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New results on mathematical foundations of
asymptotic complexity analysis of algorithms
via complexity spaces

S. Romaguera, P. Tirado, O. Valero

Abstract

In 1995, M.P. Schellekens introduced the theory of complexity
(quasi-metric) spaces as a part of the development of a topological
foundation for the asymptotic complexity analysis of programs and
algorithms [Electron. Notes Theor. Comput. Sci. 1 (1995), 211-
232]. The applicability of this theory to the asymptotic complexity
analysis of Divide and Conquer algorithms was also illustrated by
Schellekens in the same reference. In particular, he gave a new for-
mal proof, based on the use of the Banach fixed point theorem, of
the well-known fact that the asymptotic upper bound of the average
running time of computing of Mergesort belongs to the asymptotic
complexity class of nlog,n. Motivated by the utility of the quasi-
metric approach for the asymptotic complexity analysis based on the
use of fixed point techniques and complexity spaces, on one hand we
extend Schellekens’ method in order to yield asymptotic upper bounds
for a class of algorithms whose running time of computing leads to re-
currence equations different from the Divide and Conquer ones, and,
on the other hand, we improve the original Schellekens method by in-
troducing a new fixed point technique for providing lower asymptotic
bounds for the running time of computing of the aforesaid algorithms.
We illustrate and validate the developed method applying our results
to provide the asymptotic complexity class (asymptotic upper and
lower bounds), among others, of the celebrated recursive algorithm
that solves the problem of Hanoi Towers.

quasi-metric, complexity space, fixed point, improver, worsener,
complexity class, Quicksort, Hanoi, Largetwo.
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1 The fundamentals of asymptotic complex-
ity analysis of algorithms via complexity
spaces

Throughout this paper the letters R™ and N will denote the set of nonnegative
real numbers and the set of positive integer numbers, respectively.

Our basic reference for complexity analysis of algorithms is [1].

In Computer Science the complexity analysis of an algorithm is based on
determining mathematically the quantity of resources needed by the algo-
rithm in order to solve the problem for which it has been designed. A typical
resource, playing a central role in complexity analysis, is the running time of
computing. Since there are often many algorithms to solve the same problem,
one objective of the complexity analysis is to assess which of them is faster
when large inputs are considered. To this end, it is required to compare their
running time of computing. This is usually done by means of the asymptotic
analysis in which the running time of an algorithm is denoted by a function
T : N — (0,00] in such a way that T'(n) represents the time taken by the
algorithm to solve the problem under consideration when the input of the
algorithm is of size n. Of course the running time of an algorithm does not
only depend on the input size n, but it depends also on the particular input
of the size n (and the distribution of the data). Thus the running time of
an algorithm is different when the algorithm processes certain instances of
input data of the same size n. As a consequence, in general it is necessary to
distinguish three possible behaviors when the running time of an algorithm is
discussed. These are the so-called best case, the worst case and the average
case. The best case and the worst case for an input of size n are defined by
the minimum and the maximum running time of computing over all inputs
of the size n, respectively. The average case for an input of size n is defined
by the expected value or average running time of computing over all inputs
of the size n.

Given an algorithm, to determine exactly the function which describes
its running time of computing is in general an arduous task. However, in
most situations is more useful to know the running time of computing of an
algorithm in an “approximate” way than in an exact one. For this reason the



asymptotic complexity analysis of algorithms focus its interest in obtaining
“approximate” running times of computing.

In order to recall pertinent notions from asymptotic complexity analysis,
let us assume that f : N — (0, 00] denotes the running time of computing
of a certain algorithm. In addition, consider that there exists a function
g : N — (0,00] such that there exist, simultaneously, no € N and ¢ > 0
satisfying f(n) < cg(n) for all n € N with n > ng (< and > stand for the
usual orders on RT). Then, the function g provides an asymptotic upper
bound of the running time of the studied algorithm. Thus, if we do not
know the exact expression of the function f, then the function g gives an
“approximate” information of the running time of the algorithm in the sense
that the algorithm takes a time to solve the problem bounded above by g.
Following the standard notation, when g is an asymptotic upper bound of f
we write f € O(g).

