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Abstract

In this paper we introduce some key exchange protocols over noncommutative rings.

These protocols use some polynomials with coefficients in the center of the ring as part

of the private keys. We give some examples over the ring End(Zp × Zp2), where p is a

prime number. We also give a security analysis of the proposed protocols and conclude

that the only possible attack is by brute force.
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1 Introduction

Nowadays, most commonly used public key cryptosystems (PKC) and public key ex-

change protocols are number theory based. The theoretical strength depends on the struc-

ture of abelian groups. Their robustness is based on the difficulty of solving certain problems

over finite commutative algebraic structures. One of these problems is the Integer Factor-

ization Problem over the ring Zn, being n the product of two large prime numbers; the well

known cryptosystem RSA [26] is based on this problem. The second classical problem is the

Discrete Logarithm Problem (DLP) over a finite field Zp, being p a large prime; the ElGamal

protocol [14] and all its variants are based on this problem.

∗The work of this author was partially supported by Spanish grant MTM2011-24858 of the Ministerio de

Economı́a y Competitividad of the Gobierno de España.
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Since Diffie and Hellman [12] proposed the first key exchange algorithm, we can find an

extensive bibliography on the problem of key exchange protocols in public key cryptography

(see, for example, [21, 29, 35] and the references therein). Most of proposed algorithms

are related to arithmetic operations on commutative algebraic structures and some efficient

attacks based on the commutative property of these structures are well known.

It is believed that the increasing computing power of modern computers has made these

techniques less secure (see, for example, [6, 30]). As a consequence of this, there exists an

active field of research known as noncommutative algebraic cryptography (see, for example,

[4, 11, 20, 23, 27, 28, 33]), aiming to develop and analyze new cryptosystems and key exchange

protocols based on noncommutative cryptographic platforms. Currently, the security of

cryptosystems on a nonabelian group G is based on any of the following problems:

The Conjugator Search Problem (CSP). Given (x, y) ∈ G×G, the problem is to find

z ∈ G such that y = z−1xz.

The Decomposition Problem (DP). Given (x, y) ∈ G × G and S ⊆ G, the problem is

to find z1, z2 ∈ S such that y = z1xz2.

The Symmetric Decomposition Problem (SDP). Given (x, y) ∈ G×G and m,n ∈ Z,

the problem is to find z ∈ G such that y = zmxzn.

The Generalizing of the Symmetric Decomposition Problem (GSDP). Given (x, y) ∈
G×G, S ⊆ G and m,n ∈ Z, the problem is to find z ∈ S such that y = zmxzn.

Several authors have used nonabelian groups for public key exchange. Below we mention

a few of them without going into details. In [3, 4, 20, 19], the authors suggest to use the braid

groups as platform groups for their respective protocols. In [25] the authors propose a PKC

scheme whose security is based on the DLP problem for the automorphism defined by the

conjugation operation and the difficulty to find the conjugate element on finite nonabelian

groups. In [32] the authors suggest the use of a finite representation of a nonabelian group,

called Thomson’s group, to develop a PKC model, where they raised for the first time the

difficulty of solving the SDP problem. Finally, in [36], the authors propose a cryptosystem

whose robustness is based on the difficulty of solving the CSP and SDP problems over any

noncommutative algebraic structure.

In [17] the authors present a PKC based on rings (the NTRU cryptosystem). We can

find some attacks on this cryptosystem in [15, 16]. In [24] the authors introduce the DLP

for matrix rings with entries in Fq, while a Diffie-Hellmann key exchange protocol based on

matrices can be found in [37]. Menezes and Wu [22] reduced the DLP for matrices to some

DLPs over small extensions of Fq. Other implementations of the Diffie-Hellman protocol in

matrix rings, for different kind of matrices, are presented in [1, 2, 8, 34, 38]. Satoh and Akari

[28] introduce an scheme based on the noncommutative ring of quaternions. Four years later,
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Coppersmith [11] performs some attacks over this scheme. More recently, Hurley and Hurley

[18] presented a public key cryptosystem using group rings.

