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Abstract

In this paper we present the theoretical framework needed to justify the use of a

kernel-based collocation method (meshfree approximation method) to estimate the so-

lution of high-dimensional stochastic partial differential equations. Using an implicit

time stepping scheme, we transform stochastic parabolic equations into stochastic el-

liptic equations. Our main attention is concentrated on the numerical solution of the

elliptic equations at each time step. The estimator of the solution of the elliptic equa-

tions is given as a linear combination of reproducing kernels derived from the differential

and boundary operators of the PDE centered at collocation points to be chosen by the

user. The random expansion coefficients are computed by solving a random system of

linear equations. Numerical experiments demonstrate the feasibility of the method.
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1 Introduction

Stochastic partial differential equations (SPDEs) frequently arise from applications in areas

such as physics, engineering and finance. However, in many cases it is difficult to derive an

explicit form of their solution. Moreover, current numerical algorithms often show limited
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success for high-dimensional problems or in complex domains – even for deterministic par-

tial differential equations. The kernel-based approximation method (meshfree approxima-

tion method [4, 8, 20]) is a relatively new numerical tool for the solution of high-dimensional

problems. In this paper we apply – to our knowledge for the first time – such a kernel-based

collocation method to construct numerical estimators for stochastic partial differential equa-

tions. Galerkin-type approximation methods based on the eigenvalues and eigenfunctions

of the underlying differential operator are currently very popular for the numerical solution

of SPDEs [6, 17, 14]. With the kernel-based meshfree collocation method introduced here

explicit knowledge of these eigenvalues and eigenfunctions is not required since the kernels

can be directly obtained as Green kernels of the differential operators [11, 10]. Stochastic

collocation methods using a polynomial basis are also frequently found in the literature

[2, 18]. These methods usually require the collocation points to lie on a regular grid. In our

method the collocation points can be placed at rather arbitrarily scattered locations. This

allows for the use of either deterministic or random designs such as, e.g., uniform or Sobol’

points, but also for adaptively chosen locations. In this paper we do not study the design

aspect of our algorithm, but reserve this important aspect for future work. Another advan-

tage of using a meshfree method is its ability – also not explicitly pursued here – to deal

with problems on a complex domain D ⊂ Rd, d ≥ 1, by using appropriately placed colloca-

tion points. Another advantage of this method is its high efficiency, in the sense that once

certain matrices are inverted and factored we can compute, essentially for free, the value of

the approximated solution at any point in the spatial domain and at any event from sample

space. In particular the method is suitable for simulation of a large number of sample paths

of the solution. In this article we present only a general framework for this new numerical

method and prove weak convergence of the corresponding schemes. We conclude the paper

with a numerical implementation of this method applied to a one-dimensional stochastic

heat equation with Dirichlet boundary conditions driven by an additive space-time white

noise (colored in space). Much more details, as well as some of the aspects just mentioned,

will be discussed in Qi Ye’s Ph.D. thesis [22] or in future publications.

1.1 The method in a nutshell

Assume that D is a regular open bounded domain in Rd, and let H be a separable Hilbert

space of functions defined on D. Also, let (ΩW ,FW , {Ft},PW ) be a stochastic basis with

the usual assumptions. We consider the following parabolic Itô equation
dUt = AUtdt+ σdWt, in D, 0 < t < T,

BUt = 0, on ∂D,
U0 = u0,

(1.1)

where A is a linear elliptic operator inH, B is a boundary operator for Dirichlet or Neumann

boundary conditions, u0 ∈ H, and W is a Wiener process in H, with mean zero and spatial
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covariance function R given by E(W (t,x)W (s,y)) = min{t, s}R(x,y), x,y ∈ D, t, s > 0,

and σ > 0 (see for instance [5]).

We assume that equation (1.1) has a unique solution U ∈ L2(ΩW × (0, T );H).

The proposed numerical method for solving a general SPDE of the form (1.1) can be

described as follows:

S1) Discretize (1.1) in time by the implicit Euler scheme at equally spaced time points

0 = t0 < t1 < . . . < tn = T ,

Utj − Utj−1 = AUtjδt+ σδWj , j = 1, . . . , n, (1.2)

where δt := tj − tj−1 and δWj :=Wtj −Wtj−1 .

S2) Under the assumption that the noise at each time step tj is independent from the

solution Utj−1 at the previous step, we simulate the Gaussian field with covariance

structure R(x,y) at a finite collection of predetermined collocation points

XD := {x1, · · · ,xN} ⊂ D, X∂D := {xN+1, · · · ,xN+M} ⊂ ∂D.

S3) Let the differential operator P := I− δtA, and the noise term ξ := σδWj . Since ξ is a

Gaussian field with E(ξx) = 0 and Cov(ξxξy) = σ2δtR(x,y), equation (1.2) together

with the corresponding boundary condition becomes an elliptic SPDE of the form{
Pu = f + ξ, in D,
Bu = 0, on ∂D,

(1.3)

where u := Utj is seen as an unknown part and f := Utj−1 and ξ are viewed as given

parts. We will solve for u using a kernel-based collocation method written as

u(x) ≈ û(x) :=
N∑
k=1

ckP2

∗
K(x,xk) +

M∑
k=1

cN+kB2

∗
K(x,xN+k), x ∈ D, (1.4)

where K is a reproducing kernel and the convolution kernels
∗
K,P2

∗
K,B2

∗
K are defined

in Lemmas 2.1 and B.2. The unknown random coefficients c := (c1, · · · , cN+M )T are

obtained by solving a random system of linear equations (with constant deterministic

system matrix and different random right-hand side) at each time step. Details are

provided in Section 3.

S4) Repeat S2 and S3 for all j = 1, . . . , n.

Obviously, many other – potentially better – time stepping schemes could be applied

here. However, as mentioned earlier, we focus mainly on step S3 and are for the time

being content with using the implicit Euler scheme. Naturally, the rate of convergence of

the above numerical scheme depends on the size of the time step δt, and the fill distance
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hX := supx∈D minxk∈XD∪X∂D∥x−xk∥2 of the collocation points. We support this statement

empirically in Section 4. We should mention that even for deterministic time-dependent

PDEs to find the exact rates of convergence of kernel-based methods is a delicate and

nontrivial question, only recently solved in [12]. We will address this question in the case

of SPDEs in future works.

The fundamental building block of our mesh-free method is the reproducing kernel

K : D × D → R and its reproducing-kernel Hilbert space HK(D) (see Appendix A for

more details). By the very nature of such a kernel-based method, the approximate solution

Utj , j = 1, . . . , n, must live in HK(D). Thus, we make the following standing assumption

throughout the paper:

The solution U of the original equation (1.1) lies in a Hilbert space H which can be

embedded in the reproducing kernel Hilbert space HK(D).

