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We investigate an application of the method of fundamental solutions (MFS) to heat con-
duction in two-dimensional bodies, where the thermal diffusivity is piecewise constant. We
extend the MFS proposed in [15] for one-dimensional heat conduction with the sources placed
outside the space domain of interest, to the two-dimensional setting. Theoretical properties of
the method, as well as numerical investigations, are included, showing that accurate results
can be obtained efficiently with small computational cost.
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1. Introduction

In many engineering applications finding the solution to various heat conduction
problems is of fundamental importance. Examples include, heat exchangers, math-
ematical finance, in particular after transforming the Black–Scholes equation into
the heat equation, and various chemical and biological systems, including diffusion
and transportation problems. Thus, due to its importance, many different numer-
ical techniques have been developed for calculating heat flow. The method of fun-
damental solutions (MFS) is a powerful numerical technique that has been used to
obtain highly accurate numerical approximations of solutions to linear partial dif-
ferential equations (PDEs) with small computational effort, see the reviews [8, 10].
However, this technique has mainly been applied to stationary heat flow governed
by elliptic partial differential equations [1, 2]. Recently, in [15], an MFS for the
time-dependent linear heat equation in one spatial dimension was proposed and
investigated. This method was extended to free surface Stefan problems in [5] and
to heat conduction in one-dimensional layered materials in [16]. Encouraged by
these results, in this paper we extend the approach considered in [15] to heat con-
duction in two-dimensional bodies. We note that other formulations of the MFS
for the parabolic heat equation were given in [4, 11, 19, 25, 26].

We begin the work in Section 2 by introducing some notation and function spaces,
and formulate and review results for the linear heat conduction equation. In Sec-
tion 3, we prove some theoretical results that we will use in our MFS formulation, in
particular, that linear combinations of fundamental solutions are dense in the space
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of square integrable functions defined on the boundary of the solution domain. In
Section 4, we describe the MFS implementation for various (bounded) solution
domains. In Section 5, we present numerical results for both some direct problems
and also for one inverse problem. These results show that accurate approximations
can be obtained efficiently with small computational effort.

2. Preliminaries and notation

We let x = (x1, x2) and y = (y1, y2) be points in R
2 and T > 0 be a fixed real

number. The conducting body D is a two-dimensional bounded domain in R
2 with

smooth bounding surface Γ = ∂D, for example, C2-smooth is sufficient. The closure
of the body D is D̄ = D ∪ Γ. Composed with time we have the following cylinders
DT = D × (0, T ] and ΓT = Γ× (0, T ], respectively. The closures of DT and ΓT are
given by D̄T = D̄ × [0, T ] and Γ̄T = Γ × [0, T ], respectively.

We are interested in constructing the solution u to the heat equation in the
domain DT , supplied with initial and Dirichlet boundary conditions, that is u
solves

∂u(x, t)

∂t
− ∆u(x, t) = 0, (x, t) ∈ DT , (1)

u(x, t) = h(x, t), (x, t) ∈ ΓT , (2)

u(x, 0) = u0(x), x ∈ D, (3)

where u0(x) and h(x, t) are sufficiently smooth functions. We point out that, in
principle, the MFS that we propose and investigate can be applied to other bound-
ary conditions, such as Neumann and mixed boundary conditions.

To guarantee the existence and uniqueness of a solution to (1)–(3) we impose
the following compatibility conditions:

u0(x) = h(x, 0) and
∂h

∂t
(x, 0) = ∆u0(x), x ∈ Γ. (4)

With these conditions the following uniqueness theorem holds, see, for example,
[9].

Theorem 2.1 Let u0(x) ∈ C2(D̄) and h(x, t) ∈ C1(Γ̄T ) satisfy the compatibility

conditions (4). Then there exists a unique solution u ∈ C2,1(D̄T ), to the equations

(1)–(3), which depends continuously on the data.

Theorem 2.1 tells us, in particular, that the problem given by the equations
(1)–(3) is well-posed.

3. Denseness properties of linear combinations of fundamental solutions

The fundamental solution of (1) in two-dimensions is given by

F (x, t;y, τ) =
H(t − τ)

4π(t − τ)
e
− |x−y|2

4(t−τ) , (5)
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where H is the Heaviside function which is introduced in order to emphasize that
the fundamental solution is zero for t ≤ τ . We shall investigate some properties of
linear combinations of such functions for various source points y.

