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One of main problems in celestial mechanics is the determination of the shape of the equilibrium configuration of celestial bodies. In this
paper a model of a fluid mass rotating in space like a rigid body will be developed.

To this aim, the equipotential surfaces are developed by using the Neumann series with respect to the Clairaut coordinates, and from
these developments, the equilibrium equations and the boundary conditions can be obtained. Classical methods involve convergence
problems, and in this paper two methods are developed to solve this problem, one based on numerical quadrature methods and the other
one based on an analytical development.

Keywords: Figures of celestial bodies, Potential theory, Spherical harmonics, Celestial mechanics.

AMS Subject Classifications: 33E99,70F15,85A30.

1. Introduction

The study of the equilibrium configurations of celestial bodies is a classic problem in celestial mechanics,
and they have been studied by classical authors. This paper focuses on the particular case of the study of
the figures of equilibrium of rotating deformable bodies based on the use of the developments in Clairaut.
Let us consider M as an isolated deformable mass with a uniform rotation w. Let the rotating system of
coordinates be defined by OXY X axes where O is placed in the centre of masses of the body, OZ axe is
parallel to @ and OX, OY defines a direct trihedron with OZ. The potential in an internal point 7 of
coordinate (z,y, z) is given by

dm/’ 2
\If:Q+Vc=G/ U TS (1)
v A2

where the first term is the so-called self-ravitational potential, and the second term is the centrifugal
potential due to the rotation of the coordinate system. In this equation M denotes the mass of the body,
dm’ is the element of mass of an arbitrary internal point 7" with coordinates (z',%/,2'), and A is the
distance between the point of vector radii 7 and 7.

The condition of rigid rotation implies hydrostatic equilibrium dP = pd¥ and from this condition,
and according to Kopal [7], [8] and Faulkner [3], this state implies the identification of the equipotential,
isobaric, isothermal and isopycnic surfaces. To integrate this problem in a general case of mass distribution,
a state equation is needed to connect the pressure and the density.

In Section 2 the coordinate system of Clairaut is defined and the classical potential development accord-
ing to this coordinate system is given. From this development a set of integral equations for the amplitudes
is obtained. Classical methods assumes that U,, = K,, and V,, = W,,.

In section 3 we develop two main results; firstly, we show that the assumptions made in classical methods
are not true to first order in the amplitudes and, secondly, we prove that, despite the above not be true,
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the development of the globlal potential for the first order in amplitudes is coincident with the classical
theories.
In section 4 a new analytical method to arrange the potential is developed.

2. Development of the potential in Clairaut coordinates

To study the potential at a point in the primary component, classical methods use the Clairaut coordinate
system (a, @, \) where a is a constant parameter on each equipotential surface. In this paper the parameter
a was taken as the radius of the sphere with the same mass as the equipotential surface. The spherical
coordinates (r, 0, \) are connected to Clairaut ones by r = r(a, 8, \). The equipotential surfaces are deter-
mined by a constant value of the parameter a. Since the Jacobian J of the transformation from spherical
coordinates to Clairaut ones is of the form J = %, the element of mass dm’ can be written, according to
Clairaut coordinates, as

or
a7

dm! = p(a')r(d',0', \)? 5 | €O 0'do’dN da’

a

To evaluate the self-gravitational potential € it is necessary to develop the inverse of the distance. Classical
methods (Finlay [4], Kopal [7], Jardetzky [6], Lopez [9]) are based on the development of the distance
between two mass elements dm, dm’ given by

o0

1 1 L3 (%) Palcosy) >

N R )
oD

A \/7,2 + 72 — 217! cos 7y % Zo (%)npn(cos v) <t
n=

where P, (cos~y) are the Legendre polynomials.
Let (1,0, \) and (r/, 6, \') be the spherical coordinates of mass elements dm and dm/. The self-gravitational
potential in a point of spherical coordinates (r, 0, \) can be evaluated as

Q=U+V (3)

where

2 g r1 N2
U=aG / / / P s do' N
0 — r A

27 r I\, 12
V=G / / / P s/ dal e/ ax’ (4)
o JozJo A

and where 7 is the minor radius of a sphere centred at 0 containing the mass distribution.
To evaluate these integrals it is convenient to replace % by its development in Legendre polynomial series.

