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synthetic and real data are discussed.
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32 1. Introduction.

33

34 Image inpainting is an inverse and ill posed problem [2]. It concerns reconstruction of

35 missing values of the image intensity function that appear as local random visual defects
(gaps, scratches, holes,...). To handle the ill-posedness of such inverse problem, additional

36 information is employed (regularization).

37 In recent years, many regularization methods have been proposed for image inpainting.

38 Overall, two main approaches can be selected: those called diffusion models, relying on

39 partial differential equations (PDE) and those called texture synthesis (T'S) models, using
statistical methods.

40 Diffusion models employ continuity of geometrical structures of images [2, 5]. These are

41 mainly suitable for treating small-narrow gaps of piecewise smooth images, also called

42 “cartoon” images, which have non-textured regions.

43 Texture synthesis techniques are introduced in order to recover textured natural images.
These methods compute new instances of a texture from a smaller sample and are mainly

44 used for images containing several textured areas [9, 12]. Texture synthesis technique has

45 also been applied to inpaint features, as in [4], where the idea is to decompose first an image
into a structured part and a textured part, then to apply different techniques separately to

46 both parts. On the other side, in [11], the heuristic patches copy-paste technique presented

47 in [12] has been formulated in a variational framework.

48 Other techniques such as morphological component analysis are also applied on

49 simultaneous cartoon and texture image inpainting, as in [13].
Motivated by a large amount of work on image inpainting, some authors proposed to solve

50 the inpainting problem in the wavelet domain. In [6], an efficient method to recover

51 piecewise constant or smooth images by combining total variation regularization and wavelet

52 representations is proposed. While, in [30], this idea is extended to nonlocal total variation
regularization in order to recover textures and local geometry structures simultaneously.

53 A straightforward extension of these methods for video inpainting is to treat data as a set

54 of distinct images and to restore them individually [3].

55 To take advantage of high temporal correlation of video sequence some of these algorithms
use the property that characterizes local random defects, i. e. the spatial position of these

56 varies significantly frame by frame. As a consequence, it is reasonable to assume that missing

57

58
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areas can be modeled and localized as temporal discontinuities of intensity function [19].
Within diffusion methods based on PDE, that proposed in [23] uses local patches to fill the
holes, by first separating foreground objects from background layer (using the motion field).
Then, the holes in the moving foreground regions are inpainted by using a priority-based
exemplar process. Damaged patches around the boundary of the hole are filled by selecting
candidates from the foreground mosaic that minimizes a metric distance. This technique is
not useful if a significant portion of the object is missing, because of the sharp smoothing, it
does not reproduce the texture information and suffers from severe blurring artifacts.

A video inpaintig scheme based on motion compensation and T'S-completion has been
proposed in [29]. After removing a particular motion layer, motion compensation is used to
complete moving objects and non-parametric texture synthesis is used to complete the static
background regions. The inpainted layers are then warped into every video frame to
complete the holes. While being effective for textured images these approaches are
susceptible to growing incorrect patches due to spurious local variation.

Deviating from the patch methods discussed above, in [17] is introduced an object-based
inpainting system which utilizes a user-assisted segmentation to inpaint holes in foreground
regions that are characterized by a cyclic movement. To complete the missing foreground
regions the periodicity of the moving foreground object is estimated and used to reconstruct
them. Algorithms following this approach very often have higher performances because
segmentation into different layers not only provides better matching results, but also
significantly reduces the search space for finding appropriate matches used for inpainting.

In conclusion, even though some video inpainting algorithms have been proposed, many
algorithmic topics still remain to investigate. Among them, there is the need to perform
efficient computations, to provide reliable results and to reduce user’s interactions.

Here, we propose a numerical algorithm aimed to reconstruct missing data in a video
sequence by preserving fine structures. The goal is to suggest a convenient video inpainting
model, based on motion estimate, and to combine efficient and reliable numerical
approaches for texture-preserving image reconstruction.

Main contributions of this work are the employment of:

— a reliable motion estimate that assumes that spatial brightness gradient does not change over time.
This model, proposed in [26], is suitable in presence of fine-textures.