The main idea of this work is the design of some public key exchange protocols over

noncommutative rings, in particular over the ring of endomorphisms of Zp × Zp2 , where p

is a prime number. Bergman [5] proved that this ring has p5 elements, it is semilocal, and

it cannot be embebed in matrices over any commutative ring. This last property is what

makes this ring very interesting for cryptographic applications, since it is not possible to

apply the reduction suggested by Menezes and Wu [22].

The rest of the paper is organized as follows. In Section 2 we recall the arithmetic and

some properties of the ring End(Zp×Zp2) based on the caracterization by Climent, Navarro,

and Tortosa [10]. In Section 3, we give a first key exchange protocol over noncommutative

rings and we point out its weakness. This motivates the introduction of two new protocols

using polynomials with coefficientes over the center of a noncommutative ring in Section 4.

In Section 5, we perform a security analysis of the proposed protocols. Finally, in Section 6

we present the conclusions of the paper. A preliminary version of this paper has appeared

in the conference proceedings [9].

2 Preliminaries

Climent, Navarro, and Tortosa [10] established an isomorphism between the ring End(Zp×
Zp2) and the ring

Ep =

{[
a b

pc pu+ v

]
| a, b, c, u, v ∈ Zp

}
,

where the addition and multiplication are given by (see [10, Corollary 1])[
a1 b1

pc1 pu1 + v1

]
+

[
a2 b2

pc2 pu2 + v2

]

=

[
(a1 + a2) mod p (b1 + b2) mod p

p [(c1 + c2) mod p] p
[(
u1 + u2 +

⌊
v1+v2
p

⌋)
mod p

]
+ (v1 + v2) mod p

]
and[

a1 b1

pc1 pu1 + v1

]
·

[
a2 b2

pc2 pu2 + v2

]

=

[
(a1a2) mod p (a1b2 + b1v2) mod p

p [(c1a2 + v1c2) mod p] p
[(
c1b2 + u1v2 + v1u2 +

⌊
v1v2
p

⌋)
mod p

]
+ (v1v2) mod p

]
respectively. The additive and multiplicative identities are, respectively

O =

[
0 0

0 0

]
and I =

[
1 0

0 1

]
.
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As a consequence of that isomorphism, we identify End(Zp×Zp2) with Ep. We will use this

ring for the implementation of our protocols.

The center of this ring will play an important role in the protocols that will be introduced

in the next section. It is not difficult to show that the center of Ep is the set

Z(Ep) =

{[
x 0

0 py + x

]
| x, y ∈ Zp

}
,

and that the number of elements of Z(Ep) is p2, which coincides with the characteristic of

Ep.

On the other hand, Ep is not an integral domain because it has zero divisors; for example,

for a, b, c, u, v ∈ Zp \ {0}, we have that[
a 0

pb 0

]
,

[
0 0

pc pu+ v

]
∈ Ep \ {O}

but [
a 0

pb 0

]
·

[
0 0

pc pu+ v

]
=

[
0 0

0 0

]
.

So, Ep is not a left nor a right Euclidean ring and, consequently, the ring of polynomials

with coefficients in Ep is not Euclidean. Neither Z(Ep) is an Euclidean ring since it also has

divisors of zero. For instance, if u1, u2 ∈ Zp \ {0}, then[
0 0

0 pu1

]
,

[
0 0

0 pu2

]
∈ Z(Ep) \ {O} but

[
0 0

0 pu1

]
·

[
0 0

0 pu2

]
=

[
0 0

0 0

]
.

3 A first key exchange protocol over noncommutative

rings

Stickel [34] introduces a key exchange protocol using the group G =
〈
CaS, TDb

〉
gen-

erated by the matrices CaS and TDb, where C and D are the companion matrices of two

irreducible polynomials p(X) and q(X), respectively, of degree n over F2 (the Galois field

with two elements); S and T are two invertible elements in an extension field of F2 such that

SCS−1 and TDT−1 are diagonal matrices, whose diagonal elements are the roots of p(X)

and q(X), respectively, in an extension field of F2, and a and b are two arbitrary integers.

Taking into account the key exchange protocol introduced in [34] we propose the following

protocol over a noncommutative ring R.

Protocol 1: The elements M , N ∈ R are public.

