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Lagrange Inversion Formula by Induction

Erlang Surya and Lutz Warnke

Abstract. We present a simple inductive proof of the Lagrange Inversion Formula.

1. INTRODUCTION. The Lagrange inversion formula is a fundamental result in

combinatorics. In its most basic form (see Theorem 1 with H(z) = z and H ′(z) = 1),

it solves the functional equation A(x) = xΦ(A(x)) for A(x), by expressing the coef-

ficients of the formal power seriesA(x) in terms of the coefficients of the formal power

series Φ(z). Functional equations of this form frequently arise in enumerative combi-

natorics, and in many applications the Lagrange inversion formula thus yields explicit

counting formulas (e.g., for trees, permutations, and planar maps); see [4, 6, 7, 19, 20].

As is so often the case for fundamental results, there are many different proofs of

the Lagrange inversion formula, including ones based on Cauchy’s coefficient formula

for holomorphic functions, residues of formal Laurent Series, and tree-counting ar-

guments, just to name a few (see [20, Section 5.1], [9, Section 4], [19, Section 5.4]

and [2, 3, 5, 11, 12, 13] for more details and additional proofs). Furthermore, as one

might expect, there are many different generalizations of the Lagrange inversion for-

mula, including multivariate forms (see [8, 9, 10, 14, 17] and the references therein).

In this expository note we present a simple and elementary ‘just-do-it’ inductive

proof of the Lagrange inversion formula (where all proof-steps emerge naturally).

Theorem 1 (Lagrange Inversion Formula). Assume that A(x) =
∑

n≥0
anx

n

and Φ(z) =
∑

r≥0
crz

r are formal power series satisfying

A(x) = xΦ
(
A(x)

)
. (1)

Then, for any integer n ≥ 0 and any formal power series H(z) =
∑

r≥0
hrz

r,

n[xn]H
(
A(x)

)
= [zn−1]H ′(z)Φn(z). (2)

To fully understand and appreciate the statement and conclusion of Theorem 1, it

might be useful to study the frequently asked questions discussed in the next section.

2. FREQUENTLY ASKED QUESTIONS.

What does the notation [xn]F (x) mean? This is a widely-used [1, 4, 6, 7, 18, 20]

short-hand notation for the coefficient of xn in the formal power series F (x), i.e.,

[xn]F (x) := fn when F (x) =
∑

r≥0

frx
r. (3)

What are formal power series? In brief: given a commutative coefficient ring R, the

ringR[[x]] of formal power series is the set of all ‘formal sums’ of the form
∑

r≥0
crx

r

with cr ∈ R, where addition, multiplication and differentiation are defined naturally:

∑

r≥0

arx
r +

∑

r≥0

brx
r :=

∑

r≥0

(ar + br)x
r, (4)
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∑

r≥0

arx
r ·
∑

r≥0

brx
r :=

∑

r≥0

( ∑

0≤s≤r

asbr−s

)
xr, (5)

(∑

r≥0

arx
r
)′
:=
∑

r≥1

(rar)x
r−1 =

∑

r≥0

ar(x
r)′. (6)

The ring R[[x]] of formal power series satisfies (more or less) all the properties one

would expect, including the following well-known derivative formula:

(Φm(z))′ = mΦ′(z)Φm−1(z) for any integer m ≥ 1, (7)

see Section 5 for a short proof. For more details about formal power series we refer to

the textbooks [10, 18] or the American Mathematical Monthly expository paper [16]

(which won the Lester R. Ford Award for expository excellence); see also [15].

Why is the conclusion (2) useful in enumerative combinatorics? In many enumer-

ation problems, the formal power series A(x) is used as follows [1, 4, 6, 7, 18, 20]:

the coefficients an encode the number of objects of size n, such as the number of

certain n-vertex trees. Exploiting combinatorial properties of the objects of interest,

one then infers a functional equation for A(x): for example, given an integer t ≥ 1,

when an denotes the number of unlabelled rooted plane t-ary trees with n vertices

(both external and internal) as in [6, Example I.14 (p. 68)], then one can obtain that

A(x) = x
(
1 +At(x)

)
. (8)

