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We propose a new family of communication architectures called ‘biswapped networks’. Given any n-node
basis network �, the associated biswapped network Bsw(�) is built of 2n copies of �, using a simple
rule for connectivity that ensures desirable attributes, including regularity, modularity, fault tolerance,
and algorithmic efficiency. In particular, if � is a Cayley digraph, then so is Bsw(�). Our biswapped
connectivity provides a systematic scheme for synthesizing large, scalable, modular, and robust parallel
architectures. Furthermore, many desirable attributes of the underlying basis network � are preserved,
as the Bsw(�) parameters are related to the corresponding parameters of �. We obtain a number of
results on internode distances, Hamiltonian cycles, optimal routing, and node-disjoint paths for Bsw(�).
We explore the relations between biswapped and swapped or optical transpose interconnection system
(OTIS) networks, which may use a mix of electronic and optical links. In particular, we demonstrate
that the biswapped connectivity removes an inherent asymmetry of swapped/OTIS networks, as well as
the attendant complications in analyses and applications. Finally, we show that biswapped networks are
complementary to, and offer advantages over, well-known and widely used interconnection architectures
for parallel processing.

Keywords: bipartite graph; Cayley graph/digraph; fault tolerance; Hamiltonian cycle; hierarchical net-
work; interconnection network; internode distance; network diameter; node-disjoint paths; OTIS network;
shortest-path routing, swapped network
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1. Introduction

It has been widely acknowledged that Cayley (di)graphs and coset graphs are useful models
for interconnection networks studied in parallel processing and distributed computation domains
[1,2,6]. A vast majority of interconnection networks that have been found practically or theo-
retically interesting are Cayley (di)graphs or coset graphs. Examples of Cayley graphs include
the hypercube, butterfly, cube-connected cycle, and honeycomb networks. The well-known coset
graphs include de Bruijn and shuffle-exchange networks [6,9,12–15].
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2670 W. Xiao et al.

Most of the new networks for parallel processing emerge in an ad hoc manner. Typically, the
proposal for a new interconnection scheme is followed by a demonstration of its superiority, with
respect to one or more performance or complexity attributes, over some previously built or pro-
posed network. This leads to a great deal of redundancy in developing theoretical and algorithmic
results. Cayley (di)graphs have been helpful for understanding and unifying interconnection net-
works. However, generally applicable theorems are still lacking in this area, and there is an urgent
need for exploiting more group theory to discover the properties of the Cayley digraphs [6].

In this paper, we expand upon a new class of interconnection networks called ‘biswapped
networks’ [16,17]. Biswapped networks are intimately related to swapped or optical transpose
interconnection system (OTIS) networks, previously studied by many researchers in the commu-
nications and parallel processing communities [5,8,11,18]. Given any n-node basis network �,
the associated Bsw(�) is built of 2n copies of �, using a simple rule for connectivity that ensures
desirable attributes, including regularity, modularity, fault tolerance, and algorithmic efficiency.
In particular, if � is a Cayley digraph, then so is Bsw(�). Thus, our results yield a systematic
method for constructing large, scalable, modular, and robust parallel architectures that retain many
desirable attributes of the underlying basis networks comprising their clusters. We show how key
parameters of Bsw(�) are related to the corresponding parameters of � and obtain results related
to internode distances, Hamiltonicity, optimal routing, and node-disjoint paths.

Our interest in this study arose from a small (yet very important, in both theoretical and practical
terms) asymmetry in swapped [18] or OTIS [8] networks. A swapped/OTIS network is built from
n clusters, which are identical copies of an n-node basis network, by connecting node i of cluster
j to node j of cluster i, for all i �= j . The latter condition is what causes the asymmetry, because
node i of cluster i, which has no intercluster link, maintains its original degree δ, whereas all
other nodes have degree δ + 1. Consequently, many analyses and algorithms for swapped/OTIS
networks become complicated by the need to treat node (i, i) differently from a typical node
(i, j ) having unequal cluster index i and node index j . Furthermore, swapped/OTIS networks
clearly do not belong to the class of Cayley graphs and thus cannot benefit from a vast array of
theoretical and algorithmic results that have been derived over many years for Cayley graphs and
their various subclasses.

Motivated by the preceding discussion, we pondered the existence question for ‘an alternate
or modified form of swapped network that is a Cayley graph when the basis network is a Cayley
graph’[11]. Biswapped networks, discussed here, constitute our positive answer to this interesting
question. We will elaborate on the relations between biswapped and swapped/OTIS networks in
Section 5 of this paper and extend the comparison to other networks in Section 6. Before that,
however, we outline the needed theoretical framework in Section 2, where we present a general
discussion of interconnection networks and their various subclasses, including the very important
Cayley networks/graphs. In Section 3, we introduce the class of biswapped networks formally and
also provide intuitive explanations of their structure and topological properties. We end Section 3
with a fully distributed routing algorithm that allows each node to make routing decisions simply
and independently while still guaranteeing that the chosen route is a shortest path. Many networks,
including swapped networks, do not allow such a simple optimal routing algorithm. In Section 4,
we deal with two very important properties of interconnection networks: Hamiltonicity and the
existence of disjoint parallel paths. We prove that a biswapped network built of Hamiltonian
component networks is Hamiltonian and that it contains a maximal number of disjoint parallel
paths between any two nodes. So, biswapped networks match the Hamiltonicity property of
swapped network while improving on their resilience or fault tolerance attributes. With these
advantages, we believe that biswapped networks are to be preferred to swapped networks and
many other hierarchical networks of similar complexity.