Step 1: Alice and Bob choose their private keys (r, s), (u, v) ∈ N2 respectively.
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Step 2: Alice computes her public key PA = M rNM s and sends it to Bob.

Similarly, Bob computes his public key PB = MuNM v and sends it to Alice.

Step 3: Alice and Bob compute SA and SB, respectively, as

SA = M rPBM
s and SB = MuPAM

v.

The shared secret is SA = SB, as we can see in the following theorem. �

Theorem 1: With the above notation, it follows that SA = SB.

Proof: The result follows from the fact that MkM l = M lMk, for all k, l ∈ N. �

Note that if MN = NM then

PA = M rNM s = NM rM s and PB = MuNM v = NMuM v,

therefore

NSA = NM rMuNM vM s = M rNM sMuNM v = PAPB,

NSB = NMuM rNM sM v = MuNM vM rNM s = PBPA,

that is, NSA = NSB, because PAPB = PBPA. So, the shared secret SA = SB may be easily

obtained by an unauthorized part, since N , PA and PB are public.

Then, we need that MN 6= NM ; therefore, from now on we will assume that N 6∈ Z(R).

Thus, the security of this protocol is based on achieving an element M with large order.

However, using the ideas of Shpilrain [31] it is easy to cryptanalyze the above protocol

because the element M is public. For example, if an attacker is able to find X, Y ∈ R such

that

XM = MX, YM = MY and PA = XNY

then

XPBY = XMuNM vY = MuPAM
v = SB

which is the shared secret.

To avoid this weakness we propose in the next section two new protocols considering

the elements f(M) and g(M) obtained from M and two polynomials f(X), g(X) ∈ Z(R)[X],

instead of considering simply the element M .
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4 Key exchange protocols using polynomials over a

noncommutative ring

Let us assume that R is a noncommutative ring. If we consider f(X), g(X) ∈ Z(R)[X]

and k, l ∈ N, although R is not commutative, we have that

f(M)kg(M)l = g(M)lf(M)k, for all M ∈ R. (1)

This property allows us to establish the following protocol.

Protocol 2: The elements M ∈ R and N ∈ R \ Z(R), are public.

Step 1: Alice chooses her private key f(X) ∈ Z(R)[X] and r, s ∈ N.

Bob chooses his private key g(X) ∈ Z(R)[X] and u, v ∈ N.

Step 2: Alice computes her public key PA = f(M)rNf(M)s, and sends it to Bob.

Analogously, Bob computes his public key PB = g(M)uNg(M)v, and sends it to Alice.

Step 3: Alice and Bob compute SA and SB, respectively, as

SA = f(M)rPBf(M)s and SB = g(M)uPAg(M)v. �

As in Protocol 1, the shared secret is SA = SB, as we can see in the following theorem.

Theorem 2: With the above notation, it follows that SA = SB.

Proof: The result follows from expression (1). �

In order to simplify the calculations in the following example we take a small value for

p, namely p = 31, although we must be aware that for practical implementations of the

protocols we must consider values for p of the order of 60 decimal digits.

Example 1: In the set up of the protocol we make public the elements

M =

[
19 22

62 893

]
∈ E31 and N =

[
22 27

775 521

]
∈ R \ Z(E31).

Then we go on the protocol steps:

Step 1: Alice chooses her private key (r, s) = (5, 7) and

f(X) =

[
15 0

0 77

]
+

[
2 0

0 777

]
X2 +

[
17 0

0 482

]
X4 ∈ Z(E31)[X].

Then, f(M) =

[
4 13

124 295

]
.
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Bob chooses his private key (u, v) = (9, 8) and

g(X) =

[
7 0

0 472

]
X +

[
12 0

0 508

]
X2 +

[
1 0

0 869

]
X6 ∈ Z(E31)[X].

Then g(M) =

[
3 7

806 50

]
.

Step 2: Alice computes her public key PA as

PA = f(M)rNf(M)s =

[
11 15

403 355

]
,

and sends it to Bob.

Similarly, Bob computes his public key PB as

PB = g(M)uNg(M)v =

[
19 29

558 562

]
,

and sends it to Alice.

