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Abstract

In this paper we analyze the dynamical behaviour of the operators associated to
multi-point iterative methods and frozen derivative methods, for solving nonlinear
equations, applied on second degree complex polynomials. We obtain that, in both
cases, the Julia set is a connected set that separates the basins of attraction of
the roots of the polynomial. Moreover, the Julia set of the operator associated to
multi-point iteration methods is the same as the Newton operator, although it is
more complicated for the frozen derivative operator. We explain these differences
by obtaining the conjugacy function of each method and by showing that the op-
erators associated to Newton’s method and multi-point iteration methods are both
conjugate to powers of z.
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1 Introduction

Many engineering applications involve nonlinear equations f (x) = 0 whose so-
lution can not be found by means of analytical methods. To approximate the
solution of these equations we use iterative methods. This means that the out-
put of the method is a sequence of images {x0, R (x0) , R2 (x0) , ..., Rn (x0) , ...}
for the initial condition x0, where R is a rational function that represents the
fixed point operator of the iterative scheme. Therefore, it can be seen as a
discrete dynamical system and we can study it from this point of view.

There is an extensive literature on the study of iteration of rational mappings
R of a complex variable (see [1], [2], for example) and, as it is well known,
the Newton’s method (see [3], [4] for example) applied on polynomials is a
rational function. In this case, the Riemann sphere Ĉ is also considered as the
domain of the rational mapping R associated to the iterative method.

To our knowledge, the study on the dynamics of Newton’s method has been
extended to other point-to-point iterative methods used for solving nonlinear
equations, with convergence order up to three (see, for example [5], [6] and,
more recently, [7] and [8]).

S. Amat et al. in [9] make a brief raid into the study of the dynamics of
the Potra-Pták method (see [10]) defined on the real numbers and applied on
polynomials of second and third degrees. Nevertheless, this study, interesting
in itself, does not allow to see all the richness of the dynamics of the method
when it is defined on the complex numbers.

Now, let us recall some basic concepts on complex dynamics. Given a rational
function R : Ĉ→ Ĉ. The orbit of a point z0 ∈ Ĉ is defined as:

z0, R (z0) , R2 (z0) , ..., Rn (z0) , ...

and we are interested in the study of the asymptotic behaviour of the orbits
depending on the initial condition z0, that is, we are interested in the study
of the phase plane of the map defined by the iterative method.

To obtain this phase space, the first of all is to classify the initial conditions
from the asymptotic behavior of their orbits.

Let us consider α ∈ C a root of f , f (α) = 0. The basin of attraction of α is
defined as the set of pre-images of any order:

A (α) = {z0 ∈ Ĉ : Rn (z0)→α, n→∞}.

A z0 ∈ Ĉ is called a fixed point if it satisfies: R (z0) = z0. A periodic point z0
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of period p > 1 is a point such that Rp (z0) = z0 and Rk (z0) 6= z0, k < p. A
pre-periodic point is a point z0 that is not periodic but there exists a k > 0
such that Rk (z0) is periodic. A critical point z0 is a point where the derivative
of rational function vanishes, R′ (z0) = 0.

On the other hand, a fixed point z0 is called attractor if |R′(z0)| < 1, superat-
tractor if |R′(z0)| = 0, and repulsor if |R′(z0)| > 1.

The set of points z ∈ Ĉ such that their families {Rn (z)}n∈N are normal in
some neighborhood U (z) , is the Fatou set, F (R) , that is, the Fatou set
is composed by the set of points whose orbits tend to an attractor (fixed
point, periodic orbit or infinity). Its complement in Ĉ is the Julia set, J (R) ;
therefore, the Julia set includes all repelling fixed points, periodic orbits and
their pre-images. That means that the basin of attraction of any fixed point
belongs to the Fatou set. On the contrary, the boundaries of the basins of
attraction belong to the Julia set.