We conclude this introduction with a few words about the desirability of building large, hier-
archically structured networks from copies of smaller networks. This strategy has been used by
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International Journal of Computer Mathematics 2671

many researchers, because a hierarchical structure (1) facilitates the physical construction (parti-
tioning and packaging) of a parallel system; (2) allows optimal design through the adjustment of
topology at each level of the hierarchy and choice of suitable connectivity among the levels; and
(3) leads to algorithms that take advantage of the greater intracluster communication speed (e.g.
on-chip links) compared with intercluster transfers (e.g. from one chassis or cabinet to another),
by leveraging the application locality. This is why swapped networks, which form an n2-node
network from n-node components, have been found to be of great interest, and why biswapped
networks, which combine arbitrary n-node clusters into a 2n2-node network with advantages over
the corresponding swapped network, should be of similar or greater interest.

2. Terminology and theoretical background

In this section, we introduce some definitions and notations related to (di)graphs, Cayley (di)graphs
in particular, and interconnection networks. For more definitions and basic results on graphs and
groups, we refer the reader to [3], for instance, and for those on interconnection networks to
[7,10]. Unless explicitly specified, all graphs in this paper are undirected graphs. The notation
used throughout this paper is listed in Table 1 for ease of reference. Most constructions and results
in this section are needed for our claims in Section 6.

A digraph � = (V , E) is defined by a set V of vertices and a set E of arcs or directed edges.
Because we are interested in the use of graphs as parallel processing interconnection networks, we
use the terms ‘vertex’ and ‘node’ interchangeably. Similarly, ‘edge’ and ‘link’ are fully equivalent
in this paper. The edge set E is a subset of elements (u, v) of V × V . If the subset E is symmetric,
that is (u, v) ∈ E implies (v, u) ∈ E, we identify two opposite arcs (u, v) and (v, u) by the
undirected edge [u, v] and the digraph � becomes an undirected graph. When the type of graph
is clear from the context, we may use (u, v) instead of [u, v].

Table 1. List of key notations.

• ≤ • Subgroup relationship
•/• Set of (right) cosets
| • | Number of nodes in a graph
[•, •] Directed edge
(•, •) Undirected edge
→ Mapping; also routing step or segment
⇓ Path in decreasing order of node indices∼= Isomorphic to
�, �, � Graphs or digraphs
� Basis or component network
φ Homomorphism
1− Identity element of a group
Bsw(•) Biswapped network based on a graph
Ck Cycle (ring network) of size k

Cay(•) Cayley (di)graph
Cos(•) Coset graph
deg(•) Function yielding the degree of a vertex
dist(•) Distance function
D(•) Diameter of a graph
E(•) Edge set of a graph
G, H Groups
K , N Subgroups
next• Routing function for specified network
S, T Generator sets, subsets of G

Sw(•) Swapped network based on a graph
V (•) Vertex set of a graph
Zq Cyclic group of order q
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2672 W. Xiao et al.

Let G be a finite group and S a subset of G. The subset S is said to be a generating set for G,
and the elements of S are called generators of G, if every element of G can be expressed as a finite
product of their powers. We also say that G is generated by S. The Cayley digraph of the group
G and the subset S, denoted by Cay(G, S), has vertices that are elements of G and arcs that are
ordered pairs (g, gs) for g ∈ G, s ∈ S. If S is a generating set of G, then we say that Cay(G, S)
is the Cayley digraph of G generated by S. If 1− /∈ S (with 1− denoting the identity element of G)
and S = S−1 (where the superscript −1 designates inversion), then Cay(G, S) is a simple graph.

Assume that � and � are two digraphs. The mapping φ of V (�) to V (�) is a homomorphism
from � to � if for any (u, v) ∈ E(�) we have (φ(u), φ(v)) ∈ E(�). In particular, if φ is a bijection
such that both φ and the inverse of φ are homomorphisms then φ is called an isomorphism of �

to �. Let G be a finite group and S a subset of G. Assume that K is a subgroup of G (denoted as
K ≤ G). Let G/K denote the set of the right cosets of K in G. The (right) coset graph of G with
respect to subgroup K and subset S, denoted by Cos(G, K, S), is the digraph with vertex set G/K

such that there exists an arc (Kg, Kg′) if and only if there exists s ∈ S and Kgs = Kg′.
Let us consider a concrete example to illustrate the concepts and terminology given above.

Let Zn be a cyclic group of order n and consider the Cayley graph � = Cay(Zn, S) based on Zn

and the generator set S = {±1}. Beginning from any element u ∈ Zn, all group elements can be
generated by successive application of the generators in S, stepping each time from v to v + 1
or v − 1 (mod n). Thus, � is a bidirectional ring (cycle) with the node set {0, 1, . . . , n − 1} and
arcs (j, j + 1) and (j, j − 1), for j ∈ Zn, where all arithmetic is modulo n. Now, assume that
K ≤ Zn is a subgroup of Zn and let Zn/K denote the set of right cosets of K in Zn. Elements of
Zn/K may be expressed as K + g, where g ∈ Zn. Then, there exists an arc (K + g, K + g′) iff
for some s ∈ S we have K + g + s = K + g′.