Sometimes in the analysis of the complexity of an algorithm is useful to
assess an asymptotic lower bound of the running time of computing. In this
case the Q-notation plays a central role. Thus the statement f € Q(g) means
that there exist np € N and ¢ > 0 such that cg(n) < f(n) for all n € N
with n > ng. Of course, and similarly to the O-notation case, when the time
taken by the algorithm to solve the problem f is unknown, the function g
yields an “approximate” information of the running time of the algorithm
in the sense that the algorithm takes a time to solve the problem bounded
below by g.

It is clear that the best situation, when the complexity of an algorithm
is discussed, matches up with the case in which we can find a function g :
N — (0,00] in such a way that the running time f holds the condition f €
O(g) N (g), denoted by f € ©(g), because, in this case, we obtain a “tight
"asymptotic bound of f and, thus, a total asymptotic information about the
time taken by the algorithm to solve the problem under consideration. From
now on, we will say that f belongs to the asymptotic complexity class of g
whenever f € O(g).

Hence, from an asymptotic complexity analysis viewpoint, to determine
the running time of an algorithm consists of obtaining its asymptotic com-
plexity class.

In 1995, M.P. Schellekens introduced a new mathematical framework,
known as complexity spaces, as a part of the development of a topological
foundation for the asymptotic complexity analysis of algorithms ([6]). This



approach is based on the notion of quasi-metric space.

Following [4], a quasi-metric on a non-empty set X is a function d :
X x X — R" such that for all z,y,z € X : (i) d(z,y) =d(y,z) =0 &z =y;
(il) d(z,y) < d(z,z) + d(z,y).

Of course a metric on a non-empty set X is a quasi-metric d on X sat-
isfying, in addition, the following condition for all z,y € X: (iii) d(z,y) =
d(y, ).

A quasi-metric space is a pair (X, d) such that X is a non-empty set and
d is a quasi-metric on X.

Each quasi-metric d on X generates a Ty-topology 7T (d) on X which
has as a base the family of open d-balls {By(x,¢) : x € X, ¢ > 0}, where
By(z,e) ={y € X :d(z,y) <e} forallz € X and £ > 0.

Given a quasi-metric d on X, the function d° defined on X x X by
d*(z,y) = max (d(z,y),d(y,x)) is a metric on X.

A quasi-metric space (X, d) is called bicomplete if the metric space (X, d*)
is complete.

A well-known example of a bicomplete quasi-metric space is the pair

((0,00],u_1), where u_y(z,y) = max <l — %,O) for all z,y € (0,00]. Ob-

viously we adopt the convention that i = 0. The quasi-metric space

((0,00],u_1) plays a central role in the Schellekens approach. Indeed, let
us recall that the complexity (quasi-metric) space is the pair (C, d¢), where

C:{f:N%(O,oo]:nio;Q_"ﬁ<oo}

and d¢ is the bicomplete quasi-metric on C defined by

g) 222_"max (ﬁ—ﬁ,o).

According to [6], since every reasonable algorithm, from a computability
viewpoint, must hold the “convergence condition” » > 27" fl) < 00, it is
possible to associate each algorithm with a function of C in such a way that
such a function represents, as a function of the size of the input data, its
running time of computing. Because of this, the elements of C are called
complexity functions. Moreover, given two functions f, g € C, the numerical
value de(f, g) (the complexity distance from f to g) can be interpreted as the



relative progress made in lowering the complexity by replacing any program
P with complexity function f by any program ) with complexity function
g. Therefore, if f # g, the condition d¢(f, g) = 0 can be read as the program
P is at least as efficient as the program @ (indeed, note that d¢(f,g) =0 <
f(n) < g(n) for all n € N). In fact, the condition d¢(f,g) = 0 implies that
f€0(g).

Notice that the asymmetry of the complexity distance de plays a central
role in order to provide information about the increase of complexity when-
ever a program is replaced by another one. A metric will be able to yield
information on the increase but it, however, will not reveal which program
is more efficient.