— a texture-preserving discretization scheme, as suggested in [18]. In order to avoid or minimize the loss
of important fine structures, essentially non-dissipative (ENoD) schemes are adopted.

— a fast solution of the underlying computational kernels. We use GMRES iterative method equipped
with Algebraic Multigrid preconditioner to solve sparse linear systems.

— an automatic detection of corrupted regions and of their shapes to estimate the inpainting error. We
implement the model proposed in [7].

The paper is organized as follows. In section 2, we introduce the mathematical models we
are going to use and we show how to compute the error estimate. In section 3, we describe
the numerical approach and main computational kernels. Finally, in section 4, numerical
experiments on real and synthetic image sequence compared with graphs of cross-section are
presented. Section 5 concludes the paper.

2. The motion-aided image sequence inpainting.

In this section we review preliminary definitions and introduce the mathematical models
describing the image sequence inpainting problem.

[Def 1] Image sequence brightness function:

Let J C R be a bounded interval. Given t € J, let P(t) = (x(t), y(t)) € Q, where
Q=0Q; xQy C R2 is the image plane 1. The image sequence is defined as the piecewise
differentiable function:

I:t€Jw— P(t)€Qw I(t) =I(P(t),t) €[0,255]

[Def 2] Motion trajectory:
Given the image sequence I(t), the motion trajectory is the line or arc of line L defined by
successive positions of P(t) as ¢t € J. The parametric equation for L is:

. { Az = z(t + At) — z(t) = At u(t)
T Ay =yt + At) —y(t) = At v(t)

where (u(t),v(t)) are the components of the motion vector, at each ¢ € J, and Az, Ay are
spatial displacements.

1The image plane Q should depend on the acquisition time ¢. In practice, it is the same at each ¢ because
it refers to the rectangular plane of the image acquisition. Then, for simplicity of notations, we obmit the
dependence of 2 on t
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[Def 3] The image sequence inpainting problem:

Let I(t) be the noisy-free image sequence brightness function. Let b be the characteristic
function which defines the corrupted area B C 2 and let Ip(t) be the missing values of the
intensity brightness function. Then, the function:

I(P(t),1) = [L = b(P(t), 1)] I(P(t),1) +b(P(t),t) Ip(P(t),1)

denotes the image sequence brightness function to restore.
More precisely, given I(t), to restore the image sequence brightness function for each ¢ € J,
we need to determine the characteristic function b and the the missing data Ig(t) on B C Q.

Moreover, to integrate temporal information, we compute the motion field.

[P1] Motion estimate:
Assuming that %Vl(t) = 0, following [28], we compute the motion field, solving a couple of
PDEs, with Dirichlet boundary conditions:

Zu(r,t) = aop - V[¢' (VuVul + Vovol)Vul+
—2[Izau + Iyev + Ita] - Loa — 2[Layu + Lyyv + Liy] - Loy
)
a—aTv(T7 t) = aor - V[¢' (VuVuT + VovoT ) Vo] +
—2[Ipau + Tyav + Itz] - Tyz — 2[Teyu + Tyyv + Ity] - Iyy

where 7 is the scale-parameter, (uo(t), vo(t)) = ((u(0,t),v(0,t)) = (0,0) are the initial
conditions, when 7 = 0, apF is the regularization parameter and ¢’ (s2) = ¢ + 23% is the

diffusivity function, with ¢ = 1073.

Using the motion field, we address the video inpainting problem using the following
assumption: “sequence brightness level is constant along the motion trajectory”, [16].
This means that directional derivatives of the brightness function I(t), along the positive
and negative directions of the motion trajectory are zero, i. e.:

. —At)+ Azt yt—At)+AyT t—At)—

af+1(t)=1lmm_>o+ H(z(t=At)+AzT y(t=A)+Ay T t—A) —I(z(t),y(D),) _
_o_
OL—

. I(z(t+At)7AIA,y(t+At)A7tAy7,t+At)7I(z(t),y(t),t) (2)
I(t) = limp,_o- At =0

However, at corrupted positions this property is not valid. Then, the inpainting regions and
their shapes can be automatically localized checking temporal discontinuity of the intensity
brightness functions.