We begin by constructing a set of source points placed outside the region D̄. Let
DE (E for enclosed) be an open domain, containing D̄, with bounding surface ΓE ,
where the distance between the points on the surfaces Γ and ΓE is greater than
zero. Let {yj , τm}j,m=1,2,... be a denumerable, everywhere dense set of points in
ΓE × [−T, T ], (τm 6= 0) and set

v(j)
m (x, t) = F (x, t;yj , τm). (6)

Figure 1 shows how the source points may be placed around a domain D, either
using a symmetric shape or shapes which take the general shape of Γ obtained by
dilatation.

x1

x2

t

T

0

Source points
Collocation points

DE

D
Γ

ΓE × (−T, T )

−T

x1

x2

t

T

0

−T

D

Figure 1. MFS for two-dimensional heat conduction, source points located outside of the spatial domain
D̄ and in time [−T, T ].

We now construct the following infinite series

u∞(x, t) =

∞
∑

j=1

∞
∑

m=1

c(j)
m v(j)

m (x, t), (7)

where c
(j)
m are set equal to zero except for a finite number of values. Note that, due

to the Heaviside function in (5), we have u∞(x, t) = 0 for t ≤ τ = minm,j:|c
(j)
m |6=0 τm.

Also note that, since F solves the heat equation, u∞ also satisfies the heat equation
in DT .

3.1 Denseness on the lateral surface

We prove the following denseness result on the lateral surface Γ × (−T, T ):

Theorem 3.1 The set of functions {v(j)
m (x, t)}∞j,m=1 restricted on Γ×(−T, T ) form

a linearly independent and dense set in L2(Γ × (−T, T )).

Proof A similar version of the proof of this theorem was given in one-dimension
in [15] and in three-dimensions in [21], and we follow those ideas here in the two-
dimensional case.

Linear independence: Assume that we do not have linear independence, then

there exist positive integers N, m0, j0 ∈ {1, . . . , N}, and a coefficient c
(j0)
m0 6= 0 such
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that

N
∑

j=1

N
∑

m=1

c(j)
m v(j)

m (x, t) = 0, (x, t) ∈ Γ × (−T, T ). (8)

Define the function

U(x, t) =
N

∑

j=1

N
∑

m=1

c(j)
m v(j)

m (x, t), (x, t) ∈ D × (−T, T ). (9)

Then U satisfies the following equations:

∂U

∂t
− ∆U = 0, in D × (−T, T ), (10)

U(x, t) = 0, (x, t) ∈ Γ × (−T, T ), (11)

U(x,−T ) = 0. (12)

We have obtained the above equations by observing that the fundamental solu-
tion satisfies (10); the Heaviside function makes the fundamental solution equal to
zero in equation (12), and (8) gives us (11). By the uniqueness Theorem 2.1, the
only solution to the equations (10)–(12) is U(x, t) ≡ 0 for (x, t) ∈ D × (−T, T ).
Because U is analytic in DE × (−T, T ), we also have U(x, t) = 0 for (x, t) ∈
DE × (−T, T ), see [24].

We now let the point (x, t) approach the point (yj0 , τm0
) ∈ ΓE × (−T, T ) such

that the ratio

|x − yj0 |2
4(t − τm0

)
(13)

remains bounded. Then the summand c
(j0)
m0 v

(j0)
m0 (x, t) in (8) may be made as large

as we wish, while the other terms in the series (8) remain bounded; this gives
us a contradiction and thus, we have linear independence for the set of functions

{v(j)
m (x, t)}∞j,m=1 in L2(Γ × (−T, T )).