Step 3: Alice computes SA as

SA = f(M)rPBf(M)s =

[
25 26

589 714

]
.

Bob computes SB as

SB = g(M)uPAg(M)v =

[
25 26

589 714

]
.

As we established in Theorem 2, the shared secret is SA = SB.

Note that an attacker knows the elementM since it is public, but the elements f(X), g(X) ∈
Z(E11)[X] remain unknown. Consequently, the following elements are also unknown

f(M)r =

[
4 13

124 295

]5
=

[
1 0

0 94

]
and f(M)s =

[
4 13

124 295

]7
=

[
16 12

558 8

]
,

as well as

g(M)u =

[
3 7

806 50

]9
=

[
29 4

186 295

]
and g(M)v =

[
3 7

806 50

]0
=

[
20 1

527 9

]
.

Let us assume that an attacker intercepts PA and PB. Firstly, to obtain the shared secret

S, he/she should determine the polynomials f(X) and g(X) and, later, obtain the pairs (r, s)

and (u, v) from the expressions

f(M)rNf(M)s = PA and g(M)uNg(M)v = PB.

This is equivalent to solve two DP problems because (r, s) and (u, v) are unknown. �
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Ep Degree of the polynomial

H
HHHHp

n
2 3 4 5 · · · 12 13 · · · 20 · · ·

2 12 16 20 24 · · · 52 56 · · · 84 · · ·
3 27 36 45 54 · · · 117 126 · · · 189 · · ·
5 75 100 125 150 · · · 325 350 · · · 525 · · ·
7 147 196 245 294 · · · 637 686 · · · 1029 · · ·
11 363 484 605 726 · · · 1573 1694 · · · 2541 · · ·
13 507 676 845 1014 · · · 2197 2366 · · · 3549 · · ·
17 867 1156 1445 1731 · · · 3757 4046 · · · 6069 · · ·
19 1083 1444 1805 2166 · · · 4693 5054 · · · 7581 · · ·
23 1587 2116 2645 3174 · · · 6877 7406 · · · 11109 · · ·
29 2523 3364 4205 5046 · · · 10933 11774 · · · 17661 · · ·
31 2883 3844 4805 5766 · · · 12493 13454 · · · 20181 · · ·
...

...
...

...
...

...
...

...

97 28227 37636 47045 56454 · · · 122317 131726 · · · 197589 · · ·
101 30603 40804 51005 61206 · · · 132613 142814 · · · 214221 · · ·
103 31827 42436 53045 63654 · · · 137917 148526 · · · 222789 · · ·
107 34347 45796 57245 68694 · · · 148837 160286 · · · 240429 · · ·
...

...
...

...
...

...
...

...

Table 1: Number of polynomials for different degrees n and primes p

We could think on a brute force attack on the set of polynomials with coefficients in

the center of the ring. However, an attack of this type is not feasible since the number of

polynomials of degree n and coefficients in Z(Ep), is (n + 1)p2. It is enough to take n or

p sufficiently large. For example, if we consider n = 20 and a prime number p of about 60

decimal digits (these requirements are not too high), the number of polynomials to consider

is of the order of 10121. Table 1 shows the values of (n+ 1)p2 for different values of n and p.

Note that Protocol 2 presents some symmetry in the sense that Alice and Bob uses the

same polynomial to multiply element N , both on the right and on the left. To avoid this

symmetry we introduce two polynomials for each user in the following protocol.

Protocol 3: The elements M ∈ R, N ∈ R \ Z(R), are public.

Step 1: Alice chooses her private key f1(X), f2(X) ∈ Z(R)[X] and r, s ∈ N.

Bob chooses his private key g1(X), g2(X) ∈ Z(R)[X] and u, v ∈ N.

Step 2: Alice computes her public key PA = f1(M)rNf2(M)s and sends it to Bob.

Similarly, Bob computes his public key PB = g1(M)uNg2(M)v, and sends it to Alice.

Step 3: Alice and Bob compute SA and SB, respectively, as

SA = f1(M)rPBf2(M)s and SB = g1(M)uPAg2(M)v.

Following a similar argument as in Protocol 2, it follows that SA = SB. �
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In the next example, we show how to share a secret using the above protocol.