1.1 The Newton’s Method

The Newton’s method is the best known method to find the roots of a nonlinear
function:

f (z) = 0,

where f ∈ C1
(
Ĉ

)
is defined on the Riemann sphere Ĉ. The Newton’s iterative

operator is

Nf (z) = z − f (z)

f ′ (z)
, (1)

which satisfies that f (z) = 0 if and only if Nf (z) = z. So, to find the roots
of f (z) is equivalent to find the fixed points of the operator Nf (z) . Actually,
the global analysis of convergence of Newton’s method on f(z) is equivalent to
compute individual orbits of the dynamical systems generated by the Newton’s
map Nf (z).

The equation (1) on a polynomial p (z)

Np (z) = z − p (z)

p′ (z)
, (2)

verifies the following properties:

1. The roots of p (z) correspond to the finite fixed points of Np.
2. The point at the infinity is a repelling fixed point.
3. As the derivative of the iteration function is

N ′
p (z) =

p (z) p′′ (z)

p′ (z)2 , (3)
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the simple roots of p (z) are superattracting fixed points. Multiple roots are
attracting fixed points, but not superattracting.

For simplicity, we begin studying the Newton’s method on quadratic poly-
nomials. It is known that the roots of the polynomial can be transformed
by an affine map without qualitatively changing the dynamics of the New-
ton’iteration function. So, we can use the quadratic polynomial p (z) = z2 + c.

Then, we obtain that the two basin of attraction of the roots are separated
by the perpendicular bisector of the line segment from one root to the other.
This bisector is the Julia set for this polynomial, that it is connected.

Indeed, it is desirable that the convergence regions of both maps be essentially
the same, except for the change of coordinates, see [11] for example.

Theorem 1 Let f be an analytic function on the Riemann sphere, and let
A(z) = αz + β, with α 6= 0, be an affine map. If g(z) = λ(f ◦ A)(z), where
λ ∈ C−{0}, then the Newton’s iteration function Nf is analytically conjugated
to Ng by A:

A ◦Nf ◦ A−1(z) = Ng(z).

Moreover,

Theorem 2 [3, Th. 2] Let p (z) be a quadratic polynomial with distinct roots.
The Newton’s operator Np (z) is globally, analytically conjugate to the quadratic
polynomial z2.

P. Blanchard, in [3], proves it by considering the conjugacy map

h (z) =
z − i

√
c

z + i
√

c
, (4)

with the following properties:

i) h (∞) = 1,
ii) h (i

√
c) = 0,

iii) h (−i
√

c) = ∞.

Then, (
h ◦Np ◦ h−1

)
(z) = z2. (5)

So, for quadratic polynomials, the Newton’s operator is always conjugate to
the rational map z2, satisfying the following properties:

1. The dynamics of this operator gives the unit circle S1(z) = {z ∈ Ĉ : |z| =
1} as the invariant Julia set.

4



2. The Fatou set is defined by the two basins of attraction of the superattract-
ing fixed points: 0 and ∞.

In this paper, we study the dynamics of two families of iterative methods of
order three: the multi-point interpolation methods (Section 2) and the frozen
derivative methods (Section 3) on quadratic polynomials defined on the com-
plex plane.

2 The Multi-Point Interpolation Methods

From quadrature formulas applied to the integral

f(x) = f(xk) +
∫ x

xk

f ′(t)dt,

some authors (see [12] and [13]) have derived a family of multi-point interpo-
lation methods, whose iterative scheme is

xk+1 = xk − f (xk)
m∑

j=1
Ajf ′ (ηj (xk))

, (6)

where ηj(xk) = xk − τj
f(xk)

f ′(xk)
, j = 1, 2, . . . , m, with τj the knots in [0, 1] and

Aj the weight of the interpolatory quadrature formula used. So, they satisfy
the relationships:

m∑

j=1

Aj = 1 (7)

and
m∑

j=1

Aj (1− τj) =
1

2
. (8)

These identities alow the authors assure that the resulting methods have, at
least, order of convergence three.

We also state the Scaling Theorem for this iterative scheme, whose fixed point
operator is denoted by Mf .

Theorem 3 Let f be an analytic function on the Riemann sphere, and let
A(z) = αz + β, with α 6= 0, be an affine map. If g(z) = λ(f ◦ A)(z), where
λ ∈ C−{0}, then the fixed point operator Mf is analytically conjugated to Mg

by A:

A ◦Mf ◦ A−1(z) = Mg(z).
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We study the dynamics of the operator of this family of iterative methods on
quadratic polynomial p (z) = z2 + c, c ∈ C.