Denseness: We next prove that the sequence {v(j)
m (x, t)}∞j,m=1 is a dense set in

L2(Γ × (−T, T )). Assume on the contrary that it is not a dense set. Then there
exists an element f(x, t) in L2(Γ × (−T, T )), which we can assume is continuous,
such that

∫ T

−T

∫

Γ
v(j)
m (x, t)f(x, t) dx dt = 0, j, m = 1, 2, . . . (14)

To show that {v(j)
m (x, t)} is dense we have to show that f(x, t) ≡ 0 in (14). From

definition (6), equation (14) can be rewritten as

∫ T

τm

∫

Γ
F (x, t;yj , τm)f(x, t) dx dt = 0, j, m = 1, 2, . . . , (15)
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where the Heaviside function in (5) has been used to reduce the range of integration
with respect to the time variable. We introduce an equivalent form of the classical
single-layer heat potential given by

V (y, τ) =

∫ T

τ

∫

Γ
F (x, t;y, τ)f(x, t) dx dt, y 6∈ Γ. (16)

It is well-known that V (y, τ) is a smooth solution to the heat equation in the
exterior of D̄ × (−T, T ) and it cannot vanish on any surface in this exterior region
without being identically zero. Thus, by the continuity of F and (15), we find that
V (y, τ) = 0 for (y, τ) ∈ ΓE × (−T, T ), which is in the exterior of D̄ × (−T, T );
we then conclude that V = 0 in the exterior of D̄ × (−T, T ). Moreover, since V is
continuous across Γ× [−T, T ] we also have V (y, τ) = 0 on Γ× [−T, T ]. This implies
that V = 0 also in D̄× (−T, T ) since V satisfies the heat equation in D× (−T, T ).
Finally, using the jump relations for the normal derivative of V on Γ× [−T, T ], see
[9, p. 133], we get

1

2
f(x, t) ± ∂V (x, t)

∂ν
= 0, (x, t) ∈ Γ × (−T, T ), (17)

where ν represents the unit normal on the surface Γ × (−T, T ). Thus, f ≡ 0 and

therefore, {v(j)
m (x, t)}∞j,m=1 is a dense set in L2(Γ × (−T, T )). �

3.2 Denseness on the base surface

We now show that we also have denseness on the “base” surface D × {0}, where
the initial condition is imposed in (1)–(3).

Theorem 3.2 The set of functions {v(j)
m (x, 0)}∞j,m=1, where v

(j)
m (x, t) is given by

(6) with τm < 0, form a linearly independent and dense set in L2(D).

Proof The method of proof is similar to that used in [15] in one-dimension, and
we give it here, for completeness, in higher dimensions.

Linear independence: Assume that we do not have linear independence, then

there exist positive integers N, m0, j0 ∈ {1, . . . , N}, and a coefficient c
(j0)
m0 6= 0 such

that

N
∑

j=1

N
∑

m=1

c(j)
m v(j)

m (x, 0) = 0, x ∈ D. (18)

We shall use the corollary of Theorem 3 in [17], which guarantees that if u(x, t)
is a smooth solution of the heat equation in R

2 that is bounded by Beβ|x|2 and if
u(x, 0) = ǫ then, |u(x, t)| ≤ ǫ, for 0 ≤ t ≤ T. From (9) and (18) we have that

U(x, 0) = 0, x ∈ D. (19)

We also have that U satisfies (10) and (12). Now, since U(x1, x2, 0), where x =
(x1, x2), is a real analytic function in each of the variables x1 and x2, we find
that U(x, 0) = 0 for every x ∈ R

2, see [20, p. 14]. Moreover, since each τm < 0,
U is continuous on R

2 × [0, T ] and is at least twice continuously differentiable in
R

2 × [0, T ]. Furthermore, U also satisfies the heat equation (1), and the following
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inequality clearly holds

|U(x, t)| ≤ Beβ|x|2 , t ∈ [0, T ], (20)

for some positive constants B and β. Thus, from Theorem 3 of [17], and its corollary,
we conclude that U(x, t) = 0 in R

2× [0, T ]. In particular, from [24], we may extend
U such that U(x, t) = 0 also in DE × [−T, T ].

We now let the point (x, t) approach the point (yj0 , τm0
) ∈ ΓE × [−T, 0] such

that the ratio (13) remains bounded. Now, the summand c
(j0)
m0 v

(j0)
m0 (x, t) may be

made as large as we wish, while the other terms in the series (18) remain bounded;
this gives a contradiction and we have linear independence for the set of functions

{v(j)
m (x, 0)} in L2(D).