vy PR

U= i Ur", V= i Vor (5)
n=0 n=0
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where

e[

27 r
V=G / / / 21 B (cos ¥)p(r', 0, N') cos 0'dr’ O’ d N
570

/ 7P, (cos y)p(r', 0", X') cos 0 dr’ d6' dN

I=|

oy N

Let us define K,,, W, as

27 a
K, = G/ / / 7P, (cosy)p(r', 0, N') cos 9/§—d 'do'dN
a’

wly ol

27 a or'
=G [ [T [ R cos 8, X) costf Sddl ag'a
= Jo

where a; the first root of the equation p(a) = 0.
Classical methods assumes that U,, = K,, and V,, = W,, and consequently,

U= i[(nr", V= i Wr— 1
n=0 n=0

If so, however, then evidently

G

2—n

a 27 %
Ky = G/ p(a')% [/0 / ) log 7' P,,(cos 7) cos 9/d9/d)\/] da’

G o _8 e m+3 300 17/ /
= n P
Wn n+3/0 P(a)aa, [/0 /_%r ) (cosy) cos 0'd0"dN" | da

Let us assume that the radius vector r’ of an equipotential surface can be developed as

K, =

a 27 %
p(a/)% [/ / 727" Py, (cos ) cos H/dé?'d)\/] da', n#2
a 0 -5

’I"_CL

1+Z Z fam(a nm(e’A)]

n=0m=-—n

where fp, (') are the so-called amplitudes, and Y, ,,,(¢", \') the spherical functions [1].
Spherical functions satisfy the orthogonality condition

2w
/ / Yy (0, \) Yy 5(0, X) cos 0 df dX = 6,0y,

where 0; ; is the delta of Kronecher. On the other hand P, (cos ) satisfies [5].

47 -
Yo (0, \) Yo (67, N
QnHmZ_n (0, )Y m (6, X)

Pu(cos) =
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Due to reasons concerned with symmetry, in the particular case of only rotation, vector radius 7’ can be
[ee]

developed as ' = a’ (1 + > for(a')Poy(sin(@’) | where P, are the Legendre polynomials, or in abbreviated
k=0

form ' = a/(1+ ).
In order to evaluate the last integrals it is convenient to approach 7’7 and logr’ by

1 1
= aP(1+p¥ + oplp - 15”? + gPle =1~ 2)5° + )

1 1
logr’ =loga + X' — 52/2—1—32/34—.... (13)
The product of the Legendre polynomials for m < n is given by the Adams-Neumann formulae [2]

A AA,
Po(2)Pa(z) = i {

j=0 Antm—j

2n+2m+1-4j
2n+2m+1-2j

(2 — 1)!

; (14)

} Pn-l—m—?j (.%'), Aj =

m—+3

Replacing (2), (13) in (8), (9), and approximating 72", logr’ and r to an appropriate order in

amplitudes, the self-gravitational potential can be written as

- E,(a)r™ + E,(a)r "1 .
Q= 47TGZ (@) o T 1( ) P,(sin®) (15)
n=0

Note that from the last equation 47 Fy(a) = M(a), where M(a) is the mass contained in the equipotential
surface of parameter a, and following Kopal [7] from this condition, to third order in amplitudes we have

fol@) = — £ f3(@) = = f3(a) + . (16)

In the first order in aplitudes, functions E,(a), F,(a) can be written as.

Ey(a) = / p(a’)a’ da’ E,(a) = / p(a')% [aa_"fn(a')] da’
Fy(a) = / p(a)a? dd’ F.(a) = / p(a/)% [a'”+3fn(a')] da (17)
0 0 a
The centrifugal potential V. is given by
1 2 .
Ve = 3" [1 — Pa(sinf)] (18)

Replacing " and ="' in (22), (18) by their developments, the total potential (1) can be writen as

U(a) = Wp(a)P,(sinb) (19)
n=0

and consequently

V(a) = ¥o(a), U,(a) =0 n#0 (20)
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In the firts order in w? we get [7] [8] [9]

a’Es(a) | a*F(a) . w22
— - F —
b 5 o R@hle) =157
P R .
2n+1 * mr1 ¢ fu(a@)Fo(a) =0, n=2,4,.. (21)

and from these integral equations, only f(a) is not zero in the first order.
To get developments of E),(a) and F,,(a) of order greather than one see [8].