The following basic theorem, which is readily proven [15], is helpful in establishing some of
our subsequent results in Section 6.

Theorem 1 For g ∈ G, S ⊆ G, and K ≤ G, the mapping φ : g → Kg is a homomorphism from
Cay(G, S) to Cos(G, K, S).

3. Definitions and basic properties

Let � be any digraph with the vertex set V (�) = {g1, g2, . . . , gn} and the arc set E(�). The
biswapped interconnection network Bsw(�) = � = (V (�), E(�)) is a digraph with its vertex
and edge sets specified as follows:

V (�) = {〈0, c, g〉, 〈1, c, g〉|c, g ∈ V (�)},
E(�) = {(〈0, c, g1〉, 〈0, c, g2〉), (〈1, c, g1〉, 〈1, c, g2〉)|c ∈ V (�), (g1, g2) ∈ E(�)}

∪ {(〈0, c, g〉, 〈1, g, c〉), (〈1, c, g〉, 〈0, g, c〉)|c, g ∈ V (�)}.
Intuitively, the definition postulates 2n clusters, each cluster being an � digraph: n clusters,

with nodes indexed 〈0, cluster#, node#〉, form part 0 of the bipartite graph, and n clusters constitute
part 1, with associated node indices 〈1, cluster#, node#〉. Each cluster c in either part of � has
the same internal connectivity as � (intracluster edges, forming the first set in the definition of
E(�)). In addition, node g of cluster c in part 0/1 is connected to node c in cluster g of part 1/0
(intercluster or swap edges in the second set in the definition for E(�)). The name ‘biswapped
network’ arises from two defining properties of the network just introduced: when clusters are
viewed as supernodes, the resulting graph of supernodes is the complete 2n-node bipartite graph
Kn,n (the ‘bi’ prefix), and the intercluster links connect nodes in which the cluster number and
the node number within the cluster are interchanged (the ‘swapped’ property).
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Figure 1. An example 32-node biswapped network using the basis graph � = C4. Each line represents two directed
edges in opposite directions. To avoid clutter, the node index 〈i, c, g〉 is shown as icg, where i, c, and g are part, cluster,
and node indices, respectively.

As an example, Figure 1 depicts Bsw(C4) resulting when � = C4 (the undirected cycle of order
4) constitutes the basis graph. Part 0 of the network is drawn at the top and part 1 at the bottom,
with clusters 0–3 positioned from left to right.

We could continue our presentation with directed networks, deriving results for undirected
networks as special cases. However, because interconnection networks for parallel processing are
usually undirected, we focus on undirected graphs in the rest of this paper. Note that the definition
of E(�), provided at the beginning of this section, ensures a symmetric directed network (i.e.
an undirected graph) � when the basis network � is symmetric. Hence, combining the directed
edges (〈0, c, g〉, 〈1, g, c〉) and (〈1, g, c〉, 〈0, c, g〉) leads to undirected versions of our biswapped
networks.

We need a few more notational conventions in what follows. For any graph �, the number of its
nodes is denoted as |�|. The degree of a node g in � is deg�(g). The distance, that is, the length
of the shortest path, between nodes g1 and g2 in � is given by dist�(g1, g2). The diameter of �,
that is, the maximum distance between any two nodes in �, is D(�). We first prove the following
results on the basic parameters of � = Bsw(�).

Theorem 2 Let � = Bsw(�). Then,

(1) |�| = 2|�|2,
(2) deg�(〈i, c, g〉) = deg�(g) + 1,

(3) dist�(〈i, c1, g1〉, 〈i, c2, g2〉) equals dist�(g1, g2) if c1 = c2;otherwise, it equals dist�(c1, c2) +
dist�(g1, g2) + 2,

(4) dist�(〈i, c1, g1〉, 〈1 − i, c2, g2〉) = dist�(c1, g2) + dist�(c2, g1) + 1.

Proof Statements (1) and (2) are evident from the definition of biswapped networks; there
are 2n2 nodes in a biswapped network based on an n-node basis graph, and the node degree
increases by 1 owing to the introduction of intercluster or swap links. To prove the first part of
statement (3), we note that by the definition of Bsw(�), we have dist�(〈i, c, g1〉, 〈i, c, g2〉) ≤
dist�(g1, g2). To complete the first part of the proof for statement (3), we must show
that no shorter path exists between nodes g1 and g2 of cluster c that goes through other
clusters. This is established by contradiction. Suppose that the following path from 〈0, c, g1〉
to 〈0, c, g2〉, via intermediate clusters x1, y1, x2, y2, . . . , xk, yk, xk+1, is shorter than the path
of length dist�(g1, g2) within cluster c : 〈0, c, g1〉 → · · · → 〈0, c, x1〉 → 〈1, x1, c〉 → · · · →
〈1, x1, y1〉 → 〈0, y1, x1〉 → · · · → 〈0, y1, x2〉 → 〈1, x2, y1〉 → · · · → 〈1, x2, y2〉 → · · · → 〈1,
xk, yk〉 → 〈0, yk, xk〉 → · · · → 〈0, yk, xk+1〉 → 〈1, xk+1, yk〉 → · · · → 〈1, xk+1, c〉 → 〈0, c,
xk+1〉 → · · · → 〈0, c, g2〉. The length of this path includes distances from g1 to x1, x1 to
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2674 W. Xiao et al.