Denseness: We shall show that the set of functions {v(j)
m (x, 0)}, where τm < 0,

is a dense set in L2(D). Assume that this is not a dense set, then there exists a
function f ∈ C2(D) such that

∫

D
v(j)
m (x, 0)f(x) dx = 0, j, m = 1, 2, . . . (21)

We let w be a weak solution of the heat equation (1), see [7], with initial condition
w(x, 0) = f(x) and boundary condition w(x, t) = 0 for (x, t) ∈ ΓT . We may
transform (21) using Green’s identities, see [22], into the following form

∫ T

0

∫

Γ
v(j)
m (x, t)

∂w(x, t)

∂ν
dxdt = 0, j, m = 1, 2, . . .

where ν is the outward pointing unit normal to Γ. From Theorem 3.1 we know

that {v(j)
m (x, t)} restricted on ΓT is a dense set in L2(ΓT ), and we may conclude

that the normal derivative of w is zero on ΓT . Therefore, both w and ∂w
∂ν are zero

on ΓT . From [24], we conclude that w(x, t) = 0 for (x, t) ∈ D̄T ; hence f ≡ 0, and

{v(j)
m (x, 0)}, where τm < 0, is a dense set in L2(D). �

4.The MFS for the heat equation in two-dimensions

The denseness results proved in the previous section, Theorems 3.1 and 3.2, which
involved linear combinations of the fundamental solution (5) of the heat equation
(1), enable us to describe a method for approximating the solution to the problem
(1)–(3). We note that the MFS we propose may be applied to domains of general
shape and size and the source points may also be placed arbitrarily, for example,
placed symmetrically on a circular pseudo-boundary, or to match similarly the
general shape of the domain D, see Figure 2 and [12]. The only restriction on the
placement of the source points is that they are located on the boundary ΓE outside
the domain D, and placed relatively close to D such that u has no singularity in
DE × [0, T ]. Also, it might be more practical to take the sources on the interval
(−ǫ, T ), where ǫ > 0 is small, instead of the full interval (−T, T ). However, some
preliminary numerical investigations in [14] for the backward heat conduction prob-
lem showed that ǫ cannot be chosen too small if no loss in accuracy and stability
is to be secured.
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x1

x2

Source Points

x1

x2

0
D

0
D

ΓE ΓE

Figure 2. Arbitrary domain with varying source point locations restricted to any contour ΓE embracing
the given solution domain D.

4.1 A direct MFS for the two-dimensional heat equation

We search for an approximation to the solution of equations (1)–(3) in the following
form:

uM,N (x, t) =
2M
∑

m=1

N
∑

j=1

c(j)
m F (x, t;yj , τm), (x, t) ∈ D̄T . (22)

For simplicity, let us describe the MFS in the case of circular domains. We shall
also consider rectangular domains in the next section, see Example 3 and 4.

We consider a two-dimensional circular domain D, with boundary Γ and radius
r0 > 0, centred at the origin, and let us place the source points (yj)j=1,N on a
circle r0 + h, h > 0, also centred at the origin. The parameter h > 0 will be chosen
such that the error at the lateral and base surfaces is minimized (viz maximum
principle for the heat equation).

Take the time points (τm)m=1,2M (each in the interval (−T, T )) as given by

τm =
2(m − M) − 1

2M
T, m = 1, . . . , 2M,

and using polar coordinates, place the source points in space at

yj = (r0 + h, θj) =

(

r0 + h,
2πj

N

)

, j = 1, . . . , N.

In polar coordinates equation (22) is now represented by

uM,N (r, θ, t) =
2M
∑

m=1

N
∑

j=1

c(j)
m F (r, θ, t; r0 + h, θj , τm). (23)

We have located N × 2M source points in total outside the domain D and in
time; we place the same number of collocation points in total on Γ̄T ∪ (D × {0}),
the boundary in time and the domain at time t = 0. Of course, the location of
source and collocation points may be chosen arbitrarily, here we choose points for
ease of calculation. Let

ti =
i

M
T, i = 0, . . . , M,

and on Γ set

(r0, θk) =

(

r0,
2πk

N

)

, k = 1, . . . , N.
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DΓ
r0+h

r0

DE

ΓE

x1

x2

t

T

−T

t = 0

x1

x2

D

Γ

Collocation points

Source points

0

Figure 3. Location of source and collocation points when D is a circular domain.