3. First order theory: Numerical quadrature method

Unfortunately, the right-hand series do not converge in the layer defined by r € [r

min (@), Tmaz(a)] where
T'min(@) = min {r(a,@,)\)w €[-5,5, € [O,W]},rmax(a) = max{r(a,@,)\)w €[-5,5A¢€ 0,7‘1’]}.
To solve this problem we can proceed as follows.
The potential € can be evaluated as
Q=" [Upr" + Vor ] (22)

n=0
To evaluate U,, and V,, it is more convenient to use of the Clairaut coordinates. Let us define X =
o0 o0
S fa(a)Py(sinf) and X' = > f,(a’)P,(sin ). The value of the vector radii r and 7" of the equipotential
n=0 n=0

surfaces that contain dm and dm/’, are given by r = a(1+X), ' = a/(1+Y’) and let (a, 6, \) be the Clairaut
coordinates of this surface in the (#’, \') direction given by (a(1 + X)(1+ %)=L ¢ \).

G oy o or? AR, I3 10l 7\
U, = — Py (cosy)p(r', 0, ') cos 0'da’df’ dX (23)
2=nlJo JozJaa+m)a+sn-r Oa
if n # 2. For n = 2
2 Z a; o1 /
Uy =G / / / og,r P, (cosy)p(r', 0", \') cos 0'dr'do’ dN' (24)
0 JozJagaimyasny-r Oa
G 2 T a(1+2)(14%7) oy/n+3
V, = —— /0 /g /0 5 P, (cosy)p(r', 0", X cos 0'da’d9’d\ (25)

To evaluate V, it is convenient to compute the integral

a(1+2)(14%7) 1 Hr/m+3 a Hr/m+3 a(1+3)(14%7) ! ormt3
/0 p(a’) B da':/o p(a’) B da'—i—/ p(a’) B da’ (26)

To evaluate the second integral, a numerical quadrature formula of an appropriate order can be used. To
build up a first order theory in the amplitudes f,(a), the approach a(1 + X)(1 +X')~! = a(1 + X — %)
and the rectangle quadrature formula can be used

a(1+2)(14%27) Hr/m+3 a(1+X-%") oy/n+3 Hr/m+3
/ pla) i ~ [ o) ~ pla) (5 ) ()
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m+3 — o/m+3

In zero order in amplitudes r , and from them we have in first order

a(1+3)(1+3) Qi3 e .
/a p(a’) By da' = (n+3)a Z fu(a (sin@) — P,(sind")) (28)

From this result we have

oa’

2 m-+3
/ / / 8T P, (cosy) cos 0'da’d0’ dN'+

/%/1 n+3)a"*?p [an P, (sin@) — P,(sind"))

2 a(1+2)(14X)~1 oy/n+3
/ / / Py (cosy)p(r', 0", N) cos 0 dr'df'dN =

P, (cosy)cos0'dd’dN (29)

If n # 0, the first integral can be approached in the first order in amplitudes by

27 m+3
/ / / 67‘ P, (cos~y)cos 0'da’df'dN =
a o 2 3
= / p(a')y / / "3 P, (cosy) cos 0'df'dN' | da’ =
0 a |Jo J-z

= / Bi [/ / "1+ (n+3) ka )Py (sin 0)) P, (cos v) cos §'d0’dN | da’ =
3 k=0
_ 4 (n+3) /a p(a')i [ *3 f,(a")] da' P, (sin@) (30)
2n + 1 0 da’ " "
For n = 0 we have
2 a
/ / / 'do'd)\ = 1271'/ pla’)a*dd’ (31)
0
The value of the second integral is given by
2m
/ / n+3)a"?p Z fu(a (sinf) — P,(sin@"))| P,(cosv)cosd'dd'd\ =
_ . nt3 a2 .
= R @) Paeing), n 0 (32)
if n = 0 the integral is null.
Replacing (30), (32), in (29) we get
4 “ 0 ¢ a3 4 42 .
Vi, = o 1G/0 p(a’)@ (a2 fo(a')] da’ — Gy 1Ga 2 f,.(a)p(a)P,(sin ) (33)
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if n # 0. If n =0, its value is found by
Vo = 471G / Ya'?da’ (34)

The first integral of (33) coincides with the value of the classical theory.
The analyses of the corresponding U, terms are similar. For n # 0 we have

gm0 fa(@)p(a) Py (sin ) (35)