The applicability of the theory of complexity spaces to the asymptotic
complexity analysis of algorithms was illustrated by Schellekens in [6]. In
particular, he gave, among other things, a new proof of the well-known fact
that that the function f € C, given by f(1) = ¢ > 0 and f(n) = nlog, n for
all n € N with n > 1, is an asymptotic upper bound of the average running
time of computing of Mergesort. To this end, he introduced a method, based
on the below quasi-metric version of Banach’s fixed point theorem, to analyze
the running time of computing of the general class of Divide and Conquer
algorithms (observe that Mergesort is a Divide and Conquer algorithm).

Theorem 1. Let f be a mapping from a bicomplete quasi-metric space (X, d)
into itself such that there exists s € [0,1) satisfying

d(f(z), f(y)) < sd(z,y), (1)
for all x,y € X. Then f has a unique fixed point.

Let us recall that a mapping f from a quasi-metric space (X, d) into itself
holding inequality (1) is said to be contractive with contractive constant s.

Next we provide a general view of the aforenamed method with the aim
of motivating our subsequent work.

A Divide and Conquer algorithm solves a problem of size n (n € N) split-
ting it into a subproblems of size %, for some constants a, b with a,b € N and
a,b > 1, and solving them separately by the same algorithm. After obtain-
ing the solution of the subproblems, the algorithm combines all subproblem
solutions to give a global solution to the original problem. The recursive
structure of a Divide and Conquer algorithm leads to a recurrence equation
for the running time of computing. In many cases the running time of a



Divide and Conquer algorithm is the solution to a recurrence equation of the

form
c ifn=1
T(n) = { al'(3) +h(n) ifneN, ’ 2)

where N, = {b* : k € N}, ¢ > 0 denotes the complexity on the base case (i.e.
the problem size is small enough and the solution takes constant time), h(n)
represents the time taken by the algorithm in order to divide the original
problem into a subproblems and to combine all subproblems solutions into a
unique one (h € C with h(n) < oo for all n € N).

Notice that for Divide and Conquer algorithms, it is typically sufficient
to obtain the complexity on inputs of size n with n ranges over the set N,
([1).

Mergesort is a typical and well-known example of a Divide and Conquer
algorithm whose running time of computing satisfies the recurrence equation
(2) (see [1] for a fuller description).

In order to compute the running time of computing of a Divide and
Conquer algorithm satisfying the recurrence equation (2), it is necessary
to show that such a recurrence equation has a unique solution and, later,
to obtain the asymptotic complexity class of such a solution. The method
introduced by Schellekens allows to show that the equation (2) has a unique
solution, and provides an upper asymptotic complexity bound of the solution
in the following way:

Denote by Cp . the subset of C given by

Co. ={f €C: f(1)=cand f(n) = oo for all n € N\N, with n > 1}.

Since the quasi-metric space (C, dc) is bicomplete ([5]) and the set Cp is
closed in (C,dg), we have that the quasi-metric space (Cy.c, dclc, ) is bicom-
plete.

Next we associate a functional ®r : C, . — Cp . with the recurrence equa-
tion (2) of a Divide and Conquer algorithm given as follows:

c iftn=1
00 if ne N\N, andn >1 . (3)
af(%)+ h(n) otherwise

Of course a complexity function in Gy . is a solution to the recurrence equation
(2) if and only if it is a fixed point of the functional ®r. Then, Schellekens

Or(f)(n) =



proved ([6]) that

dele,..(®r(f), r(g)) < “dele, (1. 0) (1

for all f,g € Cy.. So, by Theorem 1, the functional 7 : C. — Cp. has
a unique fixed point and, thus, the recurrence equation (2) has a unique
solution.

In order to obtain the upper asymptotic complexity bound of the solu-
tion to the recurrence equation (2), Schellekens introduced a special class of
functionals known as improvers.

Let C C C. A functional ® : C' — C' is called an improver with respect
to a function f € C provided that ®"(f) < ®"~!(f) for all n € N. Of course
®O(f) = f. Observe that an improver is a functional which corresponds to
a transformation on programs in such a way that the iterative applications
of the transformation yield, from a complexity point of view, an improved
program at each step of the iteration. Note that under the assumption that
the functional ® is monotone, to show that ® is an improver with respect to
f € C is equivalent to verify that ®(f) < f.