We have located N × (M + 1) collocation points on the boundary, the remaining
N × (M − 1) points will be located on D when t = 0. We consider M − 1 circles of
radius

rl =

(

l

M

)
1

2

r0, l = 1, . . . , M − 1,

where the square root has been introduced to spread the points out within the
domain, and not to cluster them at the centre. We place N equally spaced points
on each circle such that

(rl, θk) =

(

rl,
2πk

N

)

, k = 1, . . . , N,

see Figure 3 for a detailed graphical representation of the position of the various
source and collocation points given above.

We now impose the boundary and initial conditions (2) and (3) so that we can

determine the unknown coefficients c
(j)
m in (23). In polar coordinates we obtain the

equations

uM,N (r0, θk, ti) = h(r0, θk, ti), (24)

uM,N (rl, θk, 0) = u0(rl, θk, 0), (25)

where k = 1, . . . , N, i = 0, . . . , M and l = 1, . . . , M − 1.
The system of equations (24) and (25) contains N×(M−1)+N×(M+1) = 2MN

equations and 2MN unknowns, therefore, we may obtain a unique solution. We
can represent this system of equations as

Ac = g, (26)

where c is the vector of unknowns c
(j)
m , g is the vector representing the values of

the functions u0 and h at the respective collocation points, and A is the matrix
corresponding to the value of the fundamental solution at the points outlined above.
For certain boundary collocation and source points it might be possible to use the
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properties of circulant matrices to develop a matrix decomposition algorithm [18]
for the solution of the system of equations (26) and thus, substantially reduce the
computational cost. This could be considered in a future investigation.

To solve this system it is possible to solve it directly by Gaussian elimination.
However, it is well-known that employing the MFS can yield matrices with large
condition numbers [6, 23], as h increases. Then, in such a situation instead of (26)
it may be necessary to consider the Tikhonov regularization

(AtrA + λI)c = Atrg, (27)

where the superscript tr denotes the transpose of a matrix and I is the identity
matrix. The linear system of equations (27) is solved using a Gaussian elimination
method (employed backslash “\” command in MATLAB). In (27), λ > 0 is a small
regularization parameter (usually in the interval [10−1, 10−16]) can be chosen by
trial and error, namely start with a large value of λ, say λ = 10−1, and then
decrease it gradually as λ = 10−2, 10−3, . . . until an oscillatory solution starts to
develop. To choose λ one can also use the L-curve criterion of [13]. In a future
study, it would be interesting to investigate the dependence of the solution on λ
and h.

5. Numerical results

In [15] it was shown that the direct MFS approximation applied to the one-
dimensional heat equation with source points located outside the domain and in
time is accurate. Below, we present numerical results for approximations in two-
dimensional domains, such as circular and square domains. In order to assess the
accuracy of the numerical MFS solutions we compare them with the available exact
solutions for various benchmark test examples. Numerical results are presented for
N = 20 and M = 30 points, which were found sufficiently large to ensure that any
further increase in these numbers did not significantly improve the accuracy of the
numerical solution without affecting its stability.

5.1 Example 1

Let D = {x : |x|2 < 1}, DT = {(x, t) : |x|2 < 1, t ∈ (0, 1]}, and ΓT = {(x, t) :
|x|2 = 1, t ∈ (0, 1]}. We solve the following problem, using the direct MFS laid out
in the previous section,

∂u(x, t)

∂t
− ∆u(x, t) = 0, (x, t) ∈ DT , (28)

u(x, t) = 4t + 1, (x, t) ∈ Γ, (29)

u(x, 0) = |x|2, x ∈ D. (30)

The exact solution of problem (28)–(30) is u(x, t) = 4t + |x|2. The source points
are placed on a circle with radius 1 + h. The value of h > 0 will be chosen ap-
propriately. However, the accuracy of the approximation appears to decrease when
h < 0.25 or h > 4. In Figure 4 the exact solution and the MFS approximations are
plotted in one-dimension, x = (x1, 0), for times t ∈ {0.2, 0.8} with λ = 10−8 in the
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Tikhonov regularization. As can be seen in Figure 4 the approximation obtained
is accurate, and was stable even when considering other small positive values of λ,
however, for stable results we could not take λ = 0 due to the round-off precision
errors.

−1 −0.5 0 0.5 1
0.5

1

1.5

2

2.5

3

3.5

4

4.5

x1

u(x1, 0, 0.2)

u(x1, 0, 0.8)

Figure 4. The exact solution (—) and the approximate values (∗) for u(x1, 0, 0.2) and u(x1, 0, 0.8), for
Example 1.