[P2] Inpainting domain detection and shape recognition:
As in [10], we determine the inpainting domain B C , as follows:

é{P(t)eQ:mm{ };&o} (3)

Hence, for every t € J:

oI
oL~

oI
oL+

)

1ifP(t) € B
b(P(t),t) = o 4
(P, 1) {OifP(t)EQ\B @)
Using b we define the inpainting mask and its shape as B = B UE, where E is a fixed
closed domain in Q\B, defined in [5].
[P3] Missing data reconstruction:
Following [20], we compute Ip on the inpainting mask B, by solving the following
PDE-model, with Neumman boundary conditions:
0 VI
ZIp(r,t) = |VIg|-[Ic — Ig] + arV - [—B} IVIg| (5)
or ‘VIB|

where 7 is the scale-parameter, |VIg| = /(015 /02)? + (0I5/0y)?, ay is the regularization
parameter and the function I¢(t) = I5(0,t) is the initial condition, when 7 = 0, defined as
follows:

_ [Ti—ae(t) + Ty ne(t)]

Ic(t) :
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where:

Ii_ae(t) = I(z(t — At) + Azt y(t — At) + Ayt t — At)
Ly ae(t) = I(x(t + At) — Az, y(t + At) — Ay~ ,t + At)

Summarizing, we perform the image sequence inpainting using motion trajectory and its
properties. The corrupted positions and their shapes can be localized as temporal
discontinuities of the intensity brightness function. Then, restoration is performed using
information from the previous and the next frame.

The overall algorithm consists of three successive steps:

— P1: optical flow computation.
— P2: inpainting mask detection and shape recognition.
— P3: missing data reconstruction.

2.1

Related dataflow is the following: Vt € J, I(t) — (u(t), v(t)) — b(t) — Ip(t).

It is worth to note that in [10], the authors followed the same three basic steps. However,
main differences are in steps P1 and P2. Here a different mathematical model for the
motion estimate (P1) is adopted, moreover a different discretization scheme for data
reconstruction (P2) is employed. All these changes deliver more accurate results than those
reported in [10]. Comparisons will be shown in Section 4.

Error estimate.

Let Ip be the uncorrupted image brightness functions on B. If Ig, denotes the solution of
(5), at each point P(t) = P(x(t),y(t)) € B, the inpainting error is defined as follows:

err [P(t),t] = |1, (P(t),t) — I(P(t),t)|

Then, the error over B is bounded as follows:
err(B) = / err [P(z(t), y(t)), t] dzdy < |B| max {err [P(z(t),y(t)), t]}
B

where |B| is the area of B.
Following [7], we have that:

err(B) < |B|m§x\VIBR(P(t),t)| < |B|M;

where M; is defined as:

2

2
A@::ngx{mazBR<w|}::mgx{\§;513R<m@»yu»t>+-53513R<x@»yu»tﬂ}

We consider three kinds of shape of B:

1. circle - If the inpainting domain B can be covered by a circle C, with diameter d (see figure 1),

we have V(P(t),t) € Q x J:

M,
err [P(t),t] < TtdQ,Vt eJ

2. ellipse - For a long and narrow region, the domain B can be covered by an ellipse E with
B, as the minor and the major diameter, respectively (see figure 1). In this case we have

V(P(t),t) € Q x J:

err [P(0) 1) < 3067

3. like-ellipse - For any domain B, when the thickness is small but may have a complicated shape
(see figure 2), the error bound given by (6) or (7) could be pessimistic. In this case, B is mapped

to an ellipse-like domain B, and we have Y(P(t),t) € Q x J:

. MtKQ
err [P(t),t] < ?‘dﬁc
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where ]Tjt is the bound computed on 1’35; and ;’35 is the minor diameter of ellipse ]i .