Taking into account the exposed facts, Schellekens stated the following
result ([6]).

Theorem 2. A Divide and Conquer recurrence of the form (2) has a unique
solution fr in Cp.. Moreover, if the functional ®r associated with (2) is
an improver with respect to some function g € Cy., then the solution to the
recurrence equation satisfies that fr € O(g).

He also obtained an asymptotic upper bound of the running time of com-
puting of Mergesort in order to illustrate the usefulness of Theorem 2. In the
particular case of Mergesort (average case), the running time of computing
satisfies the following particular case of recurrence equation (2):

c itn=1
T(”)_{ 2T(2)+ 2 ifneNy - (5)

It is clear that Theorem 2 shows that the recurrence equation (5) has a
unique solution f2' in Cy .. In addition, Schellekens proved that the functional
&1 induced by the recurrence equation (5) is an improver with respect to a
complexity function gy € Co. (with k& > 0, gr(1) = ¢ and gx(n) = knlog,(n)
for all n € Ny) if and only if k£ > % Therefore, by Theorem 2, we conclude

7



that fM € O(g1), i.e. Theorem 2 provides a formal proof, based on fixed
point techniquesQ, of the well-known fact that the running time of computing
(average case) fM of Mergesort is in O(nlogyn), i.e. that the complexity
function g, or equivalently O(nlog,n), gives an asymptotic upper bound

of fM. Furthermore, in [6] it is pointed out that an asymptotic lower bound of
the running time of Mergesort (average case) belongs to £2(nlog, n) (following
standard arguments which are not based on the use of fixed point techniques).
So Mergesort running time (average case) belongs to the complexity class
©(nlog,n).

Of course, Schellekens” method, without meaning to compete with the
standard and classical techniques to analyze the complexity of algorithms,
has the advantage of allowing to apply similar ideas to those presented by
D.S. Scott ([7], [8]) in modelling the meaning of recursive denotational specifi-
cations of algorithms via fixed point techniques in such a way that the notion
of “iterative approximations”, typical of the topological Scott framework, is
captured trough the concept of improver functional.

2 Extending the applicability of complexity
spaces: new algorithms and recurrence equa-
tions

In spite of it seems natural that the complexity analysis of Divide and Con-
quer algorithms always leads up to Divide and Conquer recurrence equations
of type (2), this is not the case. Sometimes this kind of recursive algorithms
yields recurrence equations that differ from (2). A well-known example of
this sort of situations is provided by Quicksort (worst case) ([2]). In partic-
ular, the running time of computing (worst case) of the aforesaid algorithm
is the solution to the recurrence equation given exactly as follows:

c ifn=1
T(n)Z{T(n_1)+jn ifn>2" (6)

with 7 > 0 and where c is the time taken by the algorithm in the base case.
Observe that in this case it is not necessary to restrict the input size of the
data to the set N for some b € N with b > 1.

Although the recurrence equations associated to the running time of com-
puting of Mergesort and Quicksort do not belong to the same class for the

8



cases discussed above, it is clear that the main relationship between both
algorithms is given by the fact that them belong to the Divide and Conquer
algorithms class and, thus, they are recursive algorithms.

Of course, the class of recursive algorithms is wider than the Divide and
Conquer. An illustrative example of recursive algorithm, which does not
belong to the Divide and Conquer family, is provided by Hanoi. Hanoi solves
the Towers of Hanoi puzzle (see [2] and [3]). In this case, under the uniform
cost criterion assumption, the running time of computing is the solution to
a recurrence equation given by

c ifn=1
T(H)I{QT(n—l)—i—d if n>2" (7)

with ¢,d > 0 and where ¢ represents the time taken by the algorithm to solve
the base case. Notice that does not make sense distinguish three possible
running time behaviors for Hanoi, since the distribution of the input data is
always the same for each size n.

The fact that the class of recursive algorithms is wider than the Divide
and Conquer inspires to wonder two questions. On one hand, whether one
can obtain a family of recurrence equations in such a way that the com-
plexity analysis of those algorithms whose running time of computing is a
solution either to recurrence equations of type (6) and (7) or to a Divide and
Conquer one can be carried out from it. On the other hand, whether such a
complexity analysis can be done via an extension of the fixed point technique
of Schellekens.

