono-
monostatic. �

One can ask whether this construction is optimal in two ways: whether there
exists a smaller value of n which defines a mono-monostatic 0-skeleton generated by
the exponential double Conway spiral and whether by keeping n = 5, one may pick
other values for αi which yield a center of mass with larger negative coordinate.
The first question was answered in [5] in the negative by proving that monostable
simplices in d < 9 dimensions do not exist. This implies that for n < 5 no mono-
monostatic 0-skeleton generated by a Conway spiral exists, but nothing is known
about the existence of mono-monostatic 10-gonal polygons as 0-skeletons since they
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cannot be represented by a symmetric double Conway spiral. To answer the second
question we will use Definition 7 and consider general Conway spirals with arbitrary

αi (satisfying the condition given in Definition 7) and optimize this construction
to seek the minimum of zc. To verify the monostatic property of a given double
Conway n-spiral, the coordinate zc of the center of mass needs to be computed. In
terms of coordinates zi, we have from Figure 1(a):

(7) zc =

1 + k

n
∑

i=1

zi

1 + kn
,

where k = 2. This can be rewritten in terms of variables α = (α1 . . . αn) as follows:

(8) zC(α) =

1 + k

n
∑

i=1

i
∏

j=1

cosαj · cos





i
∑

j=1

αj





1 + kn
,

Remark 4. In the next section we will show constructions where formula (7) will
be interpreted for higher values of k.

We performed an optimization for α in the following manner: The function zc(α)

can have a minimum if ∂zc(α)
∂αi

= 0 for i = 1, . . . n. One can express tan(αn) from
∂zc(α)
∂αn

= 0 and, recursively, αi = αi(tan(αi+1), . . . , tan(αn)) from
∂zc(α)
∂αi

= 0. This

yields a univariate polynomial equation for tan(αn) that can be solved numerically.
Using this algorithm, we found the shape in Figure 1(b) (see Table 1, line 6 for

computed values of α). Note that this result is an alternative proof for the existence
of monostable 10-dimensional simplices given by Dawson [4].

We remark that a similar optimization process of the Conway spiral is discussed
in [14] for the homogeneous case.

3.2. Proof of Theorem 1: Conway (n, k)-spirals and mono-monostatic 0-

skeletons in 3 dimensions.

Proof. In the first step of the proof we further generalize the concept of Conway
spirals by considering out-of-plane, 3D arrangements, defining convex polyhedra:

Definition 11. Let us consider a Conway n-spiral and rotate it around the z-axis
k > 2 times by the angle β = 2π/k. Since the vertex P0 is lying on the z axis, this
operation generates V = kn+1 vertices. Beyond the edges defined by the k Conway
spirals, we add n regular k-gons in planes parallel to the [xy] plane. This defines a
convex polyhedron with V = kn+1 vertices, E = 2nk edges, and F = kn+1 faces.
We call such a polyhedron a Conway (n, k)-spiral and briefly denote it by Pn,k.

Remark 5. Conway double n-spirals could be regarded as Conway (n, 2)-spirals;
however, they do not define polyhedra so we will only use the (n, k)-notation for
the case where k > 2.

If for k = 2 the Conway double spiral defines a mono-monostatic polygonal 0-
skeleton then we expect that for higher values of k we will obtain mono-monostatic
polyhedral 0-skeletons.

The procedure of finding mono-monostatic 0-skeletons generated by Conway
(n, k)-spirals is also based on (8) and a similar optimization as introduced for k = 2.
Without expanding the procedure in detail, it should only be noted that mono-
monostatic behaviour requires here that equilibrium points must be excluded not
only on any of the edges of a Conway spiral but also on any of the faces between two
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adjacent spirals; the first and last condition is stronger in- and outside the upper
part of the (n, k)-spiral, respectively.

We performed calculations in search of minimum zc that lead to different con-
structions; one of these constructions with n = 4, k = 5, i.e., P4,5 is illustrated in
Figure 1(c).