Up = 4nG p(a’)a'dd (36)

Replacing 7P by P = aP(1 +p Z fn(a)P,(sinf)) in (22) we have in the first order in the amplitudes

Q=47G |a7! ' 'Qda N [ 'Qda } n sinf
4 | ot Z | plaada | e Pusing) | +
+ 47TG/ )a'da’ + Z infl { et /O“ P(a/)% (a7 ()] da'+

@ 0
—{—a"/a p(a/)% [a/zfnfn(a')] da/} P, (sin0)+

3 P LI n_ 2T 1-n r
—{—Z[ a Ga"" fn(a) +a 2n+1Ga fn(a)| Py(sinf) (37)

+§;4wa{2n1+1[a"En<a>+a-“—1Fn<a>}—a-lFo< )fula )} (sinf)  (38)

This result coincides with the classical expression of the potential [8].

4. First order theory: Analytical method

A second way, based on the analytical development of the inverse of the distance, can be formulated as
follows:

O=K+W (39)

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com
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where

21 ay / /2
K= G/ // 8—Tc59da’d9dx

27 /2 or' ,
W = G/ /%/ BUNED —— cos 0'da’df’d\ (40)

o0 o0
To evaluate K and W we cannot use W = Z W,r" ! and K = > Kpr", where W,, and K,
n=0

are defined by (7) because the developments of Z given by (2) do not converge in the layer de-
fined by r € [Fmin(a), "mas(a)] where rpin(a) = min{r(a,0,\)| 6 €[-3,5,X€ (0,7}, rmes(a) =
max {r(a,0,\)|0 € [-%,5]. X € [0,7]}.

To solve this problem, let us define

1
D(a,d’) = (41)
Va2 + a2 — 2aa’ cosy
The inverse of the distance between dm and dm’ can be developed to the second order in X, ¥/
1 ! / AVA Y 1 252 / / 1 1250712
N D(a,a’) + Dgy(a,a’)aX + Dy(a,a’)a’E" + §Daaa Y%+ Dygaad’£E" + §Da/a/a Y4 (42)
where subcript x denotes the partial derivative with respect to x.
On the other hand, we have
dm' = p(a')a?(1 + 3% + 'S, + 3% + 2d'S'Y), + ..) cos 0'da’ df’dN (43)

To evaluate the potential integral inside the equipotential surface of dm, D(a,a’) can be evaluated by

a
n=0

D(a,d’) = E i (%)n Py (cos ) (44)

while, for outside this surface, it can be evaluated by

1 a\”"
D(a,ad") = = Z (9) P, (cos~) (45)
n=0
In order to evaluate W we have
1< [d\" ,
EZ — {1—(n+1)S+nX¥'} Py(cosy) (46)
Replacing (43) and (44) in (40) we get
27 /n+2
/ N/ : / / / / ! /
W = G/ / / gy {1-(n+ 1T+ (n+3)S +d'%, } Py(sin®)p'(a) cos 0'do'dN da’  (47)
~% n=0
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To evaluate K we can procced by a similar way
= li( ) {1+n%— (n+1)X'} Py(cos) (48)
a :
Repalcing(43) and (45) in (40) we get
2m
K = G/ / / Z ) {1 +nX+ (2-n)Y 4+ a'X), } P,(sin®)p'(a) cos 0'df'dN dd’ (49)

znO

To evaluate (47) and (49), we get if n # 0

2 2
/ / Y P, (cosy)df' d\ =0, / / Y Py(cosy)dd d\N = 4r¥ (50)
3 0 J=3
and
27 5
/ / ¥ Py, (cosy)do'dN = (a")P,(sin @)
0 J=3
/%/ a's!, Py(cosvy)dd'dN = in a f! (a")P,(sin0") (51)
= 2n+1 """

and consequently

= 47TG/ )a?da’ — 47TGan(a)/ p(a’)a"?da’ P, (sin 0)+
n=0 0

o0

"G [* 0 ., o
2 2n7T+ 1 /0 pla) o [P fua))] da’ (52)
n=0
> 4G ay N0 9—n , ,
= 47TG/ a 'da’ + Z 2n7T+ : / (CL )aa_/ [a 2 fn(a )] da (53)