Usually, H is a Sobolev space Hm(D), for some positive m. In this case it is possible to

choose an appropriate kernel K such that the above embedding assumption is satisfied.

2 Reproducing-kernel collocation method for Gaussian pro-

cesses

In this section we briefly review the standard kernel-based approximation method for high-

dimensional interpolation problems. However, since we will later be interested in solving a

stochastic PDE, we present the following material mostly from the stochastic point of view.

For further discussion of this method we refer the reader to the recent survey papers [19, 9]

and references therein.

Assume that the function space HK(D) is a reproducing-kernel Hilbert space and its

reproducing kernel K ∈ C(D×D) is symmetric positive definite (see Appendix A.1). Given

the data values {yj}Nj=1 ⊂ R at the collocation points XD := {xj}Nj=1 ⊂ D of an unknown

function u ∈ HK(D), i.e.,

yj = u(xj), xj = (x1,j , · · · , xd,j) ∈ D ⊂ Rd, j = 1, . . . , N,

the goal is to find an optimal estimator from HK(D) that interpolates these data.

Definition 2.1 ([3, Definition 3.28]). A stochastic process S : D × Ω → R is said to be

Gaussian with mean µ : D → R and covariance kernel Φ : D × D → R on a probability

space (Ω,F ,P) if, for any pairwise distinct points XD := {x1, · · · ,xN} ⊂ D, the random

vector S := (Sx1 , · · · , SxN ) is a multi-normal random variable on (Ω,F ,P) with mean µ

and covariance matrix Φ, i.e., S ∼ N (µ,Φ), where µ := (µ(x1), · · · , µ(xN ))T and Φ :=

(Φ(xj ,xk))
N,N
j,k=1.
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2.1 Data fitting problems via deterministic interpolation and simple krig-

ing

In the deterministic formulation of kernel interpolation we solve an optimization problem

by minimizing the reproducing-kernel norm subject to interpolation constraints, i.e.,

ûK = argmin
u∈HK(D)

{∥u∥K,D s.t. u(xj) = yj , j = 1, . . . , N} .

In this case, the minimum norm interpolant (also called the collocation solution) ûK(x) is

a linear combination of “shifts” of the reproducing kernel K,

ûK(x) :=
N∑
k=1

ckK(x,xk), x ∈ D, (2.1)

where the coefficients c := (c1, · · · , cN )T are obtained by solving the following system of

linear equations

Kc = y0, (2.2)

with K := (K(xj ,xk))
N,N
j,k=1 and y0 := (y1, · · · , yN )T .

For simple kriging, i.e., in the stochastic formulation, we let S be a Gaussian process

with mean 0 and covariance kernel K on some probability space (Ω,F ,P). Kriging is based

on the modeling assumption that u is a realization of the Gaussian field S. The data values

y1, . . . , yN are then realizations of the random variables Sx1 , . . . , SxN . The optimal unbiased

predictor of Sx based on S is equal to

Ûx :=

N∑
k=1

ck(x)Sxk
= argmin

U∈span{Sxj }
N
j=1

E |U − Sx|2 ,

where the coefficients c(x) := (c1(x), · · · , cN (x))T are given by

c(x) = K−1k(x)

with k(x) := (K(x,x1), · · · ,K(x,xN ))T and the same matrix K as above. We can also

compute that

E(Ûx|Sx1 = y1, · · · , SxN = yN ) = ûK(x).

Note that, in the kriging approach we consider only the values of the stochastic process S

at the collocation points, and view the obtained vector as a random variable. However, if we

view S as a real function, then P(S ∈ HK(D)) = 0 by [16, Theorem 7.3]. A simple example

for this fact is given by the scalar Brownian motion defined in the domain D := (0, 1) (see,

e.g., [11, Example 5.1]). This means that it is difficult to apply the kriging formulation

to PDE problems. Next we will introduce a new stochastic data fitting approach that will

subsequently allow us to perform kernel-based collocation for stochastic PDEs.
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2.2 Data fitting problems via a new stochastic approach

From now on we will view the reproducing-kernel Hilbert space HK(D) as a sample space

and its Borel σ-field B(HK(D)) as a σ-algebra to set up the probability spaces so that the

stochastic process Sx(ω) := ω(x) is Gaussian. We use the techniques of [13, 16] to verify

Lemma 2.1, which is a restatement of [16, Theorem 7.2]. This theoretical result is a general-

ized form of Wiener measure defined on the measurable space (C[0,∞),B(C[0,∞))), called

canonical space, such that the coordinate mapping process Wx(ω) := ω(x) is a Brownian

motion (see, for instance, [15], Chapter 2).

Lemma 2.1. Let the positive definite kernel K ∈ C(D × D) be the reproducing kernel of

the reproducing-kernel Hilbert space HK(D). Given a function µ ∈ HK(D) there exists

a probability measure Pµ defined on (ΩK ,FK) := (HK(D),B(HK(D))) such that Sx(ω) :=

ω(x) is Gaussian with mean µ and covariance kernel
∗
K on (ΩK ,FK ,Pµ), where the integral-

type kernel
∗
K of K is given by

∗
K(x,y) :=

∫
D
K(x, z)K(y, z)dz, x,y ∈ D.

Moreover, the process S has the following expansion

Sx(ω) =

∞∑
k=1

ζk(ω)
√
λkek(x), x ∈ D, ω ∈ ΩK ,

where {λk}∞k=1 and {ek}∞k=1 are the eigenvalues and eigenfunctions of the reproducing kernel

K, and ζk are independent Gaussian random variables with mean µ̂k := ⟨µ,
√
λkek⟩K,D and

variance λk, k ∈ N.

Before we prove Lemma 2.1 we remark that we have introduced the integral-type kernel
∗
K for convenience only. As seen later, in order to “match the spaces”, any other kernel

that “dominates” K (in the sense of [16]) could play the role of the integral-type kernel
∗
K.

Proof. We first consider the case when µ = 0. According to the Kolmogorov extension theo-

rem [7] there exist countably many independent standard normal random variables {ξk}∞k=1

on a probability space (Ωξ,Fξ,Pξ), i.e., ξk ∼ i.i.d. N (0, 1), k ∈ N. Let {λk}∞k=1 and {ek}∞k=1

be the eigenvalues and eigenfunctions of the reproducing kernel K as in Theorem A.1. We

define S :=
∑∞

k=1 ξkλkek. Note that S is Gaussian with mean 0 and covariance kernel
∗
K.