Mp (z) = z − f (z)
m∑

j=1
Ajf ′ (ηj (z))

= z − (z2 + c) z

− m∑
j=1

Aj (cτj − 2z2 + τjz2)
=

=

−z3 + cz + (cz + z3)
m∑

j=1
Ajτj

−2z2 + (z2 + c)
m∑

j=1
Ajτj

and, by using (7) and (8), we obtain:

Mp (z) =
3cz − z3

c− 3z3
. (9)

The fixed points of Mp(z) are the roots of the polynomial:

Mp (z) = z ⇒ z = ±i
√

c

and there are also the critical points:

M ′
p (z) =

3 (z2 + c)
2

(c− 3z2)2 = 0.

As in the previous cases, these roots are superattractor fixed points.

Therefore, similarly to the Newton method, the Fatou set consists of the basins
of attraction of the two roots of the polynomial. That means that this method
never fail on quadratic polynomials when it is applied on open set of the com-
plex plane. The dynamical plane of the operator (9) is the same as the Newton
method. This result is very well understood from the following theorem.

Theorem 4 Let p (z) be a quadratic polynomial with distinct roots. The fixed
point operator Mp(z) associated to the family of iterative methods described in
(6) has the following properties:

i) Mp (z) is globally, analytically conjugate to the cubic polynomial z3.

ii) The dynamics of this operator gives the unit circle S1(z) = {z ∈ Ĉ : |z| =
1} as the invariant Julia set. Moreover, this set is connected.

iii) The Fatou set is defined by the two basins of attraction of the superattracting
fixed points: 0 and ∞.
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Proof: We consider the conjugacy map:

h (z) =
z − i

√
c

z + i
√

c
(10)

which has the same properties as in the previous theorem: h (∞) = 1, h (i
√

c) =
0 and h (−i

√
c) = ∞. So,

h−1 (z) = i
√

c
z + 1

1− z

and, therefore (
h ◦Mp ◦ h−1

)
(z) = z3 (11)

is a cubic polynomial of degree three that has superattracting fixed points at
0 and ∞ separated by the unit circle. As this map does not depend on the
parameter c, the Julia set is the unit circle and, therefore, it is connected for
every c. 2

Moreover, (11) implies that the origin is a zero of order three.

2.1 Iterative Methods coming from operator Mf

There are some well known iterative methods that come from this operator,
among others: the Midpoint Method, the Trapezoidal method and the Simpson
Method.

• The Midpoint Method was developed by Özban in [14] and can be written
as

xk+1 = xk − f (xk)

f ′
(

xk+yk

2

) ,

where yk is the Newton’s iteration. The corresponding operator is:

Mf (z) = z − f (z)

f ′
(
z − f(z)

2f ′(z)

) . (12)

• Similarly, Frontini and Sormani derived in [13] the Trapezoidal Method

xk+1 = xk − 2f (xk)

f ′ (xk) + f ′ (yk)
,

yields to the operator

Trf (z) = z − 2f (z)

f ′ (z) + f ′
(
z − f(z)

f ′(z)

) . (13)
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• Finally, Frontini and Sormani also presented in [13] the Simpson Method:

xk+1 = xk − 6f (xk)

f ′ (xk) + 4f ′
(

xk+yk

2

)
+ f ′ (yk)

provides the operator

Sf (z) = z − 6f (z)

f ′ (z) + 4f ′
(
z − f(z)

2f ′(z)

)
+ f ′

(
z − f(z)

f ′(z)

) . (14)

As we have seen these three operators (12),(13) and (14) acting on the family
of quadratic polynomial p(z) = z2 + c, c ∈ C give the operator Mp(z) =
3cz − z3

c− 3z3
= Sp(z) = Trp(z) Consequently, their dynamics have been studied

in the previous section. Therefore,

Remark The dynamics of the Midpoint, Trapezoidal and Simpson methods
on quadratic polynomial defined on the complex plane is the same as the
Newton method.