Clearly, the recurrence equations that yield the running time of computing
of the above aforesaid algorithms can be considered as particular cases of the
following general one:

c itn=1
T(n):{ al'ln—1)4+h(n) ifn>2" (8)

with ¢ > 0, @ > 1 and h € C such that h(n) < oo for all n € N.

Clearly, the discussion of the complexity of the Divide and Conquer al-
gorithms introduced in Section 1 can be carried out from the family of re-
currence equations of type (8). This is possible because the running time of
computing of the aforementioned algorithms leads to recurrence equations
can be seen as a particular case of our last general family of recurrence equa-
tions. Indeed, a Divide and Conquer recurrence equation



c ifn=1
Tn) = { aT(2) + h(n) if neN, 9)

can be transformed into the following one

c ftm=1

S(m)—{ aS(m—1)+r(m) ifm>1"

where S(m) = T(b™ ') and r(m) = h(b™!) for all m € N. Recall that
N, = {b* : k € N}. Of course, the analysis, in the Shellekens spirit, of the
recurrence equation (10) allows immediately to study Divide and Conquer
recurrence equations.

As well as the exposed advantage, the relevance of the family of recurrence
equations of type (8) is intensified by the fact that the running time of certain
non-recursive algorithms also matches up with the solution to a recurrence
equation that can be retrieved as a particular case of the general recurrence
equation (8). A good example is provided by Largetwo. This algorithm finds
the two largest entries in one-dimensional array of size n € N with n > 1
(for a deeper discussion we refer the reader to [2]). The running time of
computing of Largetwo (average case) can be associated with the solution to
the recurrence equation given as follows:

c ifn=1
T(n):{T(n—1)+2—% ifn>2 (11)

(10)

where c is, again, the time taken by the algorithm in the base case, i.e. when
the input data is a one-diemensional array with only one element or the array
does not contain input data. Notice that Largetwo needs inputs data with
size at least 2.

In what follows our purpose is to demonstrate that the Schellekens fixed
point technique can be used satisfactorily to discuss the complexity of those
algorithms whose running time of computing yields with a recurrence equa-
tion of type (8). In particular, we prove that the aforesaid recurrence equa-
tion has a unique solution and, in addition, we obtain the complexity class
(asymptotic upper and lower bounds) of such a solution. Similarly to Schellekens’
approach, our technique to obtain the asymptotic upper bound is based on
the use of the improver functional induced by the recurrence equation. Nev-
ertheless, we introduce a new kind of functionals, that we have called “wors-
ener” functionals, with the aim of obtaining the asymptotic lower bound of

10



the solution to the recurrence equation. In order to provide the complexity
class of an algorithm whose running time satisfies a recurrence equation of
type (8) we prove that it is enough to search among all complexity functions
for which the functional associated to the recurrence equation is simultane-
ously an improver and a worsener. Finally, in order, on one hand, to validate
our new results and, on the other hand, to show the potential applicabil-
ity of the developed theory to complexity analysis in Computer Science, we
shall discuss the running time of Quicksort (worst case), Hanoi and Largetwo
(average case), respectively.

3 The new fixed point technique in complex-
ity analysis

Is this section we provide the new fixed point technique to show the existence
and uniqueness of the solution to the recurrence equations of type (8) and
the announced mathematical method to obtain the complexity class of those
algorithms whose running time satisfies the recurrence equation under study.

3.1 The existence and uniqueness of solution

Consider the subset C. of C given by
Cc:{fECf(l):C}
Define the functional W7 : C.— C. by

c fn=1

r(f)(n) = { af(n—1)+h(n) if n>2

for all f € C,. It is clear that a complexity function in C. is a solution to the
recurrence equation (8) if and only if it is a fixed point of the functional Wr.

(12)

The next result supplies the bicompleteness of the pair (C,, dc|c. ).

Proposition 3. The subset C,. is closed in (C,d}).

Proof. Let g € G, and (f;)ien C Ce with limy o0 d5(g, f;) = 0.