Since E(
∑∞

k=1 ξ
2
kλk) ≤

∑∞
k=1Var(ξk)λk =

∑∞
k=1 λk <∞ indicates that

∑∞
k=1

∣∣ξk√λk∣∣2 <∞
Pξ-a.s., Theorem A.1 shows that S(·, ω) ∈ HK(D) Pξ-a.s. Therefore S is a measurable map

from (Ωξ,Fξ) into (ΩK ,FK) by [3, Chapter 4.3.1] and [16, Lemma 2.1]. On the other hand,

the probability measure P0 := Pξ ◦ S−1 (also called the image measure of Pξ under S) is

well defined on (ΩK ,FK), i.e., P0(A) := Pξ(S
−1(A)) for each A ∈ FK . Hence, S is also a

Gaussian process with mean 0 and covariance kernel
∗
K on (ΩK ,FK ,P0).
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Let Sµ := S + µ on (ΩK ,FK ,P0). Then E(Sµ
x) = E(Sx) + µ(x) and Cov(Sµ

x, S
µ
y) =

Cov(Sx, Sy) with respect to P0. We define a new probability measure Pµ by Pµ(A) :=

P0(A − µ) for each A ∈ FK . It is easy to check that ΩK + µ = HK(Ω) = ΩK and

{µ + A : A ∈ FK} = B(HK(Ω)) = FK . Thus S is Gaussian with mean µ and covariance

kernel
∗
K on (ΩK ,FK ,Pµ).

Moreover, since µ ∈ HK(Ω), it can be expanded in the form µ =
∑∞

k=1 µ̂k
√
λkek, where

µ̂k := ⟨µ,
√
λkek⟩K,D, so that Sµ =

∑∞
k=1(µ̂k +

√
λkξk)

√
λkek. But then ζk ∼ µ̂k +

√
λkξk ∼

N (µ̂k, λk) are independent on (ΩK ,FK ,Pµ).

According to [3, Theorem 4.91], we can also verify that the random variable Vf :=

⟨ω, f⟩K,D, f ∈ HK(D), is a scalar normal variable on (ΩK ,FK ,Pµ), i.e.,

Vf (ω) ∼ N (mf , σ
2
f ), ω ∈ ΩK = HK(D),

where mf := ⟨µ, f⟩K,D and σf := ∥f∥L2(D). Therefore the probability measure Pµ defined

in Lemma 2.1 is Gaussian.

Let pµX : RN → R be the joint probability density function of Sx1 , · · · , SxN defined on

(ΩK ,FK ,Pµ). Then it is a normal density function with mean µ := (µ(x1), · · · , µ(xN ))T

and covariance matrix
∗
K := (

∗
K(xj ,xk))

N,N
j,k=1. In analogy to the kriging formulation we can

find the optimal mean function µ̂ ∈ HK(D) fitting the data values y0 := (y1, · · · , yN )T , i.e.,

µ̂ :=
∗
kT

∗
K−1y0 = sup

µ∈HK(D)
pµX(y0) = sup

µ∈HK(D)
Pµ(S = y0),

where
∗
k(x) := (

∗
K(x,x1), · · · ,

∗
K(x,xN ))T .

We now fix any x ∈ D. Straightforward calculation shows that the random variable Sx,

given Sx1 , · · · , SxN , defined on (ΩK ,FK ,Pµ) has a conditional probability density function

pµx(v|v) :=
1

σ(x)
√
2π

exp

(
−(v −mµ

x(v))
2

2σ(x)2

)
, v ∈ R, v ∈ RN ,

where mµ
x(v) := µ(x) +

∗
k(x)T

∗
K−1(v − mµ), mµ := (µ(x1), · · · , µ(xN ))T , and σ(x)2 :=

∗
K(x,x)−

∗
k(x)T

∗
K−1

∗
k(x). Then the optimal estimator that maximizes the probability

max
v∈R

Pµ̂ ({ω ∈ ΩK : ω(x) = v s.t. ω(x1) = y1, · · · , ω(xN ) = yN})

=max
v∈R

Pµ̂
(
Sx = v

∣∣Sx1 = y1, · · · , SxN = yN
)

is given by

û(x) := µ̂(x) = argmax
v∈R

pµ̂x(v|y0).
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Proposition 2.2. With the above notations, the following equality holds true

pµ̂x(û(x)|y0) = sup
v∈R,µ∈HK(D)

pµx(v|y0). (2.3)

Moreover, for any ϵ > 0,

sup
µ∈HK(D)

Pµ(|û(x)− u(x)| ≥ ϵ) ≤ sup
µ∈HK(D)

Pµ(Eϵ
x) = erfc

(
ϵ√

2σ(x)

)
, (2.4)

where

Eϵ
x := {ω ∈ ΩK : |ω(x)− û(x)| ≥ ϵ s.t. ω(x1) = y1, · · · , ω(xN ) = yN} .

Identity (2.3) follows by direct evaluations. Consequently, taking into account that S is

Gaussian, inequality (2.4) follows also immediately.

Remark 2.1. Instead of giving a deterministic (or strong) error bound for the proposed

numerical scheme, we provide a weak type convergence of the approximated solution û to

the true solution u, as stated in Proposition 2.2. In fact, inequality (2.4) can be seen as a

confidence interval for the estimator û with respect to the probability measure Pµ.

In the next section we generalize this stochastic approach to solve elliptic PDEs.

3 Collocation Method for Elliptic PDEs

We begin by setting up Gaussian processes via reproducing kernels with differential and

boundary operators.

Suppose that the reproducing-kernel Hilbert space HK(D) is embedded into the Sobolev

space Hm(D) where m > d/2. Let n := ⌈m − d/2⌉ − 1. By the Sobolev embedding the-

orem Hm(D) ⊂ Cn(D). When the differential operator P and the boundary operator

B have the orders O(P ) < m − d/2 and O(B) < m − d/2, then the stochastic pro-

cesses PSx(ω) := (Pω)(x) and BSx(ω) := (Bω)(x) are well-defined on (ΩK ,FK ,Pµ).

According to Lemma B.1, we have PS =
∑∞

k=1 ζk
√
λkPek and BS =

∑∞
k=1 ζk

√
λkBek.