x2, . . . , xk+1 to g2 within a cluster, plus a number of other segments. Given that all the clus-
ters are isomorphic, the latter path cannot be shorter than dist�(g1, g2). Now, assume c1 �= c2 and
consider the following path between two nodes in part 0 that goes through a single intermediate
cluster c in part 1. The path consists of five segments, for which, the hop distance associated with
each segment is provided below the corresponding arrows:

〈0, c1, g1〉 −→ · · · −→ 〈0, c1, c〉 −→ 〈1, c, c1〉 −→ · · · −→ 〈1, c, c2〉 −→ 〈0, c2, c〉 −→ · · · −→ 〈0, c2, g2〉.
dist�(g1, c) 1 dist�(c1, c2) 1 dist�(g, g2)

Based on the path above, we conclude that dist�(〈i, c1, g1〉, 〈i, c2, g2〉) ≤ minc∈V (�) {dist�
(g1, c) + dist�(c, g2)} + dist�(c1, c2) + 2 = dist�(g1, g2) + dist�(c1, c2) + 2.An argument sim-
ilar to the one presented for proving the first part of statement (3) can be used to establish that
no shorter path can go through more than one intermediate cluster. Statement (4) can be proven
similarly by considering the following three-segment path, which includes a single intercluster
edge, from node 〈i, c1, g1〉 to node 〈1 − i, c2, g2〉:

〈i, c1, g1〉 −→ · · · −→ 〈i, c1, c2〉 −→ 〈1 − i, c2, c1〉 −→ · · · −→ 〈1 − i, c2, g2〉.
dist�(g1, c2) 1 dist�(c1, g2)

The rest of the argument parallels that used for proving statement (3) and is thus omitted here for
brevity. �

Corollary 1 The diameter of Bsw(�) = � is related to the diameter of the basis network �

by the equality D(�) = 2D(�) + 2.

Proof From the proof of statement (3) in Theorem 2, it is clear that D(�) ≤ 2D(�) + 2. Let
dist�(g1, g2) = D(�). Then, we have dist�(〈i, g1, g1〉, 〈i, g2, g2〉) = 2 dist�(g1, g2) + 2, which
establishes the desired result. �

Based on Theorem 2, we can easily obtain a shortest-path routing algorithm for a biswapped
network, given the availability of a routing algorithm for the basis graph �. Assume that the latter
routing algorithm is a distributed one, using the local function next�(g1, g2) to obtain the first
intermediate node in the routing path from g1 to g2. Then, the algorithm shown in Figure 2 can be
used to derive the first intermediate node on a shortest routing path from node 〈i, c1, g1〉 to node
〈j, c2, g2〉 in Bsw(�) = �. Optimality of this algorithm is justified by Proposition 1.

Proposition 1 The routing function next� , defined in Figure 2, is optimal, that is, it guarantees
shortest-path routing, provided that the routing function next� is optimal.

Proof A routing path in Bsw(�) may be one of three types. First, for a routing path that begins
and ends in the same cluster (i = j , c1 = c2, g1 �= g2), the forwarding node chosen by next� is
〈i, c1, next�(g1, g2)〉. Thus, the forwarding path, which remains in the same cluster until g1 = g2

holds, is optimal by our assumption regarding the optimality of next�. Second, for a path that
begins and ends in the same part, but not in the same cluster (i = j, c1 �= c2), the routing algorithm
first causes the message to be moved within the source cluster until the node 〈i, c1, g2〉 has been
reached (note that if g1 = g2, this segment of the path is empty). Then, the intercluster link to
〈1 − i, g2, c1〉 is used, followed by routing within the same cluster to 〈1 − i, g2, c2〉 using next�,
and finally via an intercluster link to 〈i, c2, g2〉. This path is an instance of the five-segment shortest
path hypothesized in the proof of Theorem 2, with g2 here taking the place of c in that path, thus
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International Journal of Computer Mathematics 2675

Figure 2. Optimal routing function for a biswapped network Bsw(�) based on the optimal routing function next�(g1, g2)

for its basis network �.

making the fifth segment unnecessary (of length 0). The third and final case pertains to a path that
begins in cluster i and ends in cluster j = 1 − i. In this case, the algorithm first aims to reach
the node 〈i, c1, c2〉 in the source cluster. Routing is then completed via 〈1 − i, c2, c1〉, followed
by a path dictated by next� within the destination cluster to the final destination 〈1 − i, c2, g2〉.
The preceding path is precisely the three-segment shortest path hypothesized near the end of the
proof of Theorem 2. �

4. Hamiltonicity and disjoint paths

A Hamiltonian cycle of a graph is a cycle that visits each node exactly once. A graph is Hamil-
tonian if it contains a Hamiltonian cycle. Hamiltonicity is a useful property for interconnection
networks. Besides the obvious indication that there exist at least two node- and edge-disjoint paths
between any pair of nodes, Hamiltonicity helps in the design of efficient deadlock-free routing
algorithms for point-to-point (unicast), multicast, and all-to-all communication (see, e.g. [4] and
the references therein).