11



First of all we prove that g € C. Indeed, given ¢ > 0, there exist ig,ng € N

such that d&(g, f;) < § whenever i >4y and not12” ”f o) < 5. Whence
= 1 1 1
s - S G-
Z 2 P R

[e.e] 1 [ee]

D DRI = R R

n=ng+1 g(n> io n=no+1 fZO
[ee]
< dC g, fzo Z f
n=ng+1 o
< €.

It follows that g € C.

Now suppose for the purpose of contradiction that g ¢ C.. Then g(1) 7& c.
Put ¢ = 27 1|— — 1], Then there exists i € N such that di(g, f;) <
whenever 7 > 1g. Thus

i 27" L — ! <e
- g(n)  fi(n)
whenever i > iy. As a result we have that
- *lr ——|<22 (| EE .
fio (n)
which is a contradiction. So g(1) = c.
Therefore we have shown that C_Cdc =C,. [ |

Since the metric space (C,d5) is complete and, by the preceding propo-
sition, the subset C. is closed in (C,d?) we immediately obtain the following
consequence.

Corollary 4. The quasi-metric space (C.,dc|c,) is bicomplete.

Theorem 5. The functional Y is a contraction from (C.,dc
with contractive constant %

c.) into itself

Proof. Let f,g € C.. Then

12



dele.(Wr(f), ¥r(g)) = 21 27" max Ur(g)(n)  Yr(f)(n) 0)
>0 Y 1
= 22 max a9 = 1)+ h(n) af(n—l)—l—h(n)’())

IN
g
)
S
=
"

af(n—1) — ag(n — 1)
2g(n— 1) f(n 1) ”)

n=2

(

(
R

(

(

1 1
aan—n‘aﬂn—n”)

o0
= g 27" max
n=2

1

— 4
2, C|Cc(f7 g)7

where s(n) = ah(n)(f(n — 1) + g(n — 1)) + h(n)? for all n > 2.
Now the existence and uniqueness of the fixed point fr € C. of W follow
from the fact that a > 1 and Corollary 4 and Theorem 1. [ |

From the above theorem we can immediately gather that a recurrence
equation of the form (8) has a unique solution fr in C. which matches up
with the running time of computing of the algorithm under study considered
in each case.

3.2 The complexity class of the solution

Next we provide a method (Theorem 7 below) to describe the complexity
of those algorithms whose running time of computing satisfies a recurrence
equation of type (8). To this end we need the following auxiliary result.

Lemma 6. Let C be a subset of C such that the quasi-metric space (C,d¢|c)
is bicomplete and let ¥ : C' — C be a contraction with fized point f € C' and
contractive constant s. Then the following statements hold:

1) If there exists g € C with de¢|c(Y(g),g) = 0, then de|c(f, g) = 0.
2) If there exists g € C with dc|c(g, VY (g)) = 0, then dc|c(g, f) = 0.

13



Proof. 1) Assume that there exists g € C' such that d¢|c(¥(g),g) = 0.
Suppose for the purpose of contradiction that de|c(f, g) > 0. Then we have
that

delc(f,9) < delo(f,¥(g)) +dclc(¥(g),9) = delc(f, ¥(g))
< dele(f, U (f)) +delc(Y(f), U(g))

= de|c(V(f),¥(g)) < sde|c(f,9).

From the preceding inequality we deduce that 1 < s, which is imposible. So

dC’C(fvg> =0.
2) Similar arguments to those given in the proof of 1) remain valid to
prove the thesis of 2). |

Note that if a complexity function f represents the running time of com-
puting of an algorithm under study, the fact that there exists a complexity
function g satisfying the condition d¢|c(¥(g),9) = 0 (de|c(g, ¥(g)) = 0)
in the preceding lemma provides an asymptotic upper (lower) bound of the
aforesaid running time, since de|o(f,9) = 0 (de|lc(g, f) = 0) implies that
f€0(g) (f €Qg)).