Domain B can be mapped to a circle-like domain B too (see figure 2). However, in this case the
error estimate could not reliable. Indeed, regions B, and B, have the same areas (in terms of
number of pixels), but the diameter of the circle domain may be larger than the minor diameter
of ellipse domain, i.e. d5 >> B5 and:

B. Be

Figure 1. On the left the inpainting mask covered by a circle. On the right the inpainting mask covered
by an ellipse

Figure 2. Up: on the left the inpainting mask small and with complicated shaped; on the right the ellipse-
like transformed domain. Down: on the left the inpainting mask small and with complicated shaped;on the
right the circle-like trasformed domain. The shapes are different, but they have the same pixel number.

3. Numerical Algorithm.
In this section we describe numerical approach and main computational kernels.
Let us give some notations:

— if N x N is the dimension of a frame and n the step number with respect to axes x and y (i.e. the
number of pixels in both directions), then we denote by (z;,ym ), the discrete space variables. Moreover,
Zi41 = @ + he and Yym41 = ym + hy, where: hy = hy = N/n, VlI,m =1,...,n.
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— if nf is the number of frames, we denote by ¢; the discrete time variables and by At the time step, so
that tk+1 = tk + At,Vk = 1, ,nf

— if [0, 7] is the scale interval and nscales the number of scale steps, we denote by 7; the ith scale-step
Vi =1,...,nscale, so that 7,41 = 7; + A7, where AT = T'/nscale is the step-size.

Therefore, we get the algorithm described in Table 1.

for k =1 to nf — 1 do number of frames

P1: optical flow computation from frames (k, k+1) and frames (k+1, k+2)
- solution of PDEs, as defined in (1)

P2: inpainting mask detection and shape recognition on frame k+1
- discretization of directional derivatives as defined in (2)
- computation of b as defined in (3) and (4)
- shape recognition inside the inpainting mask

P3: restoration of frame k+1
- solution of PDE as defined in (5)
- error estimate (6)-(8)

end for

Table 1. The overall automatic algorithm.

3.1 Discretization.

Concerning P2, directional derivatives, as defined in (2), are discretized using finite
difference schemes. For every k=1, ...,nf:

Wi, —ae(te) = Uw(tkfAtHAz*7y<tkfAtHAAty*,tkﬂt)#(z(tw,y(tk),m

Wi, 1+ ac(ty) = I(x(tk+At)_Ax7,y(tk+At)_AAty77tk+At)_1(m(tk),y(tk)atk)

Then, as in [10], the algorithm computes the characteristic function b,Vk = 1,...,nf as
follows:

1 if min { Wy, —a¢(t), Wy tr)} > K
et = {117 gl a0} 2

where K is a given tolerance (we use K < 50).

Therefore, by using b the algorithm finds the inpainting mask and for each region of
inpainting mask, detects both the maximum height and the maximum width and it
compares them to determine if the region can be covered by a circle (6) or by an ellipse (7).
If the height of the region is constant the bound defined in (8) is applied.

Finally, M: is computed discretizing the laplacian operator Alp,(t) by using central finite
differences.

Concerning discretization of P1 and P3, it is desirable that the numerical scheme for
scale-space discretization does not alter any image properties (it should be invariant with
respect to many transformations: grey level shift, translation and rotation, etc...[1]).

We use the semi-implicit scheme because it meets these requirements as well as consistency,
convergency and stability properties. Unlike the explicit scheme, this one is stable for all
scale steps [27].

More precisely, we use the forward finite difference scheme for the scale derivative, so the
non-linear diffusion PDE:

9D ) = |Vul? V- [Q(Wuan

Vu }
or

[Vul?
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becomes:

=V U (T Vulrit1) w(r)|?
= V- [0 0 7)) T ()

w(Tit1) — u(7i)
AT

where 7,41 = 7 + AT.