The Lagrange inversion formula shines when these functional equations cannot be

explicitly solved for A(x), which in example (8) is the case when t ≥ 5. In these

situations the crux is that (2) still allows us to determine the coefficients of A(x):
settingΦ(z) := 1+ zt andH(z) := z (so thatH ′(z) = 1), forn ≥ 1 it directly gives

an = [xn]A(x)
(2)
=

1

n
[zn−1] (1 + zt)n

︸ ︷︷ ︸

=
∑

n

r=0

(
n

r

)
ztr

=
1

n

(

n
n−1

t

)

provided t | n− 1. (9)

This illustrates the conceptual upshot of (2) in applications: it can specify the coef-

ficients of an unknown formal power series A(x) that is defined by the functional

equation (1) in terms of the known formal power series Φ(z); see [4, 6, 7, 19, 20].

What is the point of arbitrary H(z) in (2): is H(z) = z not enough? Build-

ing upon the previous question, in many enumeration problems the following idea

is used: when a formal power series counts certain objects, then suitable functions

of it count other objects of interest (see [1, Chapter 3], [6, Sections I.2 and II.2], or

[7, Sections 5.2 and 5.3]). For example, if A(x) counts t-ary trees as in (8), then

B(x) := Ak(x) (10)

counts so-called ordered k-forests of t-ary trees, which are simply k-sequences of t-ary

trees; see [6, below (69) on p. 66]. Having H(z) in (2) crucially allows us to directly

determine the coefficients of B(x): using H(z) := zk and Φ(z) := 1 + zt gives

bn = [xn]B(x)
(2)
=

1

n
[zn−1]kzk−1Φn(z) =

k

n
[zn−k](1 + zt)n
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for n ≥ 1, which can then be computed analogously to (9). This illustrates why for

applications it is useful to allow for arbitrary formal power series H(z) in (2).

Doesn’t the Lagrange Inversion Formula require a0 = 0 and c0 6= 0? The two

assumptions a0 = 0 and c0 6= 0 arise naturally in applications of the Lagrange Inver-

sion Formula. Indeed, it is well-known (and not difficult to check) that the assumed

functional equation (1) requires a0 = 0, and, furthermore, that the special case c0 = 0
corresponds to the degenerate power series A(x) = 0. Nevertheless, it turns out that

Theorem 1 is true without these two assumptions, i.e., they are formally redundant.

Isn’t the Lagrange Inversion Formula about the compositional inverse? There are

indeed formulations of the Lagrange Inversion Formula that concern the compositional

inverse F 〈−1〉(x) of a given formal power series F (x) =
∑

r≥1
frx

r, which satis-

fies F 〈−1〉(F (x)) = x = F (F 〈−1〉(x)). To this end we need to assume the existence

of F 〈−1〉(x), which turns out to be equivalent to f1 being invertible in the coefficient

ring R (in which case F 〈−1〉(x) =
∑

r≥1
grx

r with g1 = 1/f1; see [19, Section 5.4]

and [9, Section 1.1]). To relate this setup to Theorem 1, we set φ(x) := x/F (x) and

observe that xφ(F 〈−1〉(x)) = F 〈−1〉(x), so by invoking (2) with A(x) := F 〈−1〉(x)
it follows that, for any integern ≥ 0 and any formal power seriesH(z) =

∑

r≥0
hrz

r,

n[xn]H
(
F 〈−1〉(x)

)
= [xn−1]H ′(x)

(
x

F (x)

)n

. (11)

The conceptual crux is that (11) relates the coefficients of the formal power seriesF (x)
and its compositional inverse F 〈−1〉(x); for more details we refer to [3, Section 3.8],

[7, Section 6.12], [19, Section 5.4] and the references therein.

3. PROOF BY INDUCTION.

Proof of Theorem 1. Using induction on n ≥ 0, for each n we shall prove that (2)

holds for any formal power seriesH(z). The base casen = 0 is trivial, since both sides

of (2) are zero (for the right-hand side the crux is that the powern− 1 of z is negative).