Replacing (52), (53), (17) in (39) we get

- Z47rG{ 2n1+ ; [a"Ey(a) +a " Ey(a)] — a  Fy(a) fola )} ) (sin @) (54)

The total autogravitational potential 2 = K 4+ W coincides with the value given in the previous section
and consequently with the classical theory.
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5. Concluding Remarks

Classical methods to study the equilibrium figures of celestial bodies contain a convergence problem in
a layer around dm. To solve this problem, two methods have been proposed one based on numerical
integration formulae an other based on analytical develoments of the inverse of the distance. The solution
to the problem following both methods coincides with the classical theory in the first order in amplitudes.
On the other hand, both metods can be suitable to be extended to second and higher order to study the
results concordance.
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53 internal point 7/ with coordinates (z',%/,2'), and A is the distance between the
54 point of vector radii 7 and 7.

55 The condition of rigid rotation implies hydrostatic equilibrium dP = pd¥ and
56 from this condition, and according to Kopal [7], [8] and Faulkner [3], this state
57

58

59 *Corresponding author. Email:lopez@Qmat.uji.es
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implies the identification of the equipotential, isobaric, isothermal and isopycnic
surfaces. To integrate this problem in a general case of mass distribution, a state
equation is needed to connect the pressure and the density.

In Section 2 the coordinate system of Clairaut is defined and the classical poten-
tial development according to this coordinate system is given. From this develop-
ment a set of integral equations for the amplitudes is obtained. Classical methods
assumes that U,, = K,, and V,, = W,,.

In section 3 we develop two main results; firstly, we show that the assumptions
made in classical methods are not true to first order in the amplitudes and, sec-
ondly, we prove that, despite the above not be true, the development of the globlal
potential for the first order in amplitudes is coincident with the classical theories.

In section 4 a new analytical method to arrange the potential is developed.

2. Development of the potential in Clairaut coordinates

To study the potential at a point in the primary component, classical methods use
the Clairaut coordinate system (a,f,\) where a is a constant parameter on each
equipotential surface. In this paper the parameter a was taken as the radius of the
sphere with the same mass as the equipotential surface. The spherical coordinates
(r,0,\) are connected to Clairaut ones by r = r(a, 0, A). The equipotential surfaces
are determined by a constant value of the parameter a. Since the Jacobian J of the
transformation from spherical coordinates to Clairaut ones is of the form J = g(’;i,
the element of mass dm’ can be written, according to Clairaut coordinates, as

or
)

dm’ = p(a’)r(d’,0',\')? 3 cos 0'df'd\ da’

a

To evaluate the self-gravitational potential €2 it is necessary to develop the inverse
of the distance. Classical methods (Finlay [4], Kopal [7], Jardetzky [6], Lopez [9])
are based on the development of the distance between two mass elements dm, dm’
given by

[oe)
1 1 L3 (%) Pafcosy) r>7
1 — n=0 (2)
2 2 S
A \/7“ + 772 — 271/ cos y % Zo (ﬁ)npn(COS’y) r<r
n=

where P, (cos~) are the Legendre polynomials.

Let (r,0,)) and (r/,6’,\') be the spherical coordinates of mass elements dm and
dm’. The self-gravitational potential in a point of spherical coordinates (r, 6, ) can
be evaluated as

Q=U+V (3)

where

27 % 1 N2
U=0G / / / PN s dB N
0 — r A

21 r I\ ,.12
V=G / / / P s 0/ dad'dN (4)
o JozJo A

oy R
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and where ry is the minor radius of a sphere centred at 0 containing the mass
distribution.

To evaluate these integrals it is convenient to replace % by its development in
Legendre polynomial series.

U=3 U, V=3 V! 6
n=0 n=0

where

e[

2 r
V=G / / / P, (cosy)p(r', 0", N') cos 0'dr’ d6' dN (6)
= Jo

/ 7P, (cos y)p(r', 0", N') cos 0'dr’ d6' AN

I=\

STE

Let us define K,,, W, as
21 al a,r./
= G/ / / 17" Py (cos y)p(r', 6, N cos H'Fda'de’d)\'
= Ja a
2 a or'
W, = G/ / / 2P, (cos y)p(r', 6, N) cos HIFda'dG'd)\' (7)
370 a

where a; the first root of the equation p(a) = 0.
Classical methods assumes that U,, = K,, and V,, = W,, and consequently,