Table 1 summarizes the possible mono-monostatic objects with minimum re-
quired k found by the above method (v = kn + 1 stands both for the number of
vertices or/and faces). �

no. n k v zC (αn+1, αn, . . . , α1)

1 2 25 51 -0.00051277 (49.799, 49.799, 80.402)◦

2 3 8 25 -0.0061413 (30.273, 30.273, 46.543, 72.912)◦

3 4 5 21 -0.015354 (19.716, 19.716, 29.875, 44.519, 66.173)◦

4 5 4 21 -0.029972 (13.494, 13.494, 20.336, 29.781, 43.215, 59.680)◦

5 7 3 22 -0.042695 (7.1815, 7.1815, 10.7864, 15.6392, 22.1409,
30.9129, 43.0793, 43.0788)◦

6 5 2∗ 11 -0.017984 (13.201, 13.201, 19.890, 29.110, 42.172, 62.427)◦

Table 1. List of some mono-monostatic 0-skeletons Pn,k with Dk

symmetry and v = nk+1 vertices; zc can be verified via (8). k = 2
marked by ‘∗’ is the two-dimensional case obtained from (7) and
(8) via numerical optimization. The minimum number of vertices
for monostatic 3D rotational polyhedra is 21.

We believe that this construction is close to a (local) optimum, i.e., we think that
this may be the mono-monostatic 0-skeleton defined by Conway (n, k)-spirals which
has the least number of vertices. This, however, does not exclude the existence of
mono-monostatic polyhedral 0-skeletons with smaller number of vertices which have
less symmetry. Our construction provides 21 as an upper bound for the minimal
number of vertices and faces of a mono-monostatic polyhedral 0-skeleton. The lower
bound for the number of vertices was given in [2] as 8, from which a lower bound
of 6 for the number of faces follows [17].

4. Connection to related other problems.

4.1. Mechanical complexity of polyhedra. It is apparent that constructing
monostatic polyhedra is not easy. In [7] this general observation was formalized by
introducing the mechanical complexity C(P ) of a polyhedron P as

(9) C(P ) = 2(V (P ) + F (P )− S(P )− U(P )),

where V (P ), F (P ), S(P ), U(P ) stand for the number of vertices, faces, stable and
unstable equilibrium points of P , respectively. As described after (1), the equi-
librium class of polyhedral solids with given numbers S,U of stable and unstable
equilibria is denoted by (S,U)E and the complexity of such class was defined in [7]
as

(10) C(S,U) = min{C(P ) : P ∈ (S,U)E};

however, the only material distribution considered in [7] was uniform density. Here
we generalize this concept for h-skeletons (see Definition 2). To distinguish in the
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notation, we will apply an upper index, and denote by Ch(S,U) the complexity of
the equilibrium class (S,U)E among h-skeletons. (To match earlier notation, in the
case of homogeneous polyhedra the upper index 3 will be omitted).

In the case of homogeneous polyhedra, the complexity for all non-monostatic
equilibrium classes (S,U)E for S,U > 1 has been computed in [7]. On the other
hand, the complexity has not yet been determined for any of the monostatic classes
(1, U)E , (S, 1)E . Lower and upper bounds exist for C(S, 1), C(1, U) for S,U >
1. The most difficult appears to be the mono-monostatic class (1, 1)E for the
complexity C(1, 1) of which the prize USD 1, 000, 000/C(1, 1) has been offered in
[7]. Not only is C(1, 1) unknown, but also, at this point, there is no known upper
bound either.

4.2. Complexity of some monostable and mono-unstable polyhedral 0-

skeletons. Admittedly, computing upper bounds for 0-skeletons is easier. This is
already apparent in the planar case, where monostatic objects with homogeneous
mass distribution in the interior do not exist [8], whereas a monostatic polyhedral
0-skeleton could be constructed with V = 11 vertices (see Proposition 1 using the
ideas of [4]). In 3D, our construction of a 0-skeleton with F = 21 faces and V = 21
vertices (see the top left polyhedron in Figure 2 and numerical data in Table 1, line
3) offers such an upper bound as

(11) C0(1, 1) ≤ 2(21 + 21− 1− 1) = 80.

This is the first known such construction and its existence may help to solve the
more difficult cases, in particular, the case with uniform density. In Figure 2 we
provide an illustration for upper bounds for the complexity of polyhedral 0-skeletons
in some other monostatic equilibrium classes as well.