Figure 5 contains plots of the exact solution and the direct MFS approximations
for h ∈ {0.5, 4} and λ = 10−8. From this figure it can be seen that the numerical
results obtained with h = 0.5 are slightly more accurate than those obtained with
h = 4.

−1 −0.5 0 0.5 1
0.8

1

1.2

1.4

1.6

1.8

2

x1

u
(x

1
,0

,0
.2

)

Figure 5. The exact solution (—) and the approximate values for u(x1, 0, 0.2) obtained with h = 0.5 (∗)
and h = 4 (◦), for Example 1.

Finally, we consider a three-dimensional plot of the exact solution u(x1, x2, 0.8)
in Figure 6(a), and the MFS approximation uM,N in Figure 6(b) obtained with
h = 1. Figure 6(c) shows the graph of the absolute error, and we note that the
approximation is very accurate with a maximum absolute error of O(10−5).

5.2 Example 2

In this example we choose the same D, DT and Γ as in Example 1, but instead of
u(x, t) = 4t+ |x|2, we consider the exact solution of the equations (1)–(3) given by

u(x, t) = ex1+x2 cos(x1 + x2 + 4t), (31)

where the boundary and initial equations (2) and (3) have been obtained from
(31). Note that this function is not constant on circles centred at the origin, and
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Figure 6. Three-dimensional plot of: (a) The exact solution u(x1, x2, 0.8), (b) the approximate solution
uM,N obtained with λ = 10−8 and h = 1, and (c) the absolute error, for Example 1.

not symmetric, thus being different in character compared with the solution in
Example 1.

Again, the source points will be placed on a circle with radius 1 + h, with final
time point T = 1. As an alternative to the strategy for choosing λ described at the
end of Section 4.1, we employ the L-curve criterion [13]. In Figure 7 we present a
plot of the L-curve for Example 2, where the residual is plotted against the 2-norm
of the solution c. We choose the regularization parameter λ, which corresponds to
the corner of the “L” in Figure 7; namely, in this example we take λ = 10−8.

10
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10
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10
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1.2
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10
1.4

 

 

‖ Ac − g ‖2

‖
c
‖ 2

λ = 10−1

λ = 10−5λ = 10−8

λ = 10−10

λ = 10−12

Figure 7. Plot of the L-curve, for Example 2.

In Figure 8 the exact solution and the direct MFS approximations for λ = 10−8

are plotted in one-dimension, x = (x1, 0), for times t = {0.2, 0.8}, with h = 1.
It is clear from Figure 8 that the approximation is very accurate. Also, varying λ
between [10−12, 10−4] only slightly changes the accuracy of the approximation.

−1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x1

u(x1, 0, 0.2)

u(x1, 0, 0.8)

Figure 8. The exact (—) and the approximate values (∗) for u(x1, 0, 0.2) and u(x1, 0, 0.8), for Example 2.

Finally, we consider a three-dimensional plot of the exact solution u(x1, x2, 0.8)
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in Figure 9(a), the MFS approximation uM,N in Figure 9(b), and the absolute error
in Figure 9(c), obtained with h = 1.
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Figure 9. Three-dimensional plot of: (a) The exact solution u(x1, x2, 0.2), (b) the approximate solution
uM,N obtained with λ = 10−8 and h = 1, and (c) the absolute error, for Example 2.

The plots obtained in Examples 1 and 2 show that the MFS approximation is
accurate in circular domains, with errors usually in the interval [10−4, 10−2], for a
wide range of parameters h and λ.

5.3 Example 3

In the next two examples we consider square domains with edge length L. In
Examples 3 and 4 source points will be placed on both squares, see Figure 10, as
well as circles; we vary the shapes where we place the source points to highlight
that the placement of the source points do not need to follow the shape of Γ.
The numerical implementation is the same as in the previous examples, including
the placement of the sources and boundary collocation points and their numbers
N = 20, M = 30.

x1

x2
t

T

−T

ΓE

Γ

D

L

L + h

Figure 10. MFS in two-dimensions for square domains.