If µ ∈ HK(D) ⊆ Hm(D), then Pµ ∈ C(D) and Bµ ∈ C(∂D). Lemma B.2 implies

that P1P2

∗
K(x,y) =

∑∞
k=1 λ

2
kPek(x)Pek(y) and B1B2

∗
K(x,y) =

∑∞
k=1 λ

2
kBek(x)Bek(y)

(here we can use the fact that Cov(PSx, PSy) = PxPyCov(Sx, Sy) and Cov(BSx, BSy) =

BxByCov(Sx, Sy)). Applying Lemma 2.1, we can obtain the main theorem for the construc-

tion of Gaussian processes via reproducing kernels coupled with differential or boundary

operators.

Theorem 3.1. Suppose that the reproducing kernel Hilbert space HK(D) is embedded into

the Sobolev space Hm(D) with m > d/2. Further assume that the differential operator P

and the boundary operator B have the orders O(P ) < m − d/2 and O(B) < m − d/2.

Given a function µ ∈ HK(D) there exists a probability measure Pµ defined on (ΩK ,FK) =
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(HK(D),B(HK(D))) (as in Lemma 2.1) such that the stochastic processes PS, BS given

by

PSx(ω) = PS(x, ω) := (Pω)(x), x ∈ D ⊂ Rd, ω ∈ ΩK = HK(D),

BSx(ω) = BS(x, ω) := (Bω)(x), x ∈ ∂D, ω ∈ ΩK = HK(D),

are Gaussian processes with means Pµ, Bµ and covariance kernels P1P2

∗
K, B1B2

∗
K defined

on (ΩK ,FK ,Pµ), respectively. In particular, they can be expanded as

PSx =

∞∑
k=1

ζk
√
λkPek(x), x ∈ D, and BSx =

∞∑
k=1

ζk
√
λkBek(x), x ∈ ∂D,

where {λk}∞k=1 and {ek}∞k=1 are the eigenvalues and eigenfunctions of the reproducing kernel

K and their related Fourier coefficients are the independent normal variables ζk ∼ N (µ̂k, λk)

and µ̂k := ⟨µ,
√
λkek⟩K,D, k ∈ N.

Corollary 3.2. Suppose all notations and conditions are as in Theorem 3.1. Given col-

location points XD := {xj}Nj=1 ⊂ D and X∂D := {xN+j}Mj=1 ⊂ ∂D, the random vector

SPB := (PSx1 , · · · , PSxN , BSxN+1 , · · · , BSxN+M ) defined on (ΩK ,FK ,Pµ) has a multi-

normal distribution with mean mµ
PB and covariance matrix

∗
KPB, i.e.,

SPB ∼ N (mµ
PB,

∗
KPB),

where mµ
PB := (Pµx1 , · · · , PµxN , BµxN+1 , · · · , BµxN+M )T and

∗
KPB :=

 (P1P2

∗
K(xj ,xk))

N,N
j,k=1, (P1B2

∗
K(xj ,xN+k))

N,M
j,k=1

(B1P2

∗
K(xN+j ,xk))

M,N
j,k=1, (B1B2

∗
K(xN+j ,xN+k))

M,M
j,k=1

 .

Remark 3.1. While the covariance matrix
∗
KPB may be singular, it is always positive semi-

definite and therefore always has a pseudo-inverse
∗
KPB

†.

Using Corollary 3.2, we can compute the joint probability density function pµX of SPB

defined on (ΩK ,FK ,Pµ). In the same way, we can also get the joint density function

pµJ of (Sx,SPB) defined on (ΩK ,FK ,Pµ). By Bayes’ rule, we can obtain the conditional

probability density function of the random variable Sx given SPB.

Corollary 3.3. We follow the notations of Corollary 3.2. For any fixed x ∈ D, the random

variable Sx given SPB defined on (ΩK ,FK ,Pµ) has a conditional probability density function

pµx(v|v) :=
pµJ(v,v)

pµX(v)
=

1

σ(x)
√
2π

exp

(
−(v −mµ

x(v))
2

2σ(x)2

)
, v ∈ R, v ∈ RN+M ,
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where

mµ
x(v) := µ(x) + kPB(x)

T
∗
KPB

†(v −mµ
PB),

σ(x)2 :=
∗
K(x,x)− kPB(x)

T
∗
KPB

†kPB(x),

kPB(x) := (P2

∗
K(x,x1), · · · , P2

∗
K(x,xN ), B2

∗
K(x,xN+1), · · · , B2

∗
K(x,xN+M ))T .

In particular, given the real observation y := (y1, · · · , yN+M )T , Sx conditioned on

SPB = yT has the probability density pµx(·|y).

This corollary is similar to the features of Gaussian conditional distributions (see [13,

Theorem 9.9]).

3.1 Elliptic deterministic PDEs

Suppose that u ∈ HK(D) is the unique solution of the deterministic elliptic PDE{
Pu = f, in D ⊂ Rd,

Bu = g, on ∂D,
(3.1)

where f : D → R and g : ∂D → R. Denote by {yj}Nj=1 and {yN+j}Mj=1 the values of f and

g at the collocation points XD and X∂D, respectively:

yj := f(xj), j = 1, · · · , N, yN+j := g(xN+j), j = 1, · · · ,M.

From now on we assume that the covariance matrix
∗
KPB defined in Corollary 3.2 is

nonsingular and we therefore can replace pseudo-inverses with inverses.

Let y0 := (y1, · · · , yN , yN+1, · · · , yN+M )T , and denote by pµx(·|·) the conditional density
function defined in Corollary 3.3. We approximate the solution u of (3.1) by the optimal

estimator û(x) derived in the previous section, i.e., we maximize the conditional probability

given the data values y0:

u(x) ≈ û(x) = argmax
v∈R

sup
µ∈HK(D)

p
(µ)
x (v|y0), x ∈ D.

By direct evaluation as in Section 2.2 one finds that

û(x) := kPB(x)
T

∗
KPB

−1y0, x ∈ D,

where the basis functions kPB(x) are defined in Corollary 3.3. Moreover, the estimator

û ∈ HK(D) fits all the data values: Pû(x1) = y1, . . . , P û(xN ) = yN and Bû(xN+1) =

yN+1, . . . , Bû(xN+M ) = yN+M . This means that we have computed a collocation solution

of the PDE (3.1). Also note that û can be written as a linear combination of the kernels as

in (1.4), i.e.,

û(x) =

N∑
k=1

ckP2

∗
K(x,xk) +

M∑
k=1

cN+kB2

∗
K(x,xN+k), x ∈ D, (3.2)

10



where c := (c1, · · · , cN+M )T =
∗
KPB

−1y0 ∈ RN+M .