One of our main results in this paper is that if the basis graph � is Hamiltonian, then so is the
resulting biswapped network.

Theorem 3 If the basis graph � is Hamiltonian, then so is the graph Bsw(�) = �.

Proof Without loss of generality, let {0, 1, . . . , n − 1, 0} represent a Hamiltonian cycle of the
basis graph �. Using the notation j ⇓ j + 1 to denote the Hamiltonian path j → j − 1 → · · · →
j + 1 within a cluster (i.e. a path that begins at j , ends at j + 1, and visits each of the n nodes
exactly once as it moves ‘downward’ in terms of node indices, modulo n), a Hamiltonian cycle
of graph � is constructed, as shown in Figure 3. The path shown in Figure 3 is clearly a cycle
and it visits every node within every cluster, by virtue of containing Hamiltonian paths in every
cluster; thus, it is a Hamiltonian cycle. Figure 4 shows the constructed Hamiltonian cycle for a
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2676 W. Xiao et al.

Figure 3. Building of a Hamiltonian cycle in Bsw(�) by stringing together Hamiltonian paths in all of its 2n clusters.

Figure 4. A Hamiltonian cycle in a biswapped network whose basis graph � is Hamiltonian (n = 5). Within each cluster,
only links belonging to the cluster’s Hamiltonian cycle are shown. To avoid clutter, part numbers are not represented in
node indices. Cluster index appears at the top and node index within cluster at the bottom inside the circles.

biswapped network in graphic form. Note that the Hamiltonian cycle for � is formed by stringing
together Hamiltonian paths for all of the 2n clusters, where each Hamiltonian path is formed from
the cluster’s Hamiltonian cycle by removing a single edge. �

We next consider the problem of node-disjoint paths between certain pairs of nodes in a
biswapped network. We have the following.

Theorem 4 If the basis graph � is connected, c1 �= c2, and deg�(g) = δ, then there are δ + 1
node-disjoint paths between the nodes 〈i, c1, g〉 and 〈i, c2, g〉 in Bsw(�) = �.

Proof Without loss of generality, we take i = 0. Let x1, x2, . . . , xδ be δ distinct neighbours of
node g in the basis network �. The δ + 1 node-disjoint paths between 〈0, c1, g〉 and 〈0, c2, g〉 in
� are of the following forms:

〈0, c1, g〉 −→ 〈1, g, c1〉 −→ · · · −→ 〈1, g, c2〉 −→ 〈0, c2, g〉
〈0, c1, g〉 −→ 〈0, c1, x1〉 −→ 〈1, x1, c1〉 −→ · · · −→ 〈1, x1, c2〉 −→ 〈0, c2, x1〉 −→ 〈0, c2, g〉
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〈0, c1, g〉 −→ 〈0, c1, x2〉 −→ 〈1, x2, c1〉 −→ · · · −→ 〈1, x2, c2〉 −→ 〈0, c2, x2〉 −→ 〈0, c2, g〉
· · ·
〈0, c1, g〉 −→ 〈0, c1, xδ〉 −→ 〈1, xδ, c1〉 −→ · · · −→ 〈1, xδ, c2〉 −→ 〈0, c2, xδ〉 −→ 〈0, c2, g〉.

Figure 5 shows the structure of the constructed node-disjoint paths. �

Note that Theorem 4 is quite strong in that it requires merely that � be connected. The following
result shows that if � is δ-connected, then Bsw(�) will be (δ + 1)-connected.

Theorem 5 If the basis graph � is connected, and if 〈i, c1, g1〉 and 〈i, c2, g2〉 are two nodes in
Bsw(�) = �, with g1 �= g2, such that there are δ node-disjoint paths between g1 and g2 in �,

then there are δ + 1 node-disjoint paths between the nodes 〈i, c1, g1〉 and 〈i, c2, g2〉 in �.

Proof We consider two cases: c1 = c2 and c1 �= c2. Without loss of generality, we take i = 0.
Let x1, x2, . . . , xδ be δ distinct neighbours of node g in the basis network �. For c1 = c2, the first
δ of the δ + 1 node-disjoint paths are as follows, where i = 1, 2, . . . , δ:

〈0, c1, g1〉 −→ 〈0, c1, xi〉 −→ · · · −→ 〈0, c1, g2〉.
The final path is the following, where x �= c1:

〈0, c1, g1〉 −→ 〈1, g1, c1〉 −→ · · · −→ 〈1, g1, x〉 −→ 〈0, x, g1〉 −→ · · · −→ 〈0, x, g2〉
−→ 〈1, g2, x〉 −→ · · · −→ 〈1, g2, c1〉 −→ 〈0, c1, g2〉.

For c1 �= c2, the first δ of the δ + 1 node-disjoint paths are as follows, where i = 1, 2, . . . , δ:

〈0, c1, g1〉 −→ 〈0, c1, xi〉 −→ 〈1, xi, c1〉 −→ · · · −→ 〈1, xi, c2〉
−→ 〈0, c2, xi〉 −→ · · · −→ 〈0, c2, g2〉.

Figure 5. Parallel paths between nodes 〈i, c1, g〉 and 〈i, c2, g〉 in Bsw(�). Nodes are numbered with cluster index
followed by node index within the cluster (part number is implied).
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2678 W. Xiao et al.