In the light of Lemma 6 we observe that in order to get an asymptotic
upper bound of the running time of computing of an algorithm whose running
time matches up with the fixed point of a contraction ¥ : C' — C (C' C C),
it is enough to check if such a mapping satisfies the condition ¥(g) < g for
any complexity function even if W is not monotone, i.e. it is unnecessary to
check if ¥ is an improver with respect to a complexity function. Motivated
by this reason, in the remainder of this paper, given C' C C and a contraction
U : C — C we will say that U is contractive improver (cont-improver for
short) with respect to a complexity function g € C' whenever ¥(g) < g.
Notice that an improver in our sense is an improver in the original sense of
Schellekens. Moreover, the computational meaning of improver functionals
remains valid for the cont-improver ones. Indeed, if ¥ is a cont-improver with
respect to the complexity function g then ¥"(g) < U™ 1(g) for all n € N,

since
1

de|c(¥™(g), " (g)) < Wdclc(‘lf(g),g) =0
for all n € N.

Inspired by statement 2) in Lemma 6 we introduce a new kind of func-
tionals that we call worseners. Let C' C C, a contraction ¥ : C' — C' is said

to be a worsener with respect to a function f € C provided that f < U(f).

14



Observe that if ¥ is a worsener with respect to f € C, then

1
Wdc‘c(fa ‘I’(f)) =0
for all n € N. It follows that the computational meaning of a worsener
functional is dual to the meaning of a cont-improver functional. In fact, a
worsener is a functional which corresponds to a transformation on programs
in such a way that the iterative applications of the transformation yield a
worsened, from a complexity point of view, program at each step of the
iteration.

In the next result we obtain the announced method to provide the com-
plexity class of an algorithm whose running time of computing satisfies a
recurrence equation of type (8).

delc(¥"71(f), 9"(f) <

Theorem 7. Let fr € C. be the (unique) solution to a recurrence equation
of type (8). Then the following facts hold:

1) If the functional Y1 associated to (8), and given by (12), is a cont-
improver with respect to some function g € C,, then fr € O(g).

2) If the functional W associated to (8), and given by (12), is a worsener
with respect to some function g € C.., then fr € Q(g).

Proof. Let fr € C. be the (unique) solution to the recurrence equation
(8). Assume that Wp is an improver with respect to g € C.. Then we
have ¥r(g) < g. Hence we obtain that de|c.(Ur(g),g) = 0. It immediately
follows, by statement 1) in Lemma 6, that d¢|c.(fr,g) = 0 and, thus, fr < g.
Consequently fr € O(g). So we have proved 1).

To prove 2) suppose that Wr is a worsener with respect to g € C.. Then
g < Vr(g). Whence we deduce that dclc. (g, ¥7(g)) = 0. Thus statement 2)
in Lemma 6 yields that dcle,(fr,g) = 0. Hence g < fr and we conclude that
fr € Q(g). This finishes the proof.

Note that the solution to a recurrence equation of type (8) satisfies that
fr € O(g) N Q(h) whenever Uy is a cont-improver and a worsener with
respect to g € C. and h € C,, respectively. Consequently, Theorem 7 yields
the complexity class of algorithms whose running time of computing satisfies
a recurrence equation of type (8) when there exist [ € C., r,t > 0 and ng € N
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such that g(n) = ri(n) and h = tl(n) for all n > ng and, besides, V7 is a
cont-improver and a worsener with respect to g and h respectively, because,
in such a case, fr € O(l).

3.3 Analyzing the running time computing of some al-
gorithms

We end the paper showing that the developed method is useful to analyze
the asymptotic complexity of Divide and Conquer algorithms, recursive al-
gorithms and even non-recursive algorithms. To this aim we validate our
results retrieving as an immediate consequence of Theorem 7 the well-known
asymptotic complexity class of Quicksort (worst case), Hanoi and Largetwo
(average case).