U= i Ky, V= i W~ (8)
n=0 n=0

If so, however, then evidently

2m
K, = ¢ / / / 27" P, (cosy) cos 0'df'dN | da’, n # 2
2—n Ba z
ai a 27
Ky = G/ pla 8_ / / log ' P, (cos ) cos 0'd0'd\'| da’

A /a( o /%/ 3B, (cos ) cos 0'd0'dN | da’ )
" n+3 (9 = v

Let us assume that the radius vector r’ of an equipotential surface can be developed
as

7"—@

1+Z Z Frm (@) Yo m (0, A)] (10)

n=0m=—n

where f,, (a’) are the so-called amplitudes, and Y5, ,, (6, \) the spherical functions

[1].
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Spherical functions satisfy the orthogonality condition
2T
/ / Yom (0, A\)Y; (6, X) cos 0 df dX\ = 6, .0y (11)
where 6; ; is the delta of Kronecher. On the other hand P, (cos ) satisfies [5].

Py (cosy) =

47 " o

Due to reasons concerned with symmetry, in the particular case of only rotation,
o0

vector radius r’ can be developed as r' = a’ (1 + > fzk(a,)PQk(Sin(0,)> where P,
k=0

are the Legendre polynomials, or in abbreviated form 7’ = a’ (1+%).
In order to evaluate the last integrals it is convenient to approach r’? and logr’ by

1 1
= a®(1+pX + oplp - 15" + gPle =1~ 2)5° + )

1 1
logr’ =loga+ %' — 52'24-52/34----- (13)

The product of the Legendre polynomials for m < n is given by the Adams-
Neumann formulae [2]

m . .
Am—jAjAn—; [2n+2m + 1 —4j (25 — !
Py ()P (z) = R Prtm—2; Aj="—"
n(x) m(‘r) par Anerfj M+ 2m+1—2j n+m—2j (-T)a j !
(14)
Replacing (2), (13) in (8), (9), and approximating 7>~", logr’ and "3 to an

appropriate order in amplitudes, the self-gravitational potential can be written as

a)r n—1
_ 4WGZ ;Li f DU b (sinf) (15)

Note that from the last equation 4w Fy(a) = M(a), where M(a) is the mass con-
tained in the equipotential surface of parameter a, and following Kopal [7] from
this condition, to third order in amplitudes we have

fola) = =< f5(a) - ﬁfz( a) + (16)

In the first order in aplitudes, functions E,,(a), F,,(a) can be written as.

Eyp(a) = / p(a’)a’ da’ / pla [a*7" f, ()] da’
Fy(a) = / p(a)a”? dd’ / pla’) = '”+3fn(a')] da’ (17)
0 0 aa
The centrifugal potential V. is given by
1 2
V=5 [1 - Po(sine) (18)
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Replacing 7™ and ="~ ! in (22), (18) by their developments, the total potential (1)
can be writen as

Z U, ( (sinf) (19)

and consequently
U(a) = Yo(a), U,(a)=0 n#0 (20)

In the firts order in w? we get [7] [8] [9]

a’Fy(a)  a3Fy(a) 1 w?a?
—a r _
5 5 o Llah) = grs
a"Ey(a)  a "1E,(a) _1
—a (@) Fy(a) =0, n=2,4,.. 21
ol a1 @ @R@=0n (1)

and from these integral equations, only f2(a) is not zero in the first order.
To get developments of E,(a) and F),(a) of order greather than one see [8].

3. First order theory: Numerical quadrature method

Unfortunately, the right-hand series do not converge
in the layer  defined by r € [Tmin (@), Tmaz(a)]  where
T'min (@) = min {r(a,0,\)|0 € [-3, Z],\ € [0,7] } Fmaz(a) =

max {r(a,0,\)|0 € [-5, 5], A € [0, 71']}
To solve this problem we can proceed as follows.
The potential €2 can be evaluated as

[e.9]

> [Unr™ + V™71 (22)

n=0

Q

To evaluate U,, and V it is more convenient to use of the Clairaut coordinates.
Let us define ¥ = z fn(a)Py(sinf) and ¥’ = z fn(@')P,(sin@). The value of

the vector radii r and r! of the equipotential sur faces that contain dm and dm/, are
given by r = a(1 + %), v’ = d/(1 4+ X') and let (a, 6, \) be the Clairaut coordinates
of this surface in the (6, \') direction given by (a(1 + X)(1+ X)L, 6 \).