We now turn to the induction step n ≥ 1, where we first exploit that the derivative

is a linear operator: indeed, for the induction step it suffices to establish that

n[xn]Ak(x) = [zn−1](zk)′Φn(z) (12)

for all integers k ≥ 0, as the desired identity (2) then follows for any formal power

series H(z) =
∑

k≥0
hkz

k using linearity of the [xn] operator and (6):

n[xn]H(A(x)) =
∑

k≥0

hkn[x
n]Ak(x)

(12)
=
∑

k≥0

hk[z
n−1](zk)′Φn(z)

= [zn−1]
(∑

k≥0

hk(z
k)′
)

Φn(z)
(6)
= [zn−1]H ′(z)Φn(z).

To complete the induction step, in view of (zk)′ = kzk−1 it thus suffices to prove that,

for all integers k ≥ 0,

n[xn]Ak(x) = k[zn−k]Φn(z). (13)

It will be convenient (and instructive) to first verify (13) in a few degenerate cases:
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• Case k = 0: here both sides of (13) are zero: for the left-hand side the crux is

that Ak(x) = A0(x) contains no powers of x of form xn with n ≥ 1.
• Case k > n: here both sides of (13) are again zero: for the right-hand side the crux

is that the power n− k of z is negative, and for the left-hand side the crux is that the

assumption (1) implies that in A(x)k all occurring powers of x are higher than n.
• Case k = n: here (13) is true since, using the assumption (1) and n = k, it readily

follows that n[xn]Ak(x) = n[x0]Φn(A(x)) = n(c0)
n = k[zn−k]Φn(z).

It thus remains to verify (13) in the case 1 ≤ k < n. Assumption (1) implies that

n[xn]Ak(x)
(1)
= n[xn]xkΦk

(
A(x)

)
= n[xn−k]Φk

(
A(x)

)
. (14)

By the induction hypothesis we may apply (2) with H(z) = Φk(z) and n replaced

by n− k, and so by the derivative identity (7) with m = k and m = n it follows that

n[xn−k]Φk
(
A(x)

) (2)
=

n

n− k
[zn−k−1](Φk(z))′Φn−k(z)

(7)
=

k

n− k
[zn−k−1]nΦ′(z)Φn−1(z)

(7)
=

k

n− k
[zn−k−1](Φn(z))′.

(15)

Finally, observe that by definition (see (3) and (6) above) we have

[zn−k−1](Φn(z))′
(6)
= (n− k)[zn−k]Φn(z), (16)

which together with (14) and (15) establishes the desired identity (13), completing the

proof of the induction step (and thus Theorem 1).

4. DISCUSSION. Let us now take a step back, and discuss the structure of our

inductive proof of the Lagrange inversion formula. The first reduction step is stan-

dard (and intuitive): exploiting the linearity of the derivative, it suffices to prove the

desired identity (2) for monomials H(z) = zk , i.e., it suffices to prove (12), which

directly reduces to (13). In the induction step, it is natural to insert assumption (1) to

arrive at (14), which is directly amenable to the induction hypothesis for a suitable

formal power series H (exploiting that the induction hypothesis applies to arbitrary H
instead of just monomials). The remaining steps from (15) onwards are again natural,

and simply use the well-known derivative identities (7) and (16). To sum up: all steps

of the proof emerged naturally (since none of them required any non-trivial ideas or

insights), so we arguably presented a ‘just-do-it’ proof of the Lagrange Inversion For-

mula.

We remark that [9, Section 4.2] also contains an inductive proof, which has some

similarities to the one given above. However, that inductive proof is used to prove

a somewhat indirect and less natural variant of the Lagrange inversion formula, so

an additional argument is needed to deduce (1). For combinatorial applications (1) is

perhaps the most useful form of the Lagrange inversion formula, so it seems adequate

to record our more direct (and simpler) inductive proof for expository reasons.

5. APPENDIX. We close by outlining, for completeness, a short proof of the well-

known derivative identity (7) for formal power series. First note that (6) gives

(zrzs)′
(6)
= (r + s)zr+s−1 (6)

= (zr)′zs + zr(zs)′, (17)
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which by linearity implies (similar to the induction step in Section 3) that

(
F (z)G(z)

)′
= F ′(z)G(z) + F (z)G′(z) (18)

for any two formal power series F (z) =
∑

r≥0
frz

r and G(z) =
∑

s≥0
gsz

s. Using

the product rule (18), it then is easy to prove the desired derivative identity (7) by

induction on m ≥ 1 (the base case m = 1 being trivial).
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