Figure 6. Parallel paths between nodes 〈i, c1, g1〉 and 〈i, c2, g2〉 in Bsw(�) = �, with g1 �= g2. Nodes are numbered
with cluster index followed by node index within the cluster (part number is implied).

If g2 �= xi , the final path is the following, where x �= c2:

〈0, c1, g1〉 −→ 〈1, g1, c1〉 −→ · · · −→ 〈1, g1, x〉 −→ 〈0, x, g1〉 −→ · · · −→ 〈0, x, g2〉
−→ 〈1, g2, x〉 −→ · · · −→ 〈1, g2, c2〉 −→ 〈0, c2, g2〉.

Otherwise, that is, for g2 = xi , the final path is the following:

〈0, c1, g1〉 −→ 〈1, g1, c1〉 −→ · · · −→ 〈1, g1, c2〉 −→ 〈0, c2, g1〉 −→ · · · −→ 〈0, c2, g2〉.
Figure 6 shows the constructed node-disjoint paths when c1 �= c2 and g2 �= xi . �

A network is said to be maximally fault tolerant if its connectivity equals its minimum node
degree [5,6]. Whether a biswapped network built of connected component graphs � is maximally
connected is an open problem.

5. Relations with swapped networks

We begin this section by introducing a swapped network in a manner that slightly differs from
the definitions in [11,18]. This variation serves to make the network more regular.

Let � be any digraph with the vertex set V (�) = {g1, g2, . . . , gn} and the edge set E(�). The
swapped interconnection network based on �, that is, Sw(�) = � = (V (�), E(�)), is a graph
with its vertex and edge sets specified as follows:

V (�) = {〈c, g〉|c, g ∈ V (�)},
E(�) = {(〈c, g1〉, 〈c, g2〉)|c ∈ V (�), (g1, g2) ∈ E(�)} ∪ {(〈c, g〉, 〈g, c〉)|c, g ∈ V (�)}.

Note that the difference between this definition and that in [11,18] is that the case c = g is not
excluded from the second set in the definition of E(�); in other words, here we postulate that the
swap link associated with a node 〈c, c〉 in Sw(�) is a self-loop, whereas in the original definition
of [11,18], node 〈c, c〉 lacks a swap link and thus has a node degree that is one less than that
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of node 〈c, g〉 with c �= g, when the basis network is regular. The swapped network based on a
regular n-node, degree δ network � has n2-nodes of degree δ + 1.

Because the class of Cayley graphs exhibits many desirable properties and also includes a
significant fraction of all networks that have been found useful in parallel processing [6], we
next consider biswapped networks built from basis networks that are Cayley graphs. It would
indeed be quite an accomplishment if we could establish that biswapped networks thus formed
are themselves Cayley graphs, because this would mean that certain desirable properties of the
basis network, such as vertex transitivity and fast (load-balanced) routing, are inherited by the
composite biswapped network; we have already shown that Hamiltonicity is, in fact, transferred
from the basis network to the biswapped network. In what follows, we will show that a Cayley
graph basis network does indeed lead to a biswapped network that is a Cayley graph.

Let H be a finite group and S a generator set of H , with � = Cay(H, S) and H × H the
direct product of the group H and itself. Let G = (H × H)〈t〉 = 〈t〉(H × H) be a semidirect
product of the group H × H by the cyclic group 〈t〉, where t is an element of order 2, and
t (c, g)t = (g, c) for any c, g ∈ H . Let S ′ = {(1−, s)|s ∈ S} ⊆ H × H and T = S ′ ∪ {t}. Suppose
that � = Cos(G, 〈t〉, T ) is the coset graph of the group G with respect to the subgroup 〈t〉 and
the generator set T . Then, we have the following result.

Theorem 6 The graph � defined in the preceding paragraph is isomorphic to the swapped
network Sw(�) = �.

 000  001 

 003  002 

 010 011

 013 012

020 021

023 022

030  031 

033  032 

 100  101 

 103  102 

 110 111

 113 112

120 121

123 122

130

133  132 

 131 

   00   01

 03   02

  10   11

  13   12

   30   31

   33   32

  20   21

  23   22

Figure 7. The 32-node biswapped network with the basis graph � = C4 that is homomorphic to the 16-node swapped
network using the same basis graph, with the latter being identical to its counterpart in [10] if all the self-loops are removed.
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Proof The correspondence φ : 〈t〉(g, c) → 〈g, c〉 is a mapping from � to �. Moreover, for g,
c, h, q ∈ H , the pair (〈t〉(g, c), 〈t〉(h, q)) constitutes an edge of the graph � iff either there is an
element s ∈ S such that h = gs and c = q or 〈t〉(h, q) = 〈t〉(g, c)t = 〈t〉(c, g). This is equivalent
to stating that (〈g, c〉, 〈h, q〉) is an edge of the graph �. Hence, we have � ∼= �. �

Let us consider a concrete example to illustrate the result of Theorem 6. Let � = Cay(Zn, S),
with S = {±1}. Then, G = (Zn × Zn)〈t〉 = 〈t〉(Zn × Zn), with S ′ = {(0, ±1)} and T = S ′ ∪ {t}.
Let � = Cos(G, 〈t〉, T ). Then, � ∼= Sw(�) = � through the mapping φ : 〈t〉(c, g) → 〈c, g〉.