2r % ra ori2—n
/o /g /a(l+2)(1+2’)1 da

P, (cosy)p(r', 0, \) cos 0'da’ d9’ d\

n:2—n

(23)
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if n #2. For n =2

2 a; 1 !
/ / / 0 og/r P, (cosy)p(r', 0, \') cos 0'dr'do'dN
z Ja(1+2)(14%7) -1 da

(24)
2 pZ a(1+3)(14%7) ! or/n+3
V, = / / / — Py, (cosy)p(r', 0", ') cos 0'da’ df'd N
o J-zJo da
(25)

To evaluate V,, it is convenient to compute the integral

(9a/ aa/ 80/
(26)
To evaluate the second integral, a numerical quadrature formula of an appropriate
order can be used. To build up a first order theory in the amplitudes f,(a), the
approach a(1+X)(1+%)"! = a(1+% —¥’) and the rectangle quadrature formula
can be used

a(1+3)(14327) ! m+3 a m+3 a(1+2)(14%27) ! m+3
/ p(a’) or da’ :/ p(a’)ar da'+/ p(a’) or da’
0 0 a

(5-5)
(27)

, and from them we have in first order

a(1+3)(1437) ! Hr/m+3 a(1+X-%") or'n+3 Hr/m+3
’ !’ ’ !’ ’
/ pla) i ~ [ () T’ pla)

In zero order in amplitudes 7713 = ¢/7+3

a(1+3)(1437) ! or'n+3
/ p(a’) da/ da' = (n+3)a"?p Z fula (sin @) — P, (sind))
(28)
From this result we have
2 pZ a(1+2)(14+%7)~* Or/n+3
/ / / 5 Py, (cosy)p(r', 0, ) cos @' dr'do'dN =
0 J=3
2 a m+3
/ / / ! P, (cosy) cos 0'da’d§’ dN'+
2 2
+/ / (n+3)a"2p Z fu(a (sin@) — P, (sinb"))| P, (cosy) cos6'do’dN
0 J=3
(29)
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If n # 0, the first integral can be approached in the first order in amplitudes by

2T m+3
/ / / 37“ P, (cosy) cos 0'da’dd’d\ =
2
= / p(a’) / / ™3P, (cosy) cos 'df'dN
0

2T
/ 8a [/ /g a3 (1 + (n +3) ka )Py (sin 6)) P, (cos y) cos 6 d@d)\] da’

k=0

da' =

B 47
Cn+1

(n+3) /Oa p(a/)% [a'”+3fn(a/)] da’ P,(sin®) (30)

For n = 0 we have

AR

The value of the second integral is given by

= 127r/ pla’)a*dd’ (31)
0

P, (cos~y) cos 0'd0d\ =

/ " / _(n+3)a nt2), [Z fu(a)(P,(sin@) — P,(sin "))

= —ar R (@)p(a) Palsind), n A0 (32)

if n = 0 the integral is null.
Replacing (30), (32), in (29) we get

_ Am ¢ / i m+3 / / 4m n+2 .
Vo = o+ 1G/0 pla )aa/ (@™ fr(a)] da’ — a1 1Ga fn(a)p(a)P,(sin @)

(33)

if n £ 0. If n = 0, its value is found by
Vo = 4nG / Ya'?da’ (34)

The first integral of (33) coincides with the value of the classical theory.
The analyses of the corresponding U,, terms are similar. For n # 0 we have

4 w9

n = 2nj— 1G/a p(a')@ (a7 fo(a')] da’ + mGal_”fn(a)p(a)Pn(sin 9)
(3)
Up = 47TG/ Ya'da’ (36)
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Replacing r? by r? = aP(1 +p Z fn(a)P,(sin)) in (22) we have in the first order

in the amplitudes

Q= 4rG al/ pla)a?*da’ —a™! Z [/ 'Qda] P, (sind)| +
0
’ — 4rG " l/a /i 12—n ’ '
4G [ plal )l Pl grT @, Mgy 0]

@ 0
—|—a"/a p(a')@ (a7 fo(a))] da'} P, (sin6)+

2

+Z[ 1mGa"+2fn(a)+a"2n+1 a*™" fn(a )] . (sin @)  (37)

Note that the last sum in equation (37) is null. Replacing (17) in (37) we get

Q =47G [Eo(a) + CL*IFO(“)] +

> 1
4nG
+HZ::17T {Qn 1

[a"Ey(a) —|—a7”71Fn(a)] —a'Fy(a)fala )} . (sinf)  (38)

This result coincides with the classical expression of the potential [8].

