
ar
X

iv
:0

90
7.

18
17

v1
  [

cs
.C

G
] 

 1
0 

Ju
l 2

00
9

A new intrinsic numerical method for PDE on

surfaces 1

Sheng-Gwo Chen a,∗, Mei-Hsiu Chi band Jyh-Yang Wu b

aDepartment of Applied Mathematics, National Chiayi University, Chia-Yi 600,

Taiwan.

bDepartment of Mathematics, National Chung Cheng University, Chia-Yi 621,

Taiwan

Abstract

In this note we shall introduce a simple, effective numerical method for solving
partial differential equations for scalar and vector-valued data defined on surfaces.
Even though we shall follow the traditional way to approximate the regular surfaces
under consideration by triangular meshes, the key idea of our algorithm is to develop
an intrinsic and unified way to compute directly the partial derivatives of functions
defined on triangular meshes. We shall present examples in computer graphics and
image processing applications.
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1 Introduction

Numerical approaches to solve partial differential equations (PDE’s) on sur-
faces have received growing interest over last decade. However, they are still
not well-understood. Partial differential equations need to be solved intrinsi-
cally and numerically for data defined on 3D surfaces in many applications.
For instance, such examples exist in texture synthesis (Turk[12], Witkin and
Kass[13]), vector field visualization (Diewald, Preufer and Rumpf[?]), weather-
ing (Dorsey and Hanrahan[6]) and cell-biology (Ayton, McWhirter, McMurty
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and Voth 2005). Usually, surfaces are presented by triangular or polygonal
forms. Partial differential equations are then solved on these triangular or
polygonal meshes with data defined on them. The use of triangular or polygo-
nal meshes is very popular in all areas dealing with 3D models. However, it has
not yet been a widely accepted method to compute differential characteristics
such as principal directions, curvatures and Laplacians (Chen and Wu[2], Wu,
Chen and Chi [3,4], Taubin[9,10]). This is because that there is no unified,
simple and effective method to compute these first and second order differen-
tial characteristics of the triangular or polygonal surface and to solve PDE’s
for data defined on triangular or polygonal meshes. In Chen, Chi and Wu[5],
the authors proposed a new intrinsic simple algorithm to handle this difficulty.
In this note, we shall use this new technique to solve PDE’s on surfaces.

In Bertalmio, Cheng, Osher and Sapiro[1] proposed a framework, the implicit
surface algorithm, to solve variational problems and PDE’s for scalar and
vector-valued data defined on surfaces.Their key idea is to use, instead of a
triangular or polygonal representation, an implicit representation. The surface
under consideration is the zero-level set of a higher dimensional embedding
function. Then they smoothly extend the original data on the surface to the
3D domain, adapt the PDE’s accordingly, and implement all the numerical
computations on the fixed Cartesian grid corresponding to the embedding
function. The advantage of their method is the use of the Cartesian grid instead
of a triangular mesh for the numerical implementation.

2 Our intrinsic algorithm for solving PDE’s on surfaces

In ths section we first propose our discrete intrinsic algorithm for solving
PDE’s on regular surfaces. We divide our algorithm into two main steps: First.
we approximate the given surface by a suitable triangular mesh according to
the accuracy demand. Second, we use our new intrinsic differential method
developed in Chen, Chi and Wu[5] to compute the numerical PDE on the
fixed triangular mesh. The first step is now easy to implement since one can
find some good and efficient algorithms in the public domain. The difficult part
lies in the second step. Namely, how can one effectively compute differential
quantities on functions on a triangular mesh?

Next, we shall compare our algorithm with the implicit algorithm proposed
by Bertalmio, Cheng, Osher and Sapiro[1]. We list the key steps of these two
algorithms about solving PDE’s on surfaces as follows.

One can tell from this comparison that our method is much simpler and more
intrinsic. In many applications, one usually starts with triangular meshes in-
stead of regular surfaces. In this case, we do not need Step 1 in our intrinsic
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Our intrinsic algorithm The implicit surface algorithm

1. Obtain a triangular mesh approx-
imated to the given surface.

1. Obtain an implicit representation
of the given fixed surface.

2. Extend smoothly the data on the
surface to the 3D volume

3. Adapt PDE’s accordingly

2. Use our new intrinsic differential
method to compute the numerical
PDE’s on the fixed triangular mesh.

4. Perform all the computations on
the fixed Cartesian grid correspond-
ing to the embedding function.

algorithm. However, in the implicit surface algorithm, one will need one ex-
tra processing step: Construct an accurate implicit surface from a triangular
mesh. Note that the triangular mesh may compose of a lot of triangles. This
will cost large computations to obtain the accurate implicit surface.