By Theorem 6, there is a homomorphism from the biswapped network Bsw(�), which is a
Cayley graph, to the swapped network Sw(�), which is a coset graph, per Theorem 1. This
relationship is depicted in Figure 7 for an example network.

Let � = Cay(G, T ) be the Cayley graph of the group G and the generator set T . Then, we
may prove the following result in a manner similar to Theorem 6.

Theorem 7 The graph � = Cay(G, T ), with G and T as defined in the paragraph preceding
Theorem 6, is isomorphic to the biswapped network Bsw(�) = �.

Proof The correspondence φ : t i(c, g) → 〈i, c, g〉, with i ∈ {0, 1}, is a mapping from � to �.
Moreover, for g, c, h, q ∈ H and i, j ∈ {0, 1}, the pair (t i(c, g), tj (q, h)) constitutes an edge of
the graph � iff there exists an element s ∈ S such that i = j , c = q, and h = gs, or, alternatively,
i �= j , c = h, and q = g. This is equivalent to stating that (〈i, c, g〉, 〈j, q, h〉) is an edge of the
graph �. Hence, we have � ∼= �. �

6. Comparison with other networks

A biswapped network, which has a two-level structure, takes any graph as modules and connects
them in a complete bipartite manner. Hence, the architecture of biswapped networks offers a
simple general scheme for constructing larger networks from any component or basis network.
Since the topology of a biswapped network is closely related to the topology of its basis network,
it inherits some favourable properties from the latter. We have derived some general properties
of a biswapped network based on the parameters and structure of its basis network. Examples of
topological properties that are inherited by biswapped networks include logarithmic diameter and
Hamiltonicity.

We next endeavour to compare biswapped networks to swapped/OTIS networks. Because
swapped/OTIS networks have been shown to possess advantages over other well-known networks
in terms of topological properties, performance, scalability, and fault tolerance (see, e.g. [11]
and the references therein), demonstrating that biswapped networks are preferable to swapped
networks can be taken as indirect evidence of advantages over those other networks. Nevertheless,
we also present some direct comparisons later in this section.

A biswapped network of node degree δ + 1 (where δ is the node degree of its n-node basis
graph �) has 2n2-nodes compared with n2-nodes for a degree (δ + 1) swapped network formed
from the same basis graph. The only penalty for doubling the number of nodes is a unit increase in
network diameter, from 2D + 1 for swapped/OTIS to 2D + 2 for biswapped network, where D is
the diameter of �. This tradeoff, that is, doubling the network size for a unit increase in diameter,
is worth making, in that for most component networks that already have the maximum number
of nodes for their node degree and diameter (this is true of square meshes/tori, hypercubes, star
graphs, and so on), increasing the size of � to approximately 1.4n so as to have close to 2n2-nodes
in a swapped/OTIS network would lead to a 1-unit increase in D and thus to a 2-unit increase
in the network diameter. Another way of looking at this is that if D = log2 n, the diameter of
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a swapped network is log2(n
2) + 1 and the diameter of a biswapped network is log2(2n2) + 1;

that is, given basis networks with logarithmic diameters, the two networks are similar in terms of
diameter, given their sizes. For any basis network that has superlogarithmic diameter, however,
biswapped networks would win on account of their diameter.

Theorem 7 and the discussion surrounding it reveal a fundamental difference between
biswapped and swapped networks: When the basis network � is a Cayley graph (which is likely
to be the case in practice owing to the prevalence of such graphs that are in common use), Bsw(�)

is also a Cayley graph, whereas Sw(�) is only a coset graph. Cayley graphs are node symmetric,
a property that leads to more efficient (higher performing) routing and computational algorithms,
as well as to ease of embeddings and emulations.

As evidence of algorithmic simplicity, we point to the simple and elegant distributed rout-
ing algorithm depicted in Figure 2, which requires only a few numerical comparisons between
the components of the current node’s address and those of the destination address to decide
on the outgoing channel belonging to a shortest path. These comparisons can be performed in
hardware and imply a very small routing latency (pipelined, if necessary), thus enabling fast worm-
hole switching. By contrast, known optimal routing algorithms for swapped/OTIS networks are
quite complicated and require computing and comparing distances in the basis network. This is
because the shortest path from node (i, j) to node (k, l) can be one of the two paths depicted
in Figure 8: which one is shorter depends on the intracluster distances between the node pairs
connected by wavy lines in Figure 8. In effect, we would need separate optimal routing algo-
rithms for swapped/OTIS networks built of different basis networks (referred to in the literature
as OTIS-mesh, OTIS-hypercube, OTIS-star, and so on).

As evidence of embedding and emulation advantages, we point out that the proof of Hamil-
tonicity for biswapped networks (Theorem 3) is considerably simpler than that required for
swapped/OTIS networks [11]. When better topological parameters are combined with advan-
tages pertaining to applications and embeddings, it would be quite surprising to find a situation
where swapped/OTIS networks would be preferable to biswapped networks.