For the space-time discretization of P1, we employ the finite differences scheme.
Concerning P3, we use finite differences schemes for discretization of VI and essentially
non dissipative scheme of the second kind (ENoD2) for discretization of V - [‘g—lﬂ]

More precisely, to approximate the so-called edge-detector function,
IVI(z,y)| = /(0I(z,y)/0x)% + (91 (z,y)/0y)2 we compute |VI(z;, ym)|, following [18], as:

min{ [(D (@1, ym))® + (D@1, ym))?] 2 (DPI@i, ym))? + (D* I, ym))?] "}

Vi,m =1,...,N, where:

D I(1, ym) = min {uwl,ym)—uxlﬂ,ymn |1<ml,ym)—1<xz71,ym>\}

x>

D21(zy, ym) = min [I<zl,ym>1(zz,ym+1>| |I(zz,ym)1<zl,ym1>]

Yy

D3I(x1, ym) = min [I(z,ym)—I(@i41,Ym+1)| L (@nym)—I(@—1,Ym—1)|
’ \/hg+h2, ) \/h§+hg

D*I(z},ym) = min [(z,ym)—I(@1—1,Ym+1)| (@ ym)—I(@141,Ym—1)|
’ \/h§+h§, ’ \/h§+h§

with: e +1=a+he, e —1=2—hg,y+1=y+hy,y— 1=y — hy, and hg, hy the step size
along x and y, respectively.

ENoD2 discretization scheme takes into account of local structure of image discontinuities
better than finite difference schemes. Indeed, differences of the intensity function I are
computed along four directions (see figure 3) (vertical, horizontal and 45° line segments).
This approach allows to more accurately detect fine details such textures, avoiding
Gibbs-like phenomenon obtained using centered schemes based on Taylor series in
approximating functions with jump discontinuities. This is the original idea behind the ENO
(essentially non oscillatory) interpolation schemes, initially introduced in [14], as well as all
the upwinding techniques commonly used to discretize the level set equations .

Comparison with results obtained in [10] using finite difference schemes are shown in section
4.

\ To? /;4

& o |

Figure 3. ENoD stencil.
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Computational kernels.

Regarding P1, if the acquisition consists of nf frames and each image size is N X N, we
have to solve two linear systems, at each scale step Vi =1,...,nscale;Vk =1,...,nf:

A(U(Tiv zkv yal?n)v U(Ti7 xzv yfn)) U‘(T’i+17 zkv yalfn) = b(u(T’i7 xk7 yfn% U(Tiv zkv yalfn))
)

Alulri,af ypm) o(Tis @), ys)) o(Tin, o), yk) = b(u(Ti, o7, yr, ), o(Ti, 2y

o

where: azf = xy(t), y&, = ym(tx) and with the same matrix A € %NZXNZ, which is a block
pentadiagonal matrix, with tridiagonal blocks along the main diagonal and diagonal blocks
along the upper and lower diagonals.

Similary, for P3, at each scale step 7;, the algorithm solves the linear system:

H(I(ri, 2}, ypm)) 1(rign, 2l ypm) = b (i, of yr,))

with a sparse matrix H € RM*M where M << N2, is the size of inpainting mask.

H is block pentadiagonal, with tridiagonal blocks along the main diagonal and diagonal
blocks along the upper and lower diagonals.

We solve these linear systems employing the Generalized Minimum RESidual (GMRES)
iterative method. GMRES is a Krylov subspace method designed to solve nonsymmetric
linear systems [25]. In order to accelerate the convergence rate, we use the Algebraic
Multigrid (AMG) as preconditioner equipped with the FALGOUT -CLJP coarse grid
selection. This means that at each step of the GMRES method we need to apply the AMG
multilevel cycle to update the residual. The central idea of multigrid method is to remove
smooth components of the error, that cannot be removed by relaxation on a fine grid, by
coarse-grid corrections. This is performed by using as relaxation method a standard iterative
method. While geometric multigrid approach operates on predefined grid hierarchies
depending on the domain problem, for the algebraic multigrid the necessary components for
the hierarchical algorithm such as the coarse system matrices and the transfer operators are
artificially created only from information contained in the algebraic equations. Definition of
these components in AMG is done in a separate preprocessing step known as setup phase .
Regarding the coarsening selection, which is the main ingredient of AMG, we adopt the
FALGOUT-CLJP scheme because this is an hybrid approach combining the standard
Ruge-Stuben (RS) method in the interior of the domain while using the
Cleary-Luby-Jones-Plassman (CLJP) graph-partitioning coarsening on the boundaries.
FALGOUT-CLJP exhibits the highest performance both in terms of convergence factor and
of operator complexity (detailed explanations are in [15, 24]).