Next, we shall describe a new, simple and effective method to define the dis-
crete gradient and the discrete LB operator on functions on a triangular mesh.
In order to do so, we first recall the gradient and the LB operator on functions
in a regular surface Σ in the 3D Euclidean space R

3.

2.1 Gradient and LB operators on regular surfaces

We consider a parameterization x : U → Σ at a point p, where U is an open
subset of the 2D Euclidean space R2. We can choose, at each point q of x(U),
a unit normal vector N(q). The map N : x(U) → S2 is the local Gauss map
from an open subset of the regular surface Σ to the unit sphere in the 3D
Euclidean space R

3. The Gauss map N is differentiable. Denote the tangent
space of Σ at the point p by TΣp = {v ∈ R

3 : v⊥N(p)}. The tangent space
TΣp is a linear space spanned by {xu, xv} where u, v are coordinates for U .

The gradient ∇g of a smooth function g on Σ can be computed from

∇g =
guG− gvF

EG− F 2
xu +

gvE − guF

EG− F 2
xv (1)

where E, F , and G are the coefficients of the first fundamental form and











gu = ∂g(x(u,v))
∂u

gv = ∂g(x(u,v))
∂v

(2)
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See do Carmo[7] for the details. Note that the gradient ∇g assigns to each
point q in Σ a tangent vector ∇g(q) such that we have for all v ∈ TΣq,

〈∇g(q), v〉q =
dg(γ(t))

dt
‖t=0 (3)

where the smooth curve γ(t) is in Σ with γ(0) and γ′(0) = v.

The LB operator △ acting on the function g is defined by the integral duality

(△g, φ) = −(∇g,∇φ) (4)

for all smooth function φ on Σ. A direct computation yields the following local
representation for the LB operator on a smooth function g:

∇g = 1√
EG−F 2

[

∂
∂u
( G√

EG−F 2

∂g

∂u
)− ∂

∂u
( F√

EG−F 2

∂g

∂v
)
]

+ 1√
EG−F 2

[

∂
∂v
( E√

EG−F 2

∂g

∂v
)− ∂

∂v
( F√

EG−F 2

∂g

∂u
)
]

(5)

To move from regular surfaces to triangular meshes, one need to avoid the
problem of local parametrization x around a vertex p. In other word, one
does not have the fist fundamental form E, F , G and their derivatives for the
computation of the gradient and the Laplacian operator of a function on a
triangular mesh. To handle this problem, we give a novel method in Chen,
Chi and Wu[5] to compute these differential quantities. The primary ideas
were developed in Chen, Chi and Wu[4] where we try to estimate the discrete
partial derivatives for 2D scattered data points.

2.2 A new discrete algorithm: local tangential lifting(LTL) method

In this section we shall describe a unified, simple and effective method to
define the discrete gradient and the discrete Laplacian operator on functions
on a triangular mesh. The primary ideas were developed in Chen, Chi and
Wu[3,4] where we try to estimate the discrete partial derivatives of functions
on 2D scattered data points. Indeed, the method that we shall use to develop
our algorithm is divided into two main steps: first we lift the 1-neighborhood
points to the tangent space and obtain a local tangential polygon. Second, we
use some geometric idea to lift functions and vectors to the tangent space and
then we can compute their derivatives in the 2D tangent space. This means
that the lifting process allows us to reduce the 2D curved surface problem to
the 2D Euclidean problem and hence the methods in [4] and[8] can be applied.

Consider a triangular mesh S = (V, F ), where V = {vi|1 ≤ i ≤ nV } is the list
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Fig. 1. The tangential polygon P (v).

vertices and F = {fk|1 ≤ k ≤ nF} is the list of triangles. Next, we introduce
the notion of the local tangential polygon P (v) at the vertex v of S as follows:

(1) The normal vector N(v) at the vertex v in S is given by

N(v) =

∑

f∈T (v) ωfNf
∥

∥

∥

∑

f∈T (v) ωfNf

∥

∥

∥

(6)

where Nf is the unit normal to a triangle face f and the centroid weight
is given in [2] by

ωf =

1
‖Gf−v‖2

∑

f̃∈T (v)
1

‖G
f̃
−v‖2

. (7)

Here, Gf is the centroid of the triangle face f determined by

Gf =
vi + vj + v

3
. (8)

(2) The tangent plane TS(v) of S at v is now determined by

TS(v) = {w ∈ R
3|w⊥N(v)}. (9)

(3) The local tangential polygon P (v) of v in TS(v) is formed by the vertices
ṽi which is the lifting vertex of vi adjacent to v in S.