Figure 8. Two different paths from node (i, j) to node (k, l) in Sw(�). The upper path does not go through any cluster
other than the source cluster i and the destination cluster k. However, the bottom path, which traverses the intermediate
cluster m, may be shorter, depending on the internal structure of the basis network � and the specific values of the
parameters i, j , k, and l.
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Table 2. Change in the topological parameters and cost for various ways of
increasing network size from n to 2n2. For example, an entry of δ for node degree
means that the parameter does not change when the network size is scaled up
from n to 2n2, and δ + 1 means that the node degree increases by 1.

Network Degree Diameter Cost ratio

Cycle (ring) δ 4D2 4D

Square 2D torus δ ≈ 1.4D2 ≈ 1.4D

Hypercube 2δ + 1 2D + 1 ≈ 4
Biswapped network δ + 1 2D + 2 ≈ 2

We now briefly compare biswapped networks to cycles (rings), square 2D tori, and hypercubes
as representative samples of alternative networks with a range of performance and cost parameters.
An important consideration for interconnection networks is their scalability: how the networks
can grow in size and what effect this will have on node structure and network attributes. Because
the two-level biswapped architecture allows us to increase the network size from n (cluster size) to
2n2, we postulate an identical size increase for the other networks, presenting the results in Table 2.
So, for example, when an n-node hypercube with node degree and diameter δ = D = log2 n is
expanded to include 2n2-nodes, its node degree and diameter become log2(2n2) = 2δ + 1 =
2D + 1.

The values in the column headed ‘Cost ratio’ in Table 2 are obtained based on the degree–
diameter product figure of merit relative to the product δD of the basis network. For example, an
n-node ring has δ = 2 and D = n/2 (assume that n is even). When the number of nodes in the
ring is increased to 2n2, its node degree does not change (it remains at δ), its diameter rises to n2,
which is four times the square of its original diameter of n/2, and its cost ratio (relative increase
in degree–diameter product) is 4δD2/(δD) = 4D = 2n. We can see from Table 2 that biswapped
networks scale well in terms of node degree, diameter, and degree–diameter product. They also
possess the advantage of flexibility, in that they can be built from a variety of basis networks that
offer a range of cost and performance attributes. By contrast, there is only one way of expanding
a hypercube, say, which offers a certain unchangeable set of parameters. Even when hierarchical
hypercubes are included in the comparison, the range of options for expansion is much more
limited compared with those of the biswapped networks.

In summary, in view of indirect evidence of superiority for biswapped networks, arising from
properties that they inherit from swapped/OTIS networks, as well as direct evidence (as presented
in Table 2), biswapped networks constitute an important addition to the repertoire of parallel com-
puter designers. These networks are at the same time competitive with, and complementary to, the
existing interconnection networks. They are competitive because they offer a cost-effective way of
scaling network size while maintaining desirable architectural features. They are complementary
owing to the fact that they allow the use of virtually any existing network as the basis network,
thus combining the advantages of particular cluster interconnections with the benefits resulting
from the biswapped connectivity.

7. Conclusions

A number of general results on the class of biswapped networks, composed of 2n copies of
arbitrary n-node clusters, were derived in this paper. The simple connectivity rule for Bsw(�),
formed from copies of the basis network �, ensures its regularity, modularity, fault tolerance,
and algorithmic efficiency. In particular, if � is a Cayley (di)graph, then so is Bsw(�). Our
results provide a systematic method for constructing large, scalable, modular, and robust parallel

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
Sa

nt
a 

B
ar

ba
ra

] 
at

 1
6:

37
 0

3 
N

ov
em

be
r 

20
11

 



International Journal of Computer Mathematics 2683

architectures. Furthermore, the construction scheme is designed to ensure that many desirable
attributes of the underlying basis network comprising the clusters are maintained.

We showed how the key parameters of Bsw(�) are related to the corresponding parameters
of � and obtained results related to the distances between nodes, Hamiltonicity, optimal rout-
ing, and node-disjoint paths. We also discussed the relations between the new networks and
the known swapped/OTIS networks (from which they inherit some important attributes) and
presented a brief direct comparison to networks such as cycles (rings), square 2D tori, and hyper-
cubes. Our conclusion is that the scalability and flexibility advantages, combined with simplicity
in analyses and applications resulting from membership in the class of Cayley graphs, make
biswapped connectivity a useful addition to the catalogue of interconnection networks for parallel
processing.

We hope to have brought some closure to the topic of swapped/OTIS networks, which (even in
the modified form introduced at the beginning of Section 4) are not fully symmetric. Biswapped
networks, on the other hand, are completely symmetric and can accommodate twice as many
nodes as the corresponding swapped/OTIS networks with the same node degree and with a unit
increase in diameter. Our derivations are quite general and apply to any basis network �, whereas
many results for swapped/OTIS networks pertain to specific basis networks. Thus, we expect our
results to find many more applications than those discussed here.

Clearly, a single paper cannot cover all aspects of the wide family of networks that constitute
biswapped networks. It took more than a decade, and dozens of papers, to study swapped/OTIS
networks with respect to properties and algorithmic problems of interest in the communications
and parallel processing communities. We are now trying to extend our results to fault-tolerant
routing and derivation of average internode distance. Besides the aforementioned extensions,
problems in load balancing, deadlock avoidance, congestion control, network embeddings, task
scheduling, resource allocation, fault tolerance, and graceful degradation (by hardware and algo-
rithmic means) merit some attention. We hope to be able to report on new results in some of these
domains in the near future.
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