if k=M, set 2% = (AM)~1pM
otherwise
relax AFzk = bk
perform coarse grid correction:
set o1 =0, P+ = [FHH(BF — AFgk)
solve on level k + 1
correct the solution ¥ = 2% + I£+1mk+1
relax AFzk = bk

Table 2. algorithm at level k.

3.3

Computational cost.

At each scale step and for each frame, the computational cost for solving P1 is:
Tor(N?) = O(2kor5N?) V1, ty
For P3, we have:
Tr(M) = O(bkr M) Vi,

kor and kj are the iterations numbers of the preconditioned GMRES for solving P1 and
P3, respectively.

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com

Page 8 of 15



26th October 2010 3:39 International Journal of Computer Mathematics marcellino

Page 9 of 15 International Journal of Computer Mathematics
A numerical algorithm for image sequence inpainting that preserves fine-textures 9
1 To state the performance of AMG preconditioner, we compare its execution time with that
2 obtained using the classical Block Jacobi (BJ) preconditioner. BJ is defined by considering
3 the block diagonals of the system matrix. We appreciate the rapid convergence of GMRES
4 when equipped with AMG preconditioner instead of BJ. For instance, regarding P1, it
reaches the residual accuracy of about O(107%) in 3 iterations and after 72 secs when using
5 AMG preconditioner. While, using BJ, residual stagnates. See Table 3 and figure 4.
6 Computing platform is a dual core Intel Processor i3-330UM at 1.2 GHz.
7
8
20 GMRES+AMG GMRES+BJ
11
12 P1 | Total time: 71.21 secs. Nr of steps: 3 | Total time: 148.61 secs. Nr of steps: 22
13 [1] 19.04 secs. [1] 11.3 secs.
14 [2] 15.56 secs.
15 [3] 14.34 secs. [22] 5.32 secs.
16 P3 | Total time: 9.83 secs. Nr of steps: 3 Total time: 16.34 secs. Nr of steps: 5
i; [1] 3.87 secs. [1] 2.796 secs.
19 [2] 1.86 secs. [2] 2.456 secs.
20 [3] 0.88 secs. [3] 1.98 secs.
21 [4] 1.39 secs.
22 [5] 1.22 secs.
23
24 Table 3. Running time of GMRES+AMG including the setup time, and of GMRES+BJ for solving P1 and P3,
25 respectively. At each row, the number inside parenthesis refers to each iteration number. Image size: 480 x 480.
26
27
28
29
30 1D2 T T T T T T I L I
—#—GMRES+BJ |]
31
32 —+— GMRES+AMG | ]
33 3 i\ ! i i
107 ¢ T + i : : : ; ; :
34 X T T e gol |
_ ; ; ; ; : ] I e, e
35 = : : : : ; ]
36 S
37 w 0¥ 3
38 2
39
40 10} 3
41
42
43 ] N N
0 1 2 3 4 5 B 7 g 9 10
44 N® of Scala Step
45
46 Figure 4. Numerical solution of P1. GMRES+AMG convergence behavior versus iteration number and
47 first 10 iterations of GMRES+BJ.
48
49
50
51
gg 4. Experimental results.
54 We carried out experiments aimed to verify accuracy and efficiency of the proposed
55 approach. To this aim we consider real and synthetic sequences.
Here we show two tests: the first one concerns a simulated corrupted image sequence that
56
7 we denote by Barbara, where missing data and motion (a zoom of the camera) are
5 artificially generated. The original image Barbara is a real image. It contains both a texture
58 and a cartoon part and is widely used in the image processing literature, as in [2, 5, 6, 9].
59 The second one refers to a real sequence of an old movie about Naples.
60
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Below are shown the error estimate and the average error defined as:
1
Aerr = M Z |IB - IBR|
B

where M is the number of pixels of the inpainted mask and I'g, Ipj are the original
uncorrupted intensity brightness function and the restored one, respectively. Results will be
compared with those obtained in [10].

