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Abstract

We investigate weighted asynchronous cellular automata with weights in valuation
monoids. These automata form a distributed extension of weighted finite automata
and allow us to model concurrency. Valuation monoids are abstract weight struc-
tures that include semirings and (non-distributive) bounded lattices but also offer
the possibility to model average behaviors. We prove that weighted asynchronous
cellular automata and weighted finite automata which satisfy an I-diamond prop-
erty are equally expressive. Depending on the properties of the valuation monoid,
we characterize this expressiveness by certain syntactically restricted fragments of
weighted MSO logics. Finally, we define the quantitative model-checking problem
for distributed systems and show how it can be reduced to the corresponding prob-
lem for sequential systems.
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1 Introduction

During the last decades, automata, logics, and the connection between them turned
out to be very useful tools in the modeling and verification of computer systems.
In this setting, an automaton A is used to describe certain aspects of the system
under consideration and the property that shall be verified is expressed by some
logical formula ϕ. The model-checking problem is to decide whether all behaviors of
A satisfy the specification encoded by ϕ. The earliest result in this field was shown
by Büchi and Elgot [5, 22] and states that finite automata and monadic second-
order logics (MSO logics) over words are equally expressive. The goal of this thesis
is to generalize that approach to verification in two directions. First, we extend it
beyond a boolean setting by taking quantitative properties into account. Second,
we consider systems which are not necessarily sequential but can also be distributed
and concurrent.

For modeling and verifying quantitative systems, automata and logics assign val-
ues from rich structures to behaviors. These values can, e.g., be the probability of
acceptance, describe the consumption of some resource, or represent a reward, re-
spectively. Those new requirements led to several specialized extensions of classical
finite automata, like probabilistic automata [6,38], timed automata [1], and lattice
automata [30].

A more generic approach for modeling quantitative systems is provided by the
theory of weighted automata [14, 29]. A weighted automaton is essentially a finite
automaton with the additional feature that weights from an arbitrary semiring
are assigned to each transition. Such an automaton assigns an element from the
semiring to each behavior which is computed using the addition and multiplication
of the semiring. There is a well developed theory of weighted automata and the
first prominent result was established already in the 1960s by Schützenberger [39].
However, weighted logics were not taken into account for a long time. This gap on
the specification side of weighted model checking was closed by Droste and Gastin
[11, 12] some years ago. Their result characterizes the expressiveness of weighted
automata by means of weighted MSO logics and hence generalizes the results of
Büchi and Elgot. Nowadays, semiring weighted logics are still an ongoing subject
of research [4, 13,17,18].

Due to the very general nature of semirings many quantitative systems can be
modeled by semiring weighted automata. However, the interest in quantitative as-
pects which do not fit into this semiring framework grew for several years. On
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1 Introduction

the one hand, these are aspects like the average consumption of some resource or
longtime highs and lows of some cost or output [7]. On the other hand, automata
with weights from – potentially non-distributive – bounded lattices were investi-
gated [19, 20]. Such weight structures are used, e.g., in multi-valued logics [27, 33]
and quantum logics [3]. Recently, Droste and Meinecke [15] introduced valuation
monoids to capture this variety of possible weight structures within one uniform
framework. They studied weighted automata as well as weighted logics over such
structures and investigated their relationship, culminating in a result similar to
Droste and Gastin’s [13].

All the automaton models mentioned so far have in common that they assign val-
ues to words. This is well suited for modeling sequential systems but improper for
distributed systems. A valuable concept for modeling behaviors in a concurrent set-
ting are traces as introduced by Mazurkiewicz [34]. The corresponding unweighted
automaton model are Zielonka’s asynchronous cellular automata [41]. Thomas [40]
generalized the result of Büchi and Elgot by proving that the class of trace lan-
guages acceptable by these automata coincides with those languages definable in
MSO logics. Later on, this connection was extended to infinite traces by Ebinger
and Muscholl [21]. Both results opened the way for qualitative model-checking of
distributed systems.