The following problem was considered in [11]. We take D = (−0.2, 0.2) ×
(−0.2, 0.2) to be a square of edge length L = 0.4, take T = 0.9, and solve

∂u(x, t)

∂t
− α∆u(x, t) = 0, (x, t) ∈ DT = D × (0, 0.9], (32)

u(x, t) = 0, (x, t) ∈ ΓT = ∂D × (0, 0.9], (33)

u(x, 0) = 1, x ∈ D. (34)
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Here, we have thermal diffusivity α = 1000/5.8, and the fundamental solution of
equation (32) is now given by

F (x, t;y, τ) =
H(t − τ)

4πα(t − τ)
e
− |x−y|2

4α(t−τ) . (35)

We note that in this example the compatibility conditions (4) are violated. The
exact solution to the problem (32)–(34) is given by, see Carslaw and Jaeger (1959),

u(x1, x2, t) =
16

π2

[

∞
∑

n=0

(−1)n

2n + 1
e−α(2n+1)2tπ2/(4(L/2)2) cos

(

(2n + 1)πx1

2(L/2)

)

]

×

[

∞
∑

m=0

(−1)m

2m + 1
e−α(2m+1)2tπ2/(4(L/2)2) cos

(

(2m + 1)πx2

2(L/2)

)

]

.

(36)

However, when we plot the exact (using 100 terms in the series expansion (36))
and the approximate solutions at the point (x1, x2) = (0, 0) for time t ∈ [0, 0.9],
with source points placed on a square with edge length 0.4 + h, h = 5, λ = 10−8,
we get a large discrepancy, see Figure 11.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−0.2
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0.2

0.4

0.6

0.8

1

1.2

 

 

t

u
(0

,0
,t

)

uM,N

u

Figure 11. The exact solution u(0, 0, t) and the approximation uM,N , as functions of time t ∈ [0, 0.9], for
Example 3.

Changing the parameter λ in the Tikhonov regularization (27) did not seem to
improve the approximation, however, we observe that the exact solution (36) decays
very rapidly due to the exponential terms. This means that we should consider
a much smaller time interval. Figure 12 shows the exact and the approximate
solutions, with final time point T = 0.0006, plotted over t ∈ [0, 0.0004], where
λ = 10−6 and source points have now been placed on a circle of radius h = 0.84.

These figures show that the choice of the final time T , in particular when con-
sidering fast decaying functions, is also important when implementing the MFS.
Time-marching methods, [25], could then perhaps be used to extend our approxi-
mation to larger time intervals.

5.4 Example 4

We consider D = (0, 1) × (0, 1) and DT = D × (0, 3], and we wish to solve the
following problem:

∂u(x, t)

∂t
− ∆u(x, t) = 0, (x, t) ∈ DT , (37)
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Figure 12. The exact solution u(0, 0, t) and the approximation uM,N with T = 0.0006, for Example 3.

u(x1, 0, t) = u(x1, 1, t) =
√

2e−π2t/4

[

cos
(πx1

2
− π

4

)

+
1√
2

]

, x1 ∈ (0, 1), t ∈ (0, 3],

(38)

u(0, x2, t) =
√

2e−π2t/4

[

cos
(πx2

2
− π

4

)

+
1√
2

]

, x2 ∈ (0, 1), t ∈ (0, 3], (39)

∂u

∂x1
(0, x2, t) =

π

2
e−π2t/4, x2 ∈ (0, 1), t ∈ (0, 3], (40)

u(x1, x2, 0) =
√

2
[

cos
(πx1

2
− π

4

)

+ cos
(πx2

2
− π

4

)]

, (x1, x2) ∈ D. (41)

This is an inverse problem with missing boundary data at x1 = 1, which we wish
to determine using the Cauchy boundary data over-specification at x1 = 0. The
exact solution of problem (37)–(41) is

u(x1, x2, t) =
√

2e−π2t/4

[

cos

(

πx1

2
− π

4

)

+ cos

(

πx2

2
− π

4

)]

, (x, t) ∈ DT . (42)

In this example, we shall show results when the source points are placed on
squares, as well as when we place them on circles, to show that placement of the
sources does not need to follow the shape of the solution domain. When the source
points are placed on a square they will be located at (−h/2, 1 + h/2)× (−h/2, 1 +
h/2), whilst the source points placed on a circle will have radius h with centre at
(0.5, 0.5), see Figure 13.