— TEST 1: Barbara
Three frames of the sequence Barbara are shown in figure 5.

Figure 5. Barbara sequence: the motion, artificially generated, is a zoom of camera Number of frames
np = 3, image size N x N = 190 x 190.

We reconstruct the middle image, corrupted by three blotches (black spots) artificially created on the
face (where there is not a strong texture) and on the scarf (with texture). The corrupted image and
the computed mask are shown in figure 6, while figure 7 shows results. Error estimate and cross section
profile are shown in figures 8, 9, and 10.

Figure 6. Barbara sequence: on the left the corrupted image (the blotches are made artificially); on the
right the computed inpainting mask. Size of computed inpainting mask M = 383 pixels.

Figure 7. Barbara sequence: on the left the original uncorrupted image, in the middle the corrupted image,
on the right the restored image. Optical flow computation: step-size of scale parameter ATor = 103,
regularization parameter app = 10~%. Inpainting: step-size of scale parameter Ar; = 10, regularization
parameter ay = 102.
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Cross Section at row 61
T

—+—original image
—B— corrupted image
—&— new testored image
—&— old restored image

A

R

120 125 130 135 140 145 150
Columns

Figure 8. Barbara sequence: cross-section profile at row 61 i. e. at ellipse hole on the top right, with
major diameter 8 = 8 pixels. M; = 0.21 x 102. Error bound estimate: err = 0.17 x 10~!. Average error
Aerr = 0.39 X 10~2. Previous average error = 0.92 x 10— 1.

Cross Section at row 63
250 T T

—+— original image
—E— coupted image
—&—new restored image
—&— old restored image

200 -

Columns

Figure 9. Barbara sequence: cross-section profile at row 69. i. e. at the circle hole in the middle, with
diameter d = 10 pixels. My = 0.13 x 102. Error bound estimate: err = 0.34 x 10~ 1. Average error
Aerr = 0.41 x 1073, Previous average error = 0.63 x 1073,

— TEST 2: Naples
Three frame of the real movie before and after a denoising preprocessing are shown in fig. 11.
The motion is nearly translational and often not uniform, therefore it is very hard to calculate. There
are many small and large blotches as shown by the inpainting mask in figure 12. In this case we can
just perform qualitative evaluation of the restored image (see figure 12). Error estimate and the cross
section profile are shown in figures 13 and 14.

Regarding the Barbara sequence, cross-section profiles show that the lines corresponding
to restored intensity brightness, using the new approach, always overlap that of the original
intensity. Moreover, the average error always is smaller than that obtained without
employing a texture preservation in [10]. The difference is more evident at the holes where
the texture dominates, such as on the top right hole of Barbara sequence reconstructed in
figure 8. In case of the real movie, Naples, reconstruction appears to be clearer than that

URL: http://mc.manuscriptcentral.com/gcom E-mail: ijcm@informa.com



26th October 2010 3:39 International Journal of Computer Mathematics marcellino
International Journal of Computer Mathematics Page 12 of 15

12 D. Casaburi, L. D’Amore, A. Galletti, L. Marcellino

Cross Section at row 161

—+— original image
—&— comupted image

—6—new restored image
—&— old restored image

0
1
2
13
14
15
16 ; :
18

19 Figure 10. Barbara sequence: cross-section profile at row 161,i.e. at the bottom left like-ellipse, with

20 major diameter E = 4 pixels. J\7ft = 0.23 x 10~2. Error bound estimate: err = 0.1 x 10~2. Average error
21 Aerr = 0.58 x 1073, Previous average error = 0.97 x 103,

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46 Figure 11. Three frames of the real sequence Naples. Up the original hardly noised sequence. Bottom the
47 sequence after the denoising process. Number of frames ng = 30, image size N X N = 480 x 480.