Quicksort: The running time of computing of Quicksort (worst case) is
the solution to the recurrence equation

c ifn=1

T(n)_{T(n—l)—i—jn ifn>2 " (13)
where ¢,7 > 0. It is clear that the preceding recurrence equation can be
retrieved from (8) as a particular case when we fix a = 1 and h(n) = jn for

all n € N. Then, taking

c ifn=1
GIOES ST S (14
for all f € C., Theorem 5 guarantees the existence and uniqueness of the
solution (in C.), which matches up with the running time of computing of
Quicksort (worst case), to the above recurrence equation. Denote such a
solution by f;?. It is not hard to see that Ut is a cont-improver with respect
to the complexity function h, € C. (i.e. Vrp(h,) < h,) if and only if r >

max{¥ ¢ 4 %}, where the complexity function h, is given by

54
c ifn=1
hr(m:{ rn? if n>2

Hence we obtain, by statement 1) in Theorem 7, that the running time
of Quicksort (worst case) holds f& € O(h

mox(Y5+4))

16



In addition, it is not hard to see that Wr is a worsener with respect to the
complexity function h, (i.e. hy < Wrp(h,)) if and only if s < min{, { + 3},
whence we deduce, by statement 2) in Theorem 7, that f< € Q(hypinga, cher})

Therefore we obtain that fr € O(hmax{%%r%}) N Q(hmin{%&Jr%}

f% € ©(n?), which is in accordance with the Quicksort (worst case) com-
plexity class that can be found in the literature ([1], [2]).

). Hence

Hanoi: The running time of computing of Hanoi is the solution, under
the uniform cost criterion assumption, to the recurrence equation

c ifn=1

ﬂm_{Qﬂn—U+dﬁn22’ (15)
where ¢,d > 0. It is clear that the preceding recurrence equation can be
retrieved from (8) as a particular case when we fix ¢ = 2 and h(n) = d for
all n € N. Then, taking

c ifn=1
B0 ={ 1y cd oo (16)
for all f € C., Theorem 5 guarantees the existence and uniqueness of the
solution (in C.), which matches up with the running time of computing of
Hanoi, to the above recurrence equation. Next we denote such a solution
by fH. Tt is not hard to see that Up is a cont-improver with respect to
the complexity function h, € C. (i.e. ¥p(h,) < h,) if and only if r >
max{d, 257} where the complexity function h, is given by

3
c ifn=1
}MMZ{TQMJ)ﬁnzz

So, by statement 1) in Theorem 7, we deduce that the running time of
Hanoi satisfies fH € O(hmax{d,QcT"'d})'

Furthermore, it is easily seen that W; is a worsener with respect to the
complexity function hy (i.e. hy < Wr(hy)) if and only if s < min{d, 24},
whence we deduce, by statement 2) in Theorem 7, that f# € Q(h, .. {d, 264 })-

Therefore we deduce hat ff € O(Pnasga,2ey) N QP g 20001). Thus

fH € ©(2), which is in accordance with the Hanoi complexity class that
can be found in the literature ([2]).
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Largetwo: The running time of computing of Largetwo (average case)
is the solution to the recurrence equation

c itn=1

T(n)_{T(n—l)—l—Q—% ifn>2" (17)
where ¢ > 0. It is clear that the preceding recurrence equation can be
retrieved from (8) as a particular case when we fix @ = 1 and h(n) =2 — %
for all n € N. Then, taking

GRS (RN S ()

for all f € C., Theorem 5 guarantees the existence and uniqueness of the
solution (in C.), which matches up with the running time of computing of
Largetwo (average case), to the above recurrence equation. Let us denote
such a solution by f&. It is not hard to see that Wy is a cont-improver with
respect to the complexity function h, € C. (i.e. Ur(h,) < h,) if and only if

r> max{#g(z), gg‘z’l , where the complexity function h, is given by
2(3

ho(n) = c itn=1
= r(2(n—1)—logyn+d) ifn>2

So we deduce, by statement 1) in Theorem 7, that the running time of
Largetwo (average case) satisfies f£ € O(h

5 2¢c+3 } ) .
6-+3logo (%)’ 2+2d

Moreover, a straightforward computation shows that W, is a worsener
with respect to the complexity function hy (i.e. hy < Up(hy)) if and only if
s < min{1, 353}, whence we deduce, by statement 2) in Theorem 7, that

L
fT € Q(hmin{l,gi—gz )
Therefore we obtain hat fk € O(h

max{

5 20+3}) M Q(hmin{1,26+3 )

6+3 10g2<%) ?2+2d 24+2d
Thus f% € O(nlog, n), which is in accordance with the Largetwo (average
case) complexity class that can be found in the literature ([2]).
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