ṽi = (vi − v)− < vi − v,N(v) > N(v). (10)

as in figure 1.

Let h be a function on V . We will lift locally the function h to a function,
denoted by h̃v, on the vertices ṽi in P (v) by simply setting

h̃v(ṽi) = h(vi). (11)
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And h̃v(~0) = h(v) where ~0 is the origin of TS(v). One can then extend the
function h̃v to a piecewise linear function, still denoted by h̃v, on P (v) as
follows.

Consider a face f with vertices v, vi and vj in F . We obtain a lifting face f̃

with vertices ~0, ṽi and ṽj in P (v). Every point p in f̃ can be written as a linear
combination of ṽi and ṽj . That is, p = aṽi + bṽj where a, b ≥ 0 and a+ b ≤ 1.
Then we define

h̃v(p) = ah̃v(ṽi) + bh̃v(ṽj) + (1− a− b)h̃v(~0). (12)

Hence, the extended function h̃v is affine on each triangle f̃ of P (v) and is
differentiable on f̃ . The gradient ∇(h̃v)f̃ of h̃v at the origin ~0 can be obtained
by

∇(h̃v)f̃(~0) = αṽi + βṽj (13)

where the coefficients α and β satisfy the relations:











h̃(ṽi)− h̃v(~0) =< (∇h̃v)f̃(~0), vi >

h̃(ṽj)− h̃v(~0) =< (∇h̃v)f̃(~0), vj >
(14)

As easy computation gives







α

β





 =







< ṽi, ṽi > < ṽi, ṽj >

< ṽi, ṽj > < ṽj , ṽj >







−1 





h̃v(ṽi)− h̃v(~0)

h̃v(ṽj)− h̃v(~0).





 (15)

To obtain the gradient ∇h(v) of h on S at the vertex v, we use again the
weighted combination method. Namely, we set

∇h(v) = (∇h̃v)(~0) =
∑

f̃∈P (v)

ωf̃(∇h̃v)f̃(~0) (16)

with

ωf̃ =

1
‖G

f̃
‖2

∑

f∈P (v)
1

‖Gf‖2
(17)

where Gf̃ is the centroid of the lifting triangle face f̃ and is determined by

Gf̃ =
ṽi + ṽj

3
. (18)

Next we explain how to obtain a good discrete Laplacian △h(v) of a function h

on the triangular mesh S. From the discussions above, we obtain the gradient
∇h(v) of h on S at each vertex v. We can use the method of parallel transport
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to lift the vector ∇h(vi) at vi to a vector ∇h̃(ṽi) in the tangential space TS(v).
The idea is to define a orthonormal linear map from TS(vi) to TS(v). To do
so, we choose an orthonormal basis for TS(v) by



























N(v)

e1 =
(vi−v)−<vi−v,N(v)>N(v)

‖(vi−v)−<vi−v,N(v)>N(v)‖

e2 = N(v)× e1

. (19)

The corresponding orthonormal basis for TS(vi) is then given by



























N(vi)

ẽ1 =
(vi−v)−<vi−v,N(vi)>N(vi)

‖(vi−v)−<vi−v,N(vi)>N(vi)‖

ẽ2 = N(vi)× ẽ1

. (20)

Then, the linear map L of the parallel transport is given by

L(w) = ae1 + be2 ∈ TS(v) (21)

for w = aẽ1 + bẽ2 in TS(vi). See figure 2.

In this way, we can set the tangential gradient ∇h̃ at ṽi by

∇h̃(ṽi) = L(∇h(vi)). (22)

Hence we obtain a tangential gradient ∇h̃ of h at each vertex ṽi in the tan-
gential polygon P (v) and we also set

∇h̃(~0) = ∇h(v). (23)

See figure 3.