3 The Frozen Derivative Methods

In this section we study the dynamics of a family of multi-point iterative meth-
ods obtained from Newton’s method by replacing f(z) by a linear combination
of values of f(z) in different points. Specifically, the general scheme is

xk+1 = xk −

m∑
j=1

Bjf (ηj (xk))

f ′ (xk)
(15)

ηj (xk) = xk − τj
f (xk)

f ′ (xk)
, j = 1, 2, . . . ,m

where τj and Bj are parameters to be chosen in [0, 1] and R respectively,
and m is a positive integer (see [15]). These parameters satisfy the following
relationships:

m∑

j=1

Bj (1− τj) = 1,
m∑

j=1

Bjτ
2
j = 1. (16)

The value of these parameters yields to different methods, as we will see in the
following; moreover, they play an important role in the order of convergence
of the method.

The fixed point operator of these methods is:
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Op (z) = z −

m∑
j=1

Bjf (ηj (z))

f ′ (z)
, (17)

where ηj (z) = zk − τj
f (zk)

f ′ (zk)
and the parameters τj and Bj satisfy (16).

The Scaling Theorem for this operator can be established in the following way.

Theorem 5 Let f be an analytic function on the Riemann sphere, and let
A(z) = αz + β, with α 6= 0, be an affine map. If g(z) = λ(f ◦ A)(z), where
λ ∈ C− {0}, then the fixed point operator Of is analytically conjugated to Og

by A:

A ◦Of ◦ A−1(z) = Og(z).

Now, we are going to study its dynamics for quadratic polynomial defined on
the complex plane, p(z) = z2 + c, c ∈ C.

Op (z) = z −

m∑
j=1

Bjf (ηj (z))

f ′ (z)
=

= z −

m∑
j=1

Bj

(
c2τ 2

j + 4cz2 − 4cτjz
2 + 2cτ 2

j z2 + 4z4 − 4τjz
4 + τ 2

j z4
)

8z3
=

=

8z4 − (c2 + 2cz2 + z4)
m∑

j=1
Bjτ

2
j − (4cz2 + 4z4)

m∑
j=1

Bj (1− τj)

8z3
.

By using the relationships (16) between the parameters, we obtain a common
expression of the operator for any member of the family (15):

Op (z) =
3z4 − 6cz2 − c2

8z3
. (18)

This operator has four fixed points: two of them are the roots of the polyno-
mial. The other two are called strange fixed points.

Op(z) = z ⇒ z = ±i
√

c, ±i

√
c

5
.

The dynamical properties of a complex analytical functions are often deter-
mined for the dynamics of his critical points. In this case, the derivative of
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(18)

O′
p (z) =

3

8

(z2 + c)
2

z4
,

allows us to deduce that the only critical points are the roots of the polynomial.
Moreover,

O′
p

(
±i
√

c
)

= 0

implies that these roots are superattractor critical points. The other roots of
Op (z) are repulsive fixed points

(
O′

p

(
±i

√
c
5

)
= 6

)
; so, they are in the Julia

set.

As in Newton’s method, the Fatou set consists of the basins of attraction of
the two roots of the polynomial. That means that this method never fails for
quadratic polynomials when it is applied on open set of the complex plane.
The dynamical plane of the operator (18) is shown in the Figure 1.

Fig. 1. Dynamical plane for the frozen derivative methods on quadratic polynomials

From Theorem 2, we know that Newton’s iteration function on any quadratic
polynomial is conjugated to z2. In this case, we prove that Op on quadratic
polynomials has a more complicated expression:

Theorem 6 Let p (z) be a quadratic polynomial with distinct roots. The fixed
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point operator associated to the frozen derivative methods Op (z) has the fol-
lowing properties:

i) Op (z) is globally, analytically conjugate to the rational map z3 z+2
2z+1

.
ii) The dynamics of this operator implies that the unit circle S1(z) = {z ∈
Ĉ : |z| = 1} is included in the invariant Julia set. Moreover, this set is
connected.

iii) The Fatou set is defined by the two basins of attraction of the superattracting
fixed points: 0 and ∞.