Remark 6. As we have seen, constructing mono-monostatic 0-skeletons appears to
be an easier task as compared to the construction of homogeneous mono-monostatic
polyhedra. This can also be expressed by saying that we expect the mechanical
complexity of the latter to be much larger than the mechanical complexity of the
former. The task of construction of mono-monostatic polyhedra appears to be even
easier with arbitrary mass distribution. While we do not know the mechanical
complexity associated with this class, an upper bound is readily provided by using
Conway (n, k)-spirals. The latter have at least 7 faces and 7 vertices (as n ≥
2, k ≥ 3, V = F = nk + 1) and the Conway (2, 3)-spiral, with center of mass at
xc = yc = 0, zc < 0 is indeed an example of mono-monostatic polyhedron. This
gives an upper bound of 24 for the mechanical complexity of mono-monostatic
polyhedra with arbitrary mass distribution.

4.3. Non-existence of mono-monostatic homogeneous polyhedra gener-

ated by Conway (n, k)-spirals. First we briefly discuss the planar case. In two
dimensions we proved (Proposition 1, see also Figure 1b) that double Conway spi-
rals, interpreted as 0-skeletons, can be mono-monostatic. However, it is known from
[8] that no homogeneous, convex mono-monostatic objects exist in two dimensions,
and this implies that double Conway spirals interpreted as homogeneous objects
may never be mono-monostatic.

Now we show that in three dimensions the situation is similar: we proved
(Theorem 1) that 0-skeletons generated by Conway (n, k)-spirals may be mono-
monostatic. Next we show that homogeneous polyhedra generated by Conway
(n, k)-spirals can never be mono-monostatic.

Theorem 2. Let P be a convex solid with center of mass at c. Let a denote a

straight line intersecting P and containing a point O, and let h(a) be a half-plane
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Figure 2. Complexity of some monostable and mono-unstable
polyhedra. Drawn representatives of equilibrium classes (S,U)E

provide an upper bound for complexity of the respective class, see
the bracketed numbers as lower and upper bounds, respectively, in
the top left corner of their cells. Since mono-unstable polyhedra
with less than 8 vertices (and therefore, by Steinitz’s theorem, with
less than 6 faces) cannot exist, 26 − 2S is a lower bound of com-
plexity of classes (S, 1)E . Complexity of the four non-monostatic
classes is exactly known by the existence of simplicial representa-
tives of each class [7]. Coordinates of drawn polyhedra, except for
the one in class (1, 1)E , are given in Table 2.

the boundary of which is a. Let N denote the intersection of P and h(a) and let us

describe N as the polar distance r(θ), measured from O as origin.

If there exists a straight line a such that r(θ) is strictly monotonic for all possible

h(a) then c cannot coincide with O.

Proof. Let an axis z be directed along a and let a point Q on the surface of P be
parametrized as Q(θ, ϕ) where 0 ≤ θ ≤ π is the meridian angle between OQ and z,
0 ≤ ϕ < 2π is the azimuth angle (with respect to a fixed starting position), and let
r(θ, ϕ) = |Q − O|. Since P is convex, r = r(θ, ϕ) for all surface points is uniquely
defined. In this polar system, c can only be the centre of mass of P if the first static
momentum is balanced:

(12)

2π
∫

0

π
∫

0

2

9
r(θ, ϕ)4 sin θ cos θdθdϕ = 0,

where (1/3)r3 sin θdθdϕ is the volume of an infinitesimal pyramid with its apex at c
and (2/3)r cos θ measures the z coordinate for the centre of mass of an infinitesimal
pyramid. By the condition of the theorem, r is strictly monotonic in θ. Let us
assume that r is strictly monotonically decreasing, i.e., that θ1 < θ2 ⇐⇒ r1 > r2
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for any fixed ϕ and rewrite (12) as follows:

2

9

2π
∫

0

π/2
∫

0

(

r(θ, ϕ)4 sin θ cos θ + r(π − θ, ϕ)4 sin(π − θ) cos(π − θ)
)

dθdϕ = 0

(13)
1

9

2π
∫

0

π/2
∫

0

(

r(θ, ϕ)4 − r(π − θ, ϕ)4
)

sin 2θdθdϕ = 0.

Here both terms of the product in the integrand are positive, so the definite integral
cannot evaluate to zero. �

Corollary 1. Homogeneous polyhedra generated by Conway (n, k)-spirals are
never mono-monostatic.