Finally, we can perform a weak error analysis for |u(x)− û(x)| as in Proposition 2.2,

and deduce that

Pµ (Eϵ
x) = Pµ (|Sx − û(x)| ≥ ϵ|SPB = y0) = erfc

(
ϵ√

2σ(x)

)
,

where σ(x)2 is defined in Corollary 3.3, and

Eϵ
x := {ω ∈ ΩK : |ω(x)− û(x)| ≥ ϵ s.t. Pω(x1) = y1, . . . , Bω(xN+M ) = yN+M} .

Because the form of the expression for the variance σ(x)2 is analogous to that of the

power function, we can use the same techniques as in the proofs from [8, 20] to obtain a

formula for the order of σ(x).

Lemma 3.4.

σ(x) = O(h
m−ρ−d/2
X ), x ∈ D,

where ρ := max{O(P ),O(B)} and hX is the fill distance of XD and X∂D.

Proof. Since there is at least one collocation point xj ∈ XD∪X∂D such that ∥x−xj∥2 ≤ hX

we can use the multivariate Taylor expansion of
∗
K(x,xj) to introduce the order of σ(x),

i.e.,

∗
K(x,xj) =

∑
|α|,|β|<n

1

α!β!
Dα

1D
β
2

∗
K(xj ,xj)(x− xj)

α+β +R(x,xj), α, β ∈ Nd
0,

where R(x,xj) :=
∑

|α|,|β|=n
1

α!β!D
α
1D

β
2

∗
K(z1,z2)(x− xj)

α+β for some z1, z2 ∈ D and n :=

⌈m−d/2⌉−1. The rest of the proof proceeds as in [8, Chapter 14.5] and [20, Chapters 11.3,

16.3].

Using Lemma 3.4 we can deduce the following proposition.

Proposition 3.5. For any ϵ > 0,

sup
µ∈HK(D)

Pµ(Eϵ
x) = O

(
h
m−ρ−d/2
X

ϵ

)
, x ∈ D,

which indicates that

sup
µ∈HK(D)

Pµ
(
∥u− û∥L∞(D) ≥ ϵ

)
≤ sup

µ∈HK(D),x∈D
Pµ (Eϵ

x) → 0, when hX → 0.

Therefore we say that the estimator û converges to the exact solution u of the PDE (3.1)

in all probabilities Pµ when hX goes to 0.

Sometimes we know only that the solution u ∈ Hm(D). In this case, as long as the

reproducing kernel Hilbert space is dense in the Sobolev space Hm(D) with respect to its

Sobolev norm, we can still say that û converges to u in probability.

11



3.2 Elliptic stochastic PDEs

Let ξ : D × ΩW → R be Gaussian with mean 0 and covariance kernel Φ : D × D → R on

the probability space (ΩW ,FW ,PW ). We consider an elliptic PDE driven by a Gaussian

additive noise ξ {
Pu = f + ξ, in D ⊂ Rd,

Bu = g, on ∂D,
(3.3)

and suppose its solution u ∈ L2(ΩW ; HK(D)).

Since ξ is a Gaussian process, on some underlying probability space (ΩW ,FW ,PW ) with

a known correlation structure, we can simulate the values of ξ at xj , j = 1, . . . , N +M .

Consequently, we assume that the values {yj}Nj=1 and {yN+j}Mj=1 defined by

yj := f(xj) + ξxj , j = 1, · · · , N, yN+j := g(xN+j), j = 1, · · · ,M,

are known.

In order to apply the general interpolation framework developed in Section 2.2, we

consider the product space

ΩKW := ΩK × ΩW , FKW := FK ⊗FW , Pµ
W := Pµ ⊗ PW .

We assume that the random variables defined on the original probability spaces are extended

to random variables on the new probability space in the natural way: if random variables V1 :

ΩK → R and V2 : ΩW → R are defined on (ΩK ,FK ,Pµ) and (ΩW ,FW ,PW ), respectively,

then

V1(ω, ω̃) := V1(ω), V2(ω, ω̃) := V2(ω̃), for each ω ∈ ΩK and ω̃ ∈ ΩW .

Note that in this case the random variables have the same probability distributional prop-

erties, and they are independent on (ΩKW ,FKW ,Pµ
W ). This implies that the stochastic

processes S, PS, BS and ξ can be extended to the product space (ΩKW ,FKW ,Pµ
W ) while

preserving the original probability distributional properties. In this case, (y1, · · · , yN ) ∼
N (f ,Ψ), where f := (f(x1), · · · , f(xN ))T and Ψ := (Ψ(xj ,xk))

N,N
j,k=1 with Ψ being the

covariance kernel of ξ. According to Corollary 3.3 we can find the conditional probability

density function pµx(·|·), and the optimal estimator û(x)

û(x) = argmax
v∈R

sup
µ∈HK(D)

pµx(v|yξ)pW (yξ), x ∈ D,

where

yξ := (y1, · · · , yN+M )T , mξ :=

(
f

0

)
∈ RN+M , Σ :=

(
Ψ 0

0 0

)
∈ R(N+M)×(N+M),

pW (v) :=
1√

det(Σ)(2π)(N+M)/2
exp

(
−1

2
(v −mξ)

TΣ†(v −mξ)

)
, v ∈ RN+M .
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If
∗
KPB + Σ is nonsingular, then one optimal solution has the form

û(x) := kPB(x)
T (

∗
KPB + Σ)−1yξ, x ∈ D,

where
∗
KPB and kPB(x) are defined in Corollary 3.2 and 3.3.

Similar to the analysis of the error bounds from Section 3.1, we also deduce the following

proposition (for more details see [22]).

Proposition 3.6. Assume Ψ ∈ C1,1(D ×D). Then

lim
hX→0

sup
µ∈HK(D)

Pµ
W

(
∥u− û∥L∞(D) ≥ ϵ

)
= 0, for any ϵ > 0.

4 Numerical Experiments

We consider the following stochastic heat equation with zero boundary condition
dUt =

d2

dx2Utdt+ σdWt,i, in D := (0, 1) ⊂ R, 0 < t < T := 1,

Ut = 0, on ∂D,
U0(x) = u0(x) :=

√
2 (sin(πx) + sin(2πx) + sin(3πx)) ,

(4.1)

driven by two types of space-time white noise (colored in space) W of the form

Wt,i :=
∞∑
k=1

W k
t q

i
kϕk, qk :=

1

kπ
, ϕk(x) :=

√
2 sin(kπx),

where W k
t , k ∈ N, is a sequence of independent one-dimensional Brownian motions, and

i = 1, 2. Note that choosing the larger value of i corresponds to a noise that is smoother in

space.