7



)(vP

)(vTS

)(
~

ivh

iv~

jv~

)(
~

jvh

)0(
~

h

Fig. 3. ∇h̃

Fix an orthonormal basis {e1, e2} for TS(v). The tangential gradient ∇h̃ can
be written as

∇h̃(ṽi) = a(ṽi)e1 + b(ṽi)e2. (24)

The coefficients a(ṽi) and b(ṽi) can now be viewed as functions on the vertices
ṽi of the tangential polygon P (v). As before, we can then obtain their gradients
(∇a)(~0) and (∇b)(~0) at origin. Namely,

(∇a)(~0) =
∑

f̃∈P (v) ωf̃(∇a)f̃ (~0)

(∇b)(~0) =
∑

f̃∈P (v) ωf̃(∇b)f̃ (~0)
(25)

with the centroid weights ωf̃ as in (17).

Put them in the matrix form to give

(∇a)(~0) = a11e1 + a21e2

(∇b)(~0) = a12e1 + a22e2.
(26)

Therefore we have the Laplacian △h(v) of h at the vertex v of S :

△h(v) = a11 + a22. (27)

Theoretically the definition of the Laplacian △h(v) is independent of the
choice of the orthonormal basis {e1, e2}.
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3 Linear diffusion

As a simple example to illustrate our new algorithm, let us consider a linear
diffusion equation on a regular surface Σ:

ut −△u = g on Σ× I (28)

for u : Σ × I → R, I ⊂ R, where △ is the surface Laplacian on Σ and
g : Σ× I → R is a smooth function on Σ. For the numerical implementation
of our intrinsic algorithm, we take the regular surface Σ to be (1) the unit
sphere S2 or (2) a torus T 2. In the case of the sphere S2, we consider the
function

g(x) = x1 for x = (x1, x2, x3) ∈ S2. (29)

Figure 4 and figure 5 give the solution of (28) and (29) with initial functions
u(x, 0) = 0. Different time steps are shown until the stationary solution is
reached.

Consider the torus T 2
(a,r) = ((a+r cosx) cos y, (a+r cosx) sin y, sinx) for x, y ∈

[0, 2π] with a > r > 0. we take a = 2, r = 1 and choose the function

g(x, y) = x for x, y ∈ [0, 2π] (30)

Figure 6 and figure 7 give the solution of (28) and (30) with initial functions
u(x, 0) = 0. As above, different timesteps are depicted until the stationary
solution is reached.

4 Reaction-diffusion textures

The original idea about how reaction-diffusion equations can be used to cre-
ate patterns was first introduced in (Turing[11]). The basic idea is to have a
number of chemicals that diffuse at different rates and that react with each
others. After the works of (Turk[12], Witkin and Kass[13]), the use of reaction-
diffusion equations for texture synthesis attracted a lot of attentions in com-
puter graphics. Turk , Witkin and Kass used these equations for planar tex-
tures and textures on surfaces. Then the patterns are analyzed by assigning a
brightness value to the concentration of one of the ”chemicals”.

Consider two chemicals u1 and u2 on a surface Σ. In a simple isotropic model,
we have

9













∂u1

∂t
= f(u1, u2) + α△u1

∂u2

∂t
= g(u1, u2) + β△u2

(31)

where α and β are two constants representing the diffusion rates and f and g

are functions that describe the reaction. For simple isotropic patterns, Turing
chose the functions f and g to be











f(u1, u2) = s(16− u1u2)

g(u1, u2) = s(u1y2 − y2 − γ)
(32)

where s is a constant and γ is a random function giving the irregularities in
the chemical concentration.

By using our intrinsic method described in the previous section, we can easily
generate textures on surfaces without the elaborated schemes employed in
(Turk 1991, Witkin and Kass 1991).

In the case of the sphere S2, figure 8 and figure 9 give the solution of (31)
and (32) with initial functions and Different timesteps are shown until the
stationary solution is reached.

On the torus T 2
(a,r) = ((a+r cosx) cos y, (a+r cosx) sin y, sin x) for x, y ∈ [0, 2π]

figure 10 and figure 11 give the solution of (31) and (32) with initial functions
u1(x, 0) = u2(x, 0) = 1 and α = 1, β = s = 2, γ = 0. Different timesteps are
shown until the stationary solution is reached.
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Fig. 10. torus

Fig. 11. torus (stationary solution)

14


	Introduction
	Our intrinsic algorithm for solving PDE's on surfaces
	Gradient and LB operators on regular surfaces 
	 A new discrete algorithm: local tangential lifting(LTL) method

	Linear diffusion
	Reaction-diffusion textures
	References