Example 2: We consider again the elements M and N of E31 as in Example 1.

Step 1: Alice chooses her private key (r, s) = (5, 7) and f1(X), f2(X) as

f1(X) =

[
15 0

0 77

]
+

[
2 0

0 777

]
X2 +

[
17 0

0 482

]
X4 ∈ Z(E31)[X],

f2(X) =

[
7 0

0 472

]
X +

[
12 0

0 508

]
X2 +

[
1 0

0 869

]
X6 ∈ Z(E31)[X].

Then, f1(M) =

[
4 13

124 295

]
and f2(M) =

[
3 7

806 50

]
.

Bob chooses his private key (u, v) = (9, 8) and g1(X), g2(X) as

g1(X) =

[
9 0

0 71

]
+

[
0 0

0 713

]
X +

[
26 0

0 181

]
X4 +

[
13 0

0 292

]
X5 ∈ Z(E31)[X],

g2(X) =

[
21 0

0 300

]
+

[
4 0

0 531

]
X2 +

[
30 0

0 61

]
X3 +

[
14 0

0 262

]
X4 ∈ Z(E31)[X].

Then, g1(M) =

[
27 24

155 817

]
and g2(M) =

[
20 3

620 886

]
.

Step 2: Alice computes her public key PA as

PA = f1(M)rNf2(M)s =

[
2 3

341 826

]
,

and sends it to Bob.

Similarly, Bob computes his public key PB as

PB = g1(M)uNg2(M)v =

[
4 1

217 522

]
,

and sends it to Alice.

Step 3: Alice computes SA as

SA = f1(M)rPBf2(M)s =

[
6 5

682 957

]
.

Bob computes SB as

SB = g1(M)uPAg2(M)v =

[
6 5

682 957

]
.

Then, the shared secret is SA = SB.
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E31 Degree of the polynomials

HHH
HHm

n
4 6 8 10 12 14 16 18 20 · · ·

3 18470420 25858588 33246756 40634924 48023092 55411260 62799428 70187596 77575764 · · ·
5 27705630 38787882 49870134 60952386 72034638 83116890 94199142 105281394 116363646 · · ·
7 36940840 51717176 66493512 81269848 96046184 110822520 125598856 140375192 155151528 · · ·
9 46176050 64646470 83116890 101587310 120057730 138528150 156998570 175468990 193939410 · · ·
11 55411260 77575764 99740268 121904772 144069276 166233780 188398284 210562788 232727292 · · ·
13 64646470 90505058 116363646 142222234 168080822 193939410 219797998 245656586 271515174 · · ·
15 73881680 103434352 132987024 162539696 192092368 221645040 251197712 280750384 310303056 · · ·
17 83116890 116363646 149610402 182857158 216103914 249350670 282597426 315844182 349090938 · · ·
19 92352100 129292940 166233780 203174620 240115460 277056300 313997140 350937980 387878820 · · ·
..
.

..

.
..
.

...
...

...
...

...
...

...

Table 2: Number of polynomials for different values of the degrees for p = 31

Note that an attacker knowsM since it is public, but f1(X), f2(X), g1(X), g2(X) ∈ Z(E31)[X]

remain unknown. Consequently,

f1(M)r =

[
1 0

0 94

]
and f2(M)s =

[
17 15

217 162

]
,

are unknown, as well as

g1(M)u =

[
23 0

0 178

]
and g2(M)v =

[
19 18

837 751

]
.

Following a similar argument as for Protocol 2, an attacker who wants to discover the

shared secret must obtain, firstly, the polynomials f1(X), f2(X), g1(X), and g2(X) and later

to find (r, s) and (u, v) from the expressions

f1(M)rNf2(M)s = PA and g1(M)uNg2(M)v = PB.

This is equivalent to solve two DP problems. �

In this protocol a user needs two polynomials with degrees m and n, respectively; there-

fore the number of possible polynomials becomes (m + 1)(n + 1)p4. Note that for a prime

number p of about 60 decimal digits (as in the previous case) and for m = 9 and n = 10

the number of polynomials that an attacker must consider is of the order of 10242. Table 2

shows the values of (m+ 1)(n+ 1)p4 for different values of m, n and p.