The spatial covariance function Ri(x, y) =
∑∞

k=1 q
2i
k ϕk(x)ϕk(y), i = 1, 2, takes the

specific forms

R1(x, y) = min{x, y} − xy, 0 < x, y < 1,

and

R2(x, y) =

{
−1

6x
3 + 1

6x
3y + 1

6xy
3 − 1

2xy
2 + 1

3xy, 0 < x < y < 1,

−1
6y

3 + 1
6xy

3 + 1
6x

3y − 1
2x

2y + 1
3xy, 0 < y < x < 1.

The solution of SPDE (4.1) is given by (for more details see, for instance, [5])

Ut(x) =
∞∑
k=1

ξkt ϕk(x), x ∈ D := (0, 1), 0 < t < T := 1,

where

ξk0 :=

∫
D
u0(x)ϕk(x)dx, ξkt := ξk0e

−k2π2t +
σ

qik

∫ t

0
ek

2π2(s−t)dW k
s .

13



From this explicit solution we can get that

E(Ut(x)) =

∞∑
k=1

ξk0e
−k2π2tϕk(x), Var(Ut(x)) =

∞∑
k=1

σ2

2k2π2q2ik
(1− e−2k2π2t) |ϕk(x)|2 .

We discretize the time interval [0, T ] with n equal time steps so that δt := T/n. We also

choose the reproducing kernel K(x, y) := g3,2θ(x − y), where g3,2θ is the Matérn function

with degree m := 3 and shape parameter θ > 0 (see Example A.1). As collocation points

we select uniform grid points XD ⊂ (0, 1) and X∂D := {0, 1}. Let P := I − δtd2/dx2

and B := I|{0,1}. Using our kernel-based collocation method we can perform the following

computations to numerically estimate the sample paths ûnj ≈ Utn(xj). Algorithm to solve

SPDE (4.1):

1. Initialize

• û0 := (u0(x1), · · · , u0(xN ))T

•
∗
KPB :=

 (P1P2

∗
K(xj , xk))

N,N
j,k=1, (P1B2

∗
K(xj , xN+k))

N,M
j,k=1

(B1P2

∗
K(xN+j , xk))

M,N
j,k=1, (B1B2

∗
K(xN+j , xN+k))

M,M
j,k=1


• B :=

(
(P2

∗
K(xj , xk))

N,N
j,k=1, (B2

∗
K(xj , xN+k))

N,M
j,k=1

)
• Ψ := σ2δt(R(xj , xk))

N,N
j,k=1, Σ :=

(
Ψ 0

0 0

)

• A := B(
∗
KPB + Σ)−1

2. Repeat for j = 1, 2, . . . , n, i.e., for t1, t2, . . . , tn = T

• Simulate ξ ∼ N (0,Ψ)

• ûj := B(
∗
KPB + Σ)−1

(
ûj−1 + ξ

0

)
= A

(
ûj−1 + ξ

0

)
Note that in the very last step the matrix A is pre-computed and can be used for all

time steps, and for different sample paths; that makes the proposed algorithm to be quite

efficient.

We approximate the mean and variance of Ut(x) by sample mean and sample variance

from s := 10000 simulated sample paths using the above algorithm, i.e.,

E(Utn(xj)) ≈
1

s

s∑
k=1

ûnj (ωk), Var(Utn(xj)) ≈
1

s

s∑
i=1

(
ûnj (ωi)−

1

s

s∑
k=1

ûnj (ωk)

)2

.

Figure 4.1 shows that the histograms at different values of t and x resemble the theo-

retical normal distributions. We notice a small shift in the probability distribution function

of the solution U , at times closer to zero, and when the noise is equal to W1 (Figure 4.1,

left panel). This shift is due to the fact that W1 is rougher in space than W2.
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(b) With spatial covariance R2

Figure 4.1: Empirical and theoretical probability distribution of Ut(x) for uniform points

N := 58 and M := 2, equal time steps n := 800, θ := 26.5, σ := 1.

Our use of an implicit time stepping scheme reduces the frequency of the white noise,

i.e., limδt→0 δW/δt ∼ δ0. Consequently, Figure 4.2 shows that the approximate mean is well-

behaved but the approximate variance is a little smaller than the exact variance. According

to Figure 4.3 we find that this numerical method is convergent as both δt and hX are refined.

Finally, we want to mention that the distribution of collocation points, the shape parameter,

and the kernel itself were chosen empirically and based on the authors’ experience. As

mentioned before, more precise methods are currently not available. A rigorous investigation

of these questions, as well as determination of precise rates of convergence is reserved for

future work.

5 Final Remarks

This new numerical approach can also be used to approximate systems of elliptic PDEs

with vector Gaussian noises ξ1 and ξ2 or nonlinear PDEs with Gaussian noise ξ, i.e.,{
Pu = f + ξ1, in D ⊂ Rd,

Bu = g + ξ2, on ∂D,
or

{
F (Pu) = ψ(f, ξ), in D ⊂ Rd,

G(Bu) = g, on ∂D,

where P := (P 1, · · · , Pnp) is a vector differential operator and B := (B1, · · · , Bnb) is a

vector boundary operator, and F : Rnp → R and G : Rnb → R (see [22]).

In addition to the additive noise case discussed here, we can also use the kernel-based

collocation method to approximate other well-posed stochastic parabolic equations with
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(a) With spatial covariance R1 (b) With spatial covariance R2

Figure 4.2: Approximate and theoretical mean and standard deviation for uniform points

N := 58 and M := 2, equal time steps n := 800, θ := 26.5, σ := 1.

multiplicative noise, e.g.,
dUt = AUtdt+ ψ(Ut)dWt, in D ⊂ Rd, 0 < t < T,

BUt = 0, on ∂D,
U0 = u0,

(5.1)

where ψ : R → R. Since
∫ tj
tj−1

ψ(Us)dWs ≈ ψ(Utj−1)δWj , the algorithm for SPDE (5.1) is

similar to before:

1. Initialize

• û0 := (u0(x1), · · · , u0(xN ))T

•
∗
KPB :=

 (P1P2

∗
K(xj ,xk))

N,N
j,k=1, (P1B2

∗
K(xj ,xN+k))

N,M
j,k=1

(B1P2

∗
K(xN+j ,xk))

M,N
j,k=1, (B1B2

∗
K(xN+j ,xN+k))

M,M
j,k=1


• B :=

(
(P2

∗
K(xj ,xk))

N,N
j,k=1, (B2

∗
K(xj ,xN+k))

N,M
j,k=1

)
• Ψ0 := δt(R(xj ,xk))

N,N
j,k=1, Σ0 :=

(
Ψ0 0

0 0

)
2. Repeat for j = 1, 2, · · · , n, i.e., for t1, t2, · · · , tn = T

• V1 := diag
(
ψ(ûj−1

1 ), · · · , ψ(ûj−1
N )

)
, V2 :=

(
V1 0

0 0

)
• Ψ := V1Ψ0V1, Σ := V2Σ0V2
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Figure 4.3: Convergence of mean and variance with respect to refinement of points and

time steps for σ := 1. (The relative RMSE of exact U and approximate Û is defined by

RMSE(U, Û) :=
√

1
nN

∑n
j=1

∑N
k=1(U(tj , xk)− Û(tj , xk))2/∥U(tk, ·)∥2∞.)