Proof: As before, we consider the conjugacy map

h (z) =
z − i

√
c

z + i
√

c
, (19)

which has the same properties as in the previous results: h (∞) = 1, h (i
√

c) =
0, h (−i

√
c) = ∞. So,

h−1 (z) = i
√

c
z + 1

1− z

and, therefore

B (z) =
(
h ◦Op ◦ h−1

)
(z) = z3 z + 2

2z + 1
(20)

is a rational map of degree three that has superattracting fixed points at 0
and ∞. As in the previous case, this map does not depends on the parameter
c. Moreover, for every z ∈ S1, then B (z) ∈ S1

∀z ∈ S1, |z| = 1 ⇒
∣∣∣∣z3 z + 2

2z + 1

∣∣∣∣ =
∣∣∣z3

∣∣∣
∣∣∣∣
z + 2

2z + 1

∣∣∣∣ =
∣∣∣∣
z + 2

2z + 1

∣∣∣∣

and ∣∣∣∣
z + 2

2z + 1

∣∣∣∣ =

∣∣∣∣∣
(z + 2) (2z̄ + 1)

(2z + 1) (2z̄ + 1)

∣∣∣∣∣ =

∣∣∣∣∣
z + 4 + 4z̄

5 + 4Re(z)

∣∣∣∣∣ = 1,

since |z + 4 + 4z̄| = 5 + 4Re(z).

Therefore, the unit circle is invariant under this function B : S1 → S1, and it
separates the two basins of attraction of the two superattractor fixed points:
0 and ∞. 2

Because of the rational part, the Julia set is more complicated than the unit
circle obtained in the Newton’s method; nevertheless, all the points in the unit
circle belongs to the Julia set (see Figure 2). As above, the Julia set separates
the two basins of attraction of the two superattractor fixed points: 0 and ∞.
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Fig. 2. Julia set for the frozen derivative methods on quadratic polynomials

3.1 Iterative Methods coming from operator Of

There are some well known iterative methods that come from this operator.
For example, the Potra-Pták’s Method on the complex plane is a particular
case of the previous method (15) for the case of m = 2, Bj = 1, j = 1, 2;
τ1 = 0, τ2 = 1. The corresponding operator is:

Tf (z) = z − f (z)

f ′ (z)
−

f
(
z − f(z)

f ′(z)

)

f ′ (z)
. (21)

There are two other methods, related with the golden ratio number, coming
from the general formula (15), that are also of order three (see [15])

yk = xk − q
f (xk)

f ′ (xk)
,

xk+1 = xk − p1
f (yk)

f ′ (xk)
,

and
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yk = xk +
1

q

f (xk)

f ′ (xk)
,

xk+1 = xk − p2
f (yk)

f ′ (xk)
,

where p1 = 3+
√

5
2

, p2 = 3−√5
2

and q = 2
1+
√

5
. The corresponding operators are:

O1f (z) = z − p1

f
(
z − q f(z)

f ′(z)

)

f ′ (z)
,

O2f (z) = z − p2

f
(
z + 1

q
f(z)
f ′(z)

)

f ′ (z)
.

As we have proved before, when we apply these three different methods on
quadratic polynomial defined on the complex plane, p(z) = z2 + c, we obtain

the same operator Op (z) =
3z4 − 6cz2 − c2

8z3
. Therefore,

Remark The dynamics of these three known methods on quadratic polyno-
mial defined on the complex plane, p (z) = z2 + c, c ∈ C are the same. The
dynamical plane is shown in Figure 1.

4 Conclusions

Firstly, we would mention that we have obtained the conjugacy function of the
operators associated to multi-points iteration methods and frozen derivative
methods applied on quadratic polynomials.

Secondly, we note that the dynamical plane for the operator of the multi-points
iteration methods on quadratic polynomials is the same than in the Newton
case. This is explained from the fact that the two operators are conjugate to
powers of z (Theorems 2 and 4).

Finally, the Julia set in the dynamical plane for the operator of the frozen
derivative methods is more complicated. Theorem 6 explain this difference
because it shows that this operator is conjugated to the product of a monomial
and a rational function.

Acknowledgments: The authors thank to Professors X. Jarque and A. Gar-
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