48
49
50
51

52 obtained in [10]. Indeed, looking at the cross-section profiles, we note that intensity values of

53 the horizontal lines corresponding to the restored image, are greater than that obtained in
[10]. This confirms that ENoD discretization takes into account the intensity of the

gg‘ neighborhood pixel (in this case, tk[le }foggy sky) instead of the straightforward interpolation
performed by using the scheme in [10].

56 To state the efficiency of this algorithm, in tables 4 and 5, we report the running time of the
whole three-step reconstruction, compared with those obtained in [10].

57 As expected, the computing time slightly increases with respect the previous runs

58 because of the higher computational complexity of P1 and P3. However, the amount is not

59 so much (just few seconds) thanks to the efficiency of AMG preconditioner.

60

intensity brightness

8
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1
2
3
4
5
6
7
8
9
10
11
12
13
14 Figure 12. Real sequence Naples. On the left the computed inpainting mask, size M = 2198 pixels.
On the right the restored frame. Optical flow computation: step-size of scale parameter Atop = 103,
15 regularization parameter apr = 10~6. Inpainting: step-size of scale parameter A7; = 10, regularization
16 parameter oy = 102.
17
18
19
20
21 -
22 N
23 R s A S
24

NN
o Ol
S o

N N
o ~
intensity brightnsss
8
T
s
e

N
©
8

w
o
E

w
=
e

32
33
34 i
Columns
35
36
37 Figure 13. Real sequence Naples: cross-section profile at row 26. i. e. at the ellipse in the middle, with
38 major diameter 8 = 6 pixels. M; = 0.12 x 1073, Error bound estimate: err = 0.54 x 1073,
39
40 - —— - 7 A
a1 video inpainting video inpainting image
42 with textures without textures
43 P1 | 12.31 secs. - [AMG setup: 0.81 secs] | 10.702 secs.
44 P2 [ 0.45 secs. 0.62 secs.
45 P3 | 4.62 secs. - [AMG setup: 0.93 secs] | 2.64 secs.
46
47 Table 4. Barbara sequence: 190 x 190
48
49
50 5. Conclusion.
51
52 We describe a numerical algorithm for a fast, reliable and automatic video inpainting. It can
53 effectively handle large regions of occlusion or missing data, combining a spatio-temporal
interpolation with a fine texture preservation and provides an estimate of the inpainting
54 error by using an automatic geometric recognition of missing regions.
55 The reconstruction relies on the motion trajectory and on its properties: the corrupted
positions and their shapes can be localized as temporal discontinuities of the intensit;
56 Y
7 brightness function while restoration is performed using information from the previous and
5 the next frame.
58 The overall algorithm consists of optical flow computation, assuming that spatial brightness
59 gradient does not change over time, inpainting mask detection and shape recognition,
60
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Crass Section at row 72
T T

—+—old restored image

g

intensity brightness

8

Columns

Figure 14. Real sequence Naples: cross-section profile at row 72. i. e. at the up left circle, with diameter
d = 10 pixels. My = 0.12 x 10~3. Error bound estimate: err = 0.3 x 10~2.

video inpainting video inpainting image
with textures without textures

P1 | 71.21 secs. - [AMG setup: 11.62 secs| | 58.33 secs.

P2 | 1.78 secs. 1.81 secs.

P3 | 9.83 secs. - [AMG setup: 0.51 secs] 6.35 secs.

Table 5. Naples sequence: 480 x 480

showing that the error depends essentially on the geometry and on the shape of the domain,
instead of the size of total area, and finally, the missing data reconstruction, where we use a
texture-preserving discretization scheme - the essentially non-dissipative (ENoD) scheme.
Solution of the underlying computational kernels is made by using GMRES iterative method
equipped with Algebraic Multigrid preconditioner. Experimental results, equipped with
several quality measures, illustrate the reliability and the robustness of the algorithm tested
on synthetic and real sequences.

Comparisons with previous results demonstrate the better reliability of the reconstruction at
the expense of a slight increase of the overall execution time.
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