• Simulate ξ ∼ N (0,Ψ) , A := B(
∗
KPB + Σ)−1

• ûj := B(
∗
KPB + Σ)−1

(
ûj−1 + ξ

0

)
= A

(
ûj−1 + ξ

0

)
Of course, now the matrix A needs to be updated for each time step and for each sample

path so that the algorithm is much costlier.

A Reproducing-Kernel Hilbert Spaces

Definition A.1 ([20, Definition 10.1]). A Hilbert space HK(D) of functions f : D → R is

called a reproducing-kernel Hilbert space with a reproducing kernel K : D ×D → R if

(i) K(·,y) ∈ HK(D) and (ii) f(y) = ⟨K(·,y), f⟩K,D,

for all f ∈ HK(D) and all y ∈ D. Here ⟨·, ·⟩K,D is the inner product of HK(D).

According to [20, Theorem 10.4] all reproducing kernels are positive semi-definite. [20,

Theorem 10.10] shows that a symmetric positive definite kernel K is always a reproducing

kernel of a reproducing-kernel Hilbert space HK(D).

If D is open and bounded (pre-compact) and K ∈ L2(D × D) is symmetric positive

definite, then Mercer’s theorem [8, Theorem 13.5] guarantees the existence of a countable

set of positive values λ1 ≥ λ2 ≥ · · · > 0 with
∑∞

k=1 λk <∞ and an orthonormal base {ek}∞k=1

17



of L2(D) such that K possesses the absolutely and uniformly convergent representation

K(x,y) =
∞∑
k=1

λkek(x)ek(y), x,y ∈ D.

This Mercer series of K implies that

λkek(y) =

∫
D
K(x,y)ek(x)dx, y ∈ D, k ∈ N.

Definition A.2. The sequences {λk}∞k=1 and {ek}∞k=1 given above are called the eigenvalues

and eigenfunctions of the reproducing kernel K.

Since {ek}∞k=1 is orthonormal in L2(D) we can compute the series expansion of the

integral-type kernel
∗
K defined in Lemma 2.1, i.e.,

∗
K(x,y) =

∞∑
j=1

∞∑
k=1

∫
D
λjej(x)ej(z)λkek(z)ek(y)dz =

∞∑
k=1

λ2kek(x)ek(y).

It is easy to check that
∗
K ∈ L2(D × D) is symmetric positive definite and {λ2k}∞k=1 and

{ek}∞k=1 are the eigenvalues and eigenfunctions of
∗
K.

Theorem A.1 ([20, Theorem 10.29]). Suppose that K ∈ L2(D×D) is a symmetric positive

definite kernel on a pre-compact D ⊂ Rd. Then its reproducing-kernel Hilbert space is given

by

HK(D) =

{
f ∈ L2(D) :

∞∑
k=1

1

λk

∣∣∣∣∫
D
f(x)ek(x)dx

∣∣∣∣2 <∞

}
and the inner product has the representation

⟨f, g⟩K,D =

∞∑
k=1

1

λk

∫
D
f(x)ek(x)dx

∫
D
g(x)ek(x)dx, f, g ∈ HK(D),

where {λk}∞k=1 and {ek}∞k=1 are the eigenvalues and eigenfunctions of K.

Using the technique of the proof of [20, Theorem 10.29], we can verify that {
√
λkek}∞k=1

is an orthonormal base of HK(D).

Example A.1. The papers [10, 21] show that the Sobolev spline (Matérn function) of

degree m > d
2 ,

gm,θ(x) :=
21−m−d/2

πd/2Γ(m)θ2m−d
(θ∥x∥2)m−d/2Kd/2−m(θ∥x∥2), x ∈ Rd, θ > 0,

is a full-space Green function of the differential operator L := (θ2I −∆)m, i.e., Lgm,θ = δ0,

where t 7→ Kν(t) is the modified Bessel function of the second kind of order ν. The kernel

function

Km,θ(x,y) := gm,θ(x− y), x,y ∈ Rd,
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is a positive definite kernel whose reproducing-kernel Hilbert space is equivalent to the L2-

based Sobolev space of degree m, i.e., HKm,θ
(Rd) ∼= Hm(Rd). Its inner product has the

explicit form

⟨f, g⟩Km,θ,Rd =

∫
Rd

Pθf(x)
TPθg(x)dx, f, g ∈ HKm,θ

(Rd),

where PT
θ := (Q0,Q1, · · · ,Qm) and

Qj :=

{
aj∆

k, j = 2k,

aj∆
k∇T , j = 2k + 1,

aj :=

√
m!θ2m−2j

j!(m− j)!
, k ∈ N0, j = 0, 1, · · · ,m.

According to [3, Theorem 1.4.6], if the open bounded domain D ⊂ Rd is regular then the

reproducing-kernel Hilbert space HKm,θ
(D) is endowed with the reproducing-kernel norm

∥f∥Km,θ,D = inf
f̃∈HKm,θ

(Rd)

{
∥f̃∥Km,θ,Rd : f̃ |D = f

}
, f ∈ HKm,θ

(D),

and it is equivalent to L2-based Sobolev space of degree m, i.e., HKm,θ
(D) ∼= Hm(D).

B Differential and Boundary Operators

In this section we define differential and boundary operators on Sobolev spaces Hm(D).

The differential and boundary operators in this paper are well-defined since we assume that

D is regular, i.e., it satisfies a strong local Lipschitz condition or a uniform cone condition

(see [1, Chapter 4.1]). This means that D has a regular boundary ∂D. We can also check

that D is pre-compact and ∂D is closed and bounded which implies that ∂D is compact.

Let the notation for typical derivatives be

Dα :=
d∏

k=1

∂αk

∂xαk
k

, |α| :=
d∑

k=1

αk, α := (α1, · · · , αd) ∈ Nd
0.