4. First order theory: Analytical method

A second way, based on the analytical development of the inverse of the distance,
can be formulated as follows:

Q=K+W (39)
where
2 a; 12
K= G/ / / 87” cos 0'da’dg/d\’
o 2m /2 or' 0 " ,
— 4
W = //g/ N da'do'd\ (40)
To evaluate K and W we cannot use W = > W,r ™! and K =
n=0

o0
> Kpr™, where W, and K, are defined by (7) because the develop-
n=0

ments of % given by (2) do not converge in the layer defined by r €

[Pmin (@), Tmaz(a)]  where rpin(a) = min{r(a,0,))| 6¢€[-%,5],A € (0,7},
Tmaz(a) = max {r(a,0,\)|0 € [-5, 5], A € [0,7]}.
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To solve this problem, let us define

1

D(a,d) =
(@) Va2 + a2 — 2aa’ cosy

(41)

The inverse of the distance between dm and dm’ can be developed to the second
order in 3, ¥/

1 1 1

N D(a,a’)+D,(a,a")aX+D,(a,a’)a'>' + §Daaa222+Daa/aa/EZ}/+§Da/a/a/22/2—i—..
(42)

where subcript x denotes the partial derivative with respect to x.

On the other hand, we have

dm’ = p(a')a®(1 + 3% + 'S, + 352 + 2d'S'S), + ..) cos 0'da’ df’dN (43)

To evaluate the potential integral inside the equipotential surface of dm, D(a,a’)
can be evaluated by

D(a,a) = 2; (%)nPn(COS*y) (44)

while, for outside this surface, it can be evaluated by
1 = /a\n
/
D(a,a) = — Z; (5)" Paleos) (45)
n=

In order to evaluate W we have

0 !

LS () om0

Replacing (43) and (44) in (40) we get

a2 T OO m+2
2 a .
W = G/o /0 /_g EO gy {1-(n+ 1)+ (n+3)%" +d'%, } P,(sint)p'(a) cos 0'dd’d\ da

(47)
To evaluate K we can procced by a similar way
1 1 /a\" ,
< :;Z<;) {14n% = (n+ 1)’} P,(cos ) (48)
n=0

Repalcing(43) and (45) in (40) we get

ar 2m 5 X n
K= G/ / / Z % {1+nS+ 2 -n)Y +d3l,} P(sing)p'(a) cos 0'dd’d\ da’
a 0 ~2 n=0 a

(49)
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To evaluate (47) and (49), we get if n # 0

2 3 2 3
/ / Y P, (cosy)df' d\ =0, / / Y Py(cosy)dd'dN = 4r¥ (50)
0o Joz 0o Joz

and

(a")P,(sind")

2m
/ / ' P, (cosy)dd' dN =

2 3 4
| ] asupiosiray = S f)aGing) (o)

(SIE

and consequently

_47rG/ Ya?da’ — 47rGan(a)/ p(a’)a"?da’ P, (sin §)+
n=0 0

— 4rG ¢ /i m+3 / /
+n§2”+1/0 pla) 5 [0 fu(a)] da’ - (52)

> 4nG (@ 0  pn
- 47rG/ )a'da’ + Z 1 (a')y (a7 fu(a")] dd’ (53)

Replacing (52), (53), (17) in (39) we get

O=K+W =4rG [Eo(a) + aleO(a)] +

+ 24%6‘ { 2n1—i— N [a"En(a) + a_"_an(a)] — a_lFo( ) fn(a )} o (sin @)  (54)

The total autogravitational potential 2 = K + W coincides with the value given
in the previous section and consequently with the classical theory.

5. Concluding Remarks

Classical methods to study the equilibrium figures of celestial bodies contain a
convergence problem in a layer around dm. To solve this problem, two methods
have been proposed one based on numerical integration formulae an other based on
analytical develoments of the inverse of the distance. The solution to the problem
following both methods coincides with the classical theory in the first order in
amplitudes.

On the other hand, both metods can be suitable to be extended to second and
higher order to study the results concordance.
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