Proof. We prove the Corollary by showing that a Conway (n, k)-spiral has either
more than two equilibrium points (thus it is not mono-monostatic) or, it satisfies the
monotonicity condition of the theorem with O ≡ c (thus it is not mono-monostatic
either). Consider a to be aligned with axis z. We will refer to planes containing
the z axis as central vertical planes and intersections of the Conway (n, k)-spiral
with central vertical planes as central vertical sections. The r = constant lines are
(parts of) concentric circles on all faces. We will treat the single horizontal face
(k-gon at the bottom) and the nk non-horizontal faces (k(n − 1) quadrangles and
k triangles) separately. On the horizontal face, the perpendicular projection of c
is incident to the z-axis, so r increases monotonically along any central vertical
section within that face. On each non-horizontal face f , there are two, mutually
exclusive possibilities: (A) there exists an r = constant line which is tangent to a
central vertical plane or (B) there is no such r = constant line. If (A) holds then
there will be at least one equilibrium point in the interior or on the boundary of
f . If (B) holds then r will be strictly monotonic on f along any central vertical
section. If (A) is true for any non-horizontal face then the Conway (n, k)-spiral is
not mono-monostatic. If (A) is not true for any of the non-horizontal faces then (B)
is true for all of them, so r will be strictly monotonic globally, which, by Theorem
2 implies that the Conway (n, k)-spiral is not mono-monostatic. �

Theorem 2 also implies the following

Corollary 2. Let K be a homogeneous, smooth convex body with revolution
symmetry. Then K cannot be mono-monostatic.

Proof. Let z be the axis of revolution symmetry, let r(θ, ϕ) be the radial distance
function defining the boundary of K, measured from the center of mass c, and let
0 ≤ θ ≤ π be the meridian angle with respect to the z axis, thus the meridian
of K is defined by r(θ), θ ∈ [0, π]. Due to symmetry, we have two equilibria at
the poles with θ = 0, θ = π for which r(0) ≤ r(π) can be assumed. Let r(θ) have
n stationary points in the interior of [0, π]. If n > 0 then there are n rings of
degenerate equilibria, so K is not mono-monostatic. If n = 0 then r(θ) is strictly
monotonic and this is the situation described in Theorem 2 and thus K is not
mono-monostatic. So K cannot be mono-monostatic for any value of n. �

5. Concluding comments.

In this paper, by relying on the geometric idea of Conway spirals, we demon-
strated the existence of mono-monostatic 0-skeletons in two and three dimensions.
In the former case, by drawing on an earlier result of Dawson [4] we showed that
mono-monostatic planar 0-skeletons with V = 11 vertices exist. It follows from
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another result of Dawson [5] that for V = 9 such constructions cannot exist. The
V = 10 case is not known. In three dimensions we showed an explicit construction
with V = 21 vertices, thus providing an upper bound for the minimal number of
vertices. The lower bound is V = 8 [2] and other results are not known. We hope
that these constructions will motivate further research to find the minimal number
of V for a mono-monostatic 0-skeleton, both in two and three dimensions.

Conway (n, k)-spirals played a central role in this article. It might be of interest
to note that for odd values of k, such a polyhedron is combinatorially equivalent to
a strongly self-dual polyhedron [10], [12].

(1, 2)S

x y z

0 374 0

154 80 0

124 -32 0

81 -78 0

47 -95 0

24 -100 0

-24 -100 0

-47 -95 0

-81 -78 0

-124 -32 0

-154 80 0

0 -1200 5000

(1, 3)S

x y z

0 466 0

166 70 0

121 -47 0

71 -87 0

35 -100 0

-35 -100 0

-71 -87 0

-121 -47 0

-166 70 0

0 -100 -900

0 -100 900

(2, 1)S

x y z

0 374.328 0

153.589 80.2023 20

124.268 -32.3675 14.9819

81.1006 -77.5258 8.45141

46.9121 -94.4981 3.41302

23.4562 -100 0

-23.4562 -100 0

-46.9121 -94.4981 3.41302

-81.1006 -77.5258 8.45141

-124.268 -32.3675 14.9819

-153.589 80.2023 20

(3, 1)S

x y z

0 334.907 0

145.019 83.7267 10

145.019 0 9.6018

94.9161 -68.9606 5.40618

53.5898 -92.8203 2.10256

26.7949 -100 0

-26.7949 -100 0

-53.5898 -92.8203 2.10256

-94.9161 -68.9606 5.40618

-145.019 0 9.6018

-145.019 83.7267 10

Table 2. Coordinates of some polyhedra shown in Figure 2.
Monostable objects are provided with integer coordinates which
would be difficult for mono-unstable ones due to oblique polygonal
faces.
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