(a) (b)

−h
2

1 + h
2

1

0

1

0

h

Figure 13. Examples of source point location for the unit square solution domain of Example 4.
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Figures 14(a) and 14(b) show the exact solution u(1, x2, 1.5) and its normal
derivative ∂u

∂x1
(1, x2, 1.5), respectively, in comparison with the approximate solu-

tions, obtained with h = 3 and λ = 10−8.
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Figure 14. (a) The exact solution u(1, x2, 1.5) (—) and the MFS approximation uM,N with h = 3 (∗).

(b) The exact normal derivative ∂u
∂x1

(1, x2, 1.5) (—) and the MFS approximation (◦), for Example 4.

Figure 15 shows the exact solution u(x1, x2, 0.5) and the MFS approximation
uM,N . Note that for the approximation uM,N in Figure 15(c) we have instead
placed the source points on a circle and there is still good agreement with the
exact solution. In Figure 16 we present plots of the absolute error at time t = 2.5
for two different values of h. From this figure it can be seen that the error increases
when source points have been placed too close to the boundary.
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Figure 15. (a) The exact solution u(x1, x2, 0.5), (b) the MFS approximation uM,N using source points
placed on a square, h = 3, and (c) the MFS approximation uM,N using source points placed on a circle
with radius h = 3 and centre (0.5, 0.5), for Example 4.
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Figure 16. The absolute error |u(x1, x2, 2.5)−uM,N (x1, x2, 2.5)| when the MFS approximation uM,N has
been generated using source points placed on a square with: (a) h = 3 and (b) h = 1, for Example 4.

Finally, in Figure 17, random noise simulating measurement errors, have been
added to the Dirichlet boundary data (39) as follows:

uδ(0, x2, t) = u(0, x2, t) + N(0, σ2),

where N(0, σ2) represents the normal distribution with mean zero and standard
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deviation

σ = δ × max
(x2,t)∈(0,1)×(0,3)

|u(0, x2, t)|,

and δ is the relative noise level. A set of ten noisy random data functions
{uδ

k(0, x2, t)}k=1,10 was generated, and the source points in the MFS have been

placed on a circle of radius h, centred at (1/2, 1/2). Figure 17(a) presents a plot
of the exact solution u(1, x2, 0.5), and the best (∗) and the least accurate (◦) MFS
approximations from these ten data sets, obtained with δ = 3% noise, h = 3, T = 3
and λ = 10−4. In Figure 17(b) we present a three-dimensional plot of the absolute
error when δ = 3%, h = 3, λ = 10−4 and t = 0.5.
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Figure 17. (a) The exact solution u(1, x2, 0.5) (—) and the best (∗) and the least accurate (◦) MFS
approximations from ten different sets of noisy data with noise level δ = 3% and (b) the absolute error
|u(x1, x2, 0.5) − uM,N (x1, x2, 0.5)| when δ = 3%, for one of the noisy data sets, for Example 4.

Adding more noise such as δ = 5% did not significantly change the stability
of the numerical results provided that regularization is applied appropriately. As
expected, the accuracy decreases when the noise level increases and the regularizing
parameter usually has to take a larger value. Noise can also be added to the other
data functions, such as the Neumann data (40), and the same stable and accurate
numerical results are expected. Thus, for this inverse problem, the regularized MFS
is a stable approximation with respect to noisy data.

6. Conclusions

We have investigated the application of the MFS for linear heat conduction in two-
dimensional conducting bodies with Dirichlet boundary conditions. The solution
is sought in the form of a linear combination of fundamental solutions of the heat
equation with the source points placed outside the body and in time as well. The-
oretical properties, such as denseness of the approximation on the boundary of the
body, have been obtained in the space of square integrable functions. Moreover,
numerical results are presented for both circular and rectangular configurations
showing that accurate approximations can be obtained when the source points are
placed on circles or rectangles at an appropriate distance from the solution do-
main. The numerical results show that accurate approximations can be obtained
at small computational cost, and that the method is not too sensitive with respect
to the placement of the sources. Numerical results have also been included for an
inverse problem, where overspecified data was given on a part of the boundary of a
body and the solution was to be reconstructed on the remaining part. Good agree-
ment with the exact available analytical solution was also obtained in this case,
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showing that boundary conditions other than Dirichlet can be handled. Exten-
sions to the three-dimensional time-dependent heat equation are straightforward
by accordingly modifying the fundamental solution (5).
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