5 Security analysis of the proposed protocols

In this section we discuss some possible attacks on the protocols introduced in Section 4,

briefly explaining the reasons why those attacks will ever be successful. Let us note first that

classic attacks on finite fields, like Index-Calculus, Square Root, Quadratic Sieve or Number
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Field Sieve are not feasible in these protocols because the underlying structure is a finite

noncommutative ring. Furthermore, given that for any prime number p, the ring Ep is not

Euclidean, then Z(Ep) is not Euclidian either, any attack based on the use of the Euclidean

division can never be applicable here. See, for example, the attack proposed by Dubois and

Kammerer [13] for the protocols designed by Boucher et al. [7].

As we have already mentioned in Section 4, the security of the protocols are based on

the difficulty posed to solve the DP problem, for which no polynomial-time probabilistic

algorithm capable of solving this problem in a noncommutative ring is known. In our case,

for each protocol, an attacker needs to solve the DP problem by solving the following system

of equations

XAXB = XBXA, (2)

YAYB = YBYA, (3)

XANYA = PA, (4)

XBNYB = PB, (5)

being PA and PB the public keys of Alice and Bob, respectively. The elements M ∈ R,

N ∈ R \ Z(R) are also known by an attacker.

The first aim of an adversary to break Protocol 2 is to find the elements XA, XB, YA

and YB. To perform this task, the attacker will try to find two polynomials h1(X), h2(X) ∈
Z(R)[X] and natural numbers α1, α2, β1, β2 ∈ N such that

h1(M)α1 = XA, h1(M)α2 = YA and h2(M)β1 = XB, h2(M)β2 = YB.

Then, conditions (2) and (3) are guaranteed. Note that the number of polynomials with

coefficients in the center of R determines a set of possible combinations of choice. At this

point the attacker should also check conditions (4) and (5). This leads to a brute force

attack, which is not feasible if the set of polynomials with coefficients in the center is large

enough.

Analogously, for Protocol 3 the attacker should find the elements XA, XB, YA and YB.

Therefore, it is neccesary to find two pairs of polynomials h1(X), k1(X), h2(X), k2(X) ∈ Z(R)[X]

and natural numbers α1, α2, β1, β2 ∈ N such that

h1(M)α1 = XA k1(M)α2 = YA and h2(M)β1 = XB k2(M)β2 = YB.

Conditions (2) and (3) are again guaranteed, but the number of polynomials has in-

creased, representing an extra difficulty in case the cardinality of the set of polynomials is

large.

Summing up, a brute force attack to the protocols leads us to an attempt to solve a DP

problem. To perform this, the only possibility of solving a DP problem is by carrying on a

brute force attack on the set of polynomials with coefficients in the center of the ring, which
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turns out to be unfeasible if the cardinal of the set of these polynomials is large. In the case

of the ring Ep it is enough to consider a prime number p with 60 digits and polynomials

with coefficients in the center of Ep with degree 10, as we mentioned for each protocol in

Section 4.

6 Conclusion

In this paper we have shown how noncommutative rings can be used in order to provide

protocols that allow a key exchange in a secure manner. More precisely, we give two protocols

based on the characterization of the ring End(Zp × Zp2), for a prime number p, given by

[10] and denoted in this paper by Ep. These protocols enhance Stickel’s protocol for key

exchange and use polynomials with coefficients in the center of the ring that are part of each

user’s private key. Thus, an attacker who wants to recover the shared secret must obtain

the polynomial f(X) and then solve the equation

f(M)kNf(M)l = P (6)

for (k, l), or obtain the polynomials f1(X) and f2(X) and then solve the equation

f1(M)kNf2(M)l = P (7)

for (k, l). Solving equations (6) and (7) are equivalent to solve a DP problem.

Furthermore, as we already mentioned in the preliminaries, the ring Ep is not Euclidean,

nor is Z(Ep). So the ring of polynomials with coefficients in Z(Ep) is not Euclidean. There-

fore attacks based on the existence of an Euclidean division in a noncommutative ring, are

not viable in this case.
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