We extend these derivatives to weak derivatives (see [1, Chapter 1.5]) using the same symbol

Dα. Using these weak derivatives, the classical L2-based Sobolev space Hm(D) is given by

Hm(D) :=
{
f ∈ Lloc

1 (D) : Dαf ∈ L2(D), |α| ≤ m, α ∈ Nd
0

}
, m ∈ N0,

equipped with the natural inner product

⟨f, g⟩m,D :=
∑

|α|≤m

∫
D
Dαf(x)Dαg(x)dx, f, g ∈ Hm(D).

The weak derivative Dα is a bounded linear operator fromHm(D) into L2(D) when |α| ≤ m.

Moreover, Dαf is well-posed on the boundary ∂D when f ∈ Cm(D) and |α| ≤ m−1 and we

denote that Dα|∂Df := Dαf |∂D. The book [1] and the paper [11] show that Dα|∂D can be
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extended to a bounded linear operator from Hm(D) into L2(∂D) when |α| ≤ m− 1 because

D has a regular boundary ∂D. The L2(∂D)-inner product is denoted by

⟨f, g⟩∂D =

∫
∂D
f(x)g(x)dS(x), when d ≥ 2 and ∂D is the boundary manifold,

and

⟨f, g⟩∂D = f(b)g(b) + f(a)g(a), when d = 1 and ∂D = {a, b}.

Definition B.1. A differential operator P : Hm(D) → L2(D) is well-defined by

P =
∑

|α|≤m

cαD
α, where cα ∈ C∞(D) and α ∈ Nd

0, m ∈ N0,

and its order is given by O(P ) := max
{
|α| : cα ̸≡ 0, |α| ≤ m, α ∈ Nd

0

}
. A boundary oper-

ator B : Hm(D) → L2(∂D) is well-defined by

B =
∑

|α|≤m−1

bαD
α|∂D, where bα ∈ C∞(∂D) and α ∈ Nd

0, m ∈ N,

and its order is given by O(B) := max
{
|α| : bα ̸≡ 0, |α| ≤ m− 1, α ∈ Nd

0

}
.

It is obvious that the differential operator P and the boundary operator B are bounded

(continuous) linear operators on Hm(D) with values in L2 whenever O(P ) ≤ m and O(B) ≤
m− 1. Much more detail on differential and boundary operators can be found in [1, 11].

The recent papers [10, 11, 21] verify that the reproducing kernel is a Green kernel and

its reproducing-kernel Hilbert space HK(D) is embedded into the Sobolev space Hm(D), i.e.,

∥f∥m,D ≤ C∥f∥K,D, for each f ∈ HK(D) ⊆ Hm(D),

where C is a positive constant independent of f . If HK(D) is embedded into Hm(D) then

the eigenvalues {λk}∞k=1 and eigenfunctions {ek}∞k=1 of the reproducing kernel K satisfy

λk∥ek∥2m,D ≤ C2∥
√
λkek∥2K,D = C2, k ∈ N,

because {
√
λkek}∞k=1 is an orthonormal base of HK(D). When m > d/2 then Hm(D) is

embedded into C(D) by the Sobolev embedding theorem. This implies thatK ∈ C(D×D) ⊂
L2(D × D) because K(·,y) ∈ C(D) for each y ∈ D and K is symmetric. Based on these

properties, we can introduce the following lemma.

Lemma B.1. Consider a differential operator P with order O(P ) ≤ m and a boundary

operator B with order O(B) ≤ m − 1, where m > d/2. If the reproducing-kernel Hilbert

space HK(D) is embedded into the Sobolev space Hm(D), then

Pf =
∞∑
k=1

f̂k
√
λkPek, Bf =

∞∑
k=1

f̂k
√
λkBek, f ∈ HK(D),

where f̂k = ⟨f, ek⟩K,D for each k ∈ N and {λk}∞k=1 and {ek}∞k=1 are the eigenvalues and

eigenfunctions of the reproducing kernel K.
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Proof. According to Theorem A.1 each f ∈ HK(D) can be expanded as f =
∑∞

k=1 f̂k
√
λkek.

Since {
√
λkek}∞k=1 is an orthonormal basis we have

∑∞
k=1

∣∣∣f̂k∣∣∣2 <∞. Let fn :=
∑n

k=1 f̂k
√
λkek

for each n ∈ N. Then

∥fn − f∥2m,D ≤ C2∥fn − f∥2K,D ≤ C2
∞∑

k=n+1

∣∣∣f̂k∣∣∣2 → 0, when n→ ∞.

The proof is completed by remembering that P and B are bounded linear operators on

Hm(D).

If HK(D) is embedded into Hm(D), then for each |α| ≤ m, |β| ≤ m and α, β ∈ Nd
0, we

have ∫
D

∫
D

∣∣∣∣∣
∞∑
k=1

λ2kD
αek(x)D

βek(y)

∣∣∣∣∣
2

dxdy

1/2

≤
∞∑
k=1

λ2k∥Dαek∥L2(D)∥Dβek∥L2(D) ≤
∞∑
k=1

λ2k∥ek∥2m,D ≤ C2
∞∑
k=1

λk <∞,

which implies that
∗
K ∈ Hm,m(D × D). Let n := ⌈m − d/2⌉ − 1. The Sobolev embedding

theorem shows that Hm,m(D×D) ⊂ Cn,n(D×D). Then we can obtain the following lemma.

Lemma B.2. Consider a differential operator P with order O(P ) < m−d/2 and a boundary

operator B with order O(B) < m − d/2, where m > d/2. If the reproducing-kernel Hilbert

space HK(D) is embedded into the Sobolev space Hm(D), then

P1P2

∗
K(x,y) := Pz1Pz2

∗
K(z1, z2)|z1=x,z2=y =

∞∑
k=1

λ2kPek(x)Pek(y),

B1B2

∗
K(x,y) := Bz1Bz2

∗
K(z1, z2)|z1=x,z2=y =

∞∑
k=1

λ2kBek(x)Bek(y),

P1B2

∗
K(x,y) := Pz1Bz2

∗
K(z1, z2)|z1=x,z2=y =

∞∑
k=1

λ2kPek(x)Bek(y),

where {λk}∞k=1 and {ek}∞k=1 are the eigenvalues and eigenfunctions of K. Moreover, P1P2

∗
K ∈

C(D ×D), B1B2

∗
K ∈ C(∂D × ∂D) and P1B2

∗
K ∈ C(D × ∂D).
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