First steps towards modeling quantitative distributed systems by means of au-
tomata were taken by Droste and Gastin [10]. Although their automaton model
was not distributed it turned out to be very important for the subsequent research.
Weighted asynchronous cellular automata with weights from a commutative semi-
ring were introduced and studied by Kuske [31]. Soon afterwards, Meinecke [35]
extended the theorems of Büchi and Elgot, Thomas, and Droste and Gastin to a
semiring weighted and concurrent setting. Combining the results of Kuske and Mei-
necke [23] allows one to reduce quantitative model-checking of distributed systems
to that of sequential systems.

The situation described above naturally raises the question whether similar re-
sults hold true for quantitative model-checking of distributed systems over valuation
monoids. Since this issue has not been considered yet, we will investigate it in this
thesis.

The main results are as follows. First, we present weighted asynchronous cellu-
lar automata as a model for quantitative distributed systems. Moreover, we de-
fine weighted I-diamond automata for modeling the interleaving behavior of such
systems and show that both kinds of weighted automata are equally expressive.
Second, we introduce weighted MSO logics as a formalism to write specifications
for quantitative distributed systems. The main theorem of this thesis characterizes
the expressiveness of weighted asynchronous cellular automata by certain syntac-
tically restricted fragments of this logics. The choice of the fragment depends on
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1 Introduction

the properties of the valuation monoid. Thus, we provide a joint extension of the
results of Droste and Gastin [13], Kuske and Meinecke [23, 31, 35], and Droste and
Meinecke [15]. At last, we define the quantitative model-checking problem for dis-
tributed systems. Using the fact that all proofs throughout the thesis are effective,
we show how it can be reduced to the quantitative model-checking problem for
sequential systems.
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2 Traces and asynchronous
cellular automata

In this chapter we give the necessary background in trace theory needed for this
thesis. For a more general overview we refer the reader to [8, 9]. In contrast to
the algebraic approach taken there, we introduce traces as labeled partial orders.
This view is made explicit in [24, 40]. Moreover, we present asynchronous cellular
automata and I-diamond automata as devices for recognizing trace languages.

2.1 Σ-posets and traces

Let Σ be an alphabet, i.e., a finite, non-empty set of actions. A Σ-poset is a triplet
s = (V,v, λ) where V some arbitrary set, v is a partial order on V , and λ : V → Σ
is a labeling function. We agree that throughout the whole thesis, all considered
Σ-posets are finite and not empty. As usual, we will also identify isomorphic struc-
tures.

To model the architecture of a distributed system we further fix an architecture
graph (L,D) where L is a finite, non-empty set of locations and D is a symmetric
and reflexive relation on L, called dependence relation. For some ` ∈ L we denote
with

D(`) = {m ∈ L | (`,m) ∈ D }
the set of all locations depending on `. For the rest of this thesis, we fix the graph
(L,D).

A distributed alphabet is a pair (Σ, lc) consisting of an alphabet Σ and a surjective
location mapping lc : Σ→ L. For any ` ∈ L we denote with

Σ` = { a ∈ Σ | lc(a) = ` }

the set of actions assigned to location `. Since lc is surjective, (Σ`)`∈L is an L-indexed
family of mutually disjoint, non-empty alphabets which completely determines the
pair (Σ, lc). Thus, some authors define distributed alphabets using such families,
c.f., [23, 31]. Usually, we will omit the location mapping lc if it is clear from the
context and denote the distributed alphabet solely with Σ.
Let t = (V,v, λ) be some Σ-poset. We define a map lct : V → L as lct = lc ◦λ.

We call t a trace over Σ if for all x, y ∈ V the following two conditions are satisfied:
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2 Traces and asynchronous cellular automata

(1) if (lct(x), lct(y)) ∈ D, then x v y or y v x,

(2) if x @ y and there is no z ∈ V such that x @ z @ y, then (lct(x), lct(y)) ∈ D.

The set of all traces is denoted with T(Σ) and subsets L ⊆ T(Σ) are called trace
languages.
To each w = a1 . . . an ∈ Σ+ we assign a trace trc(w) = (V,v, λ) ∈ T(Σ) as

follows:

• V = { 1, . . . , n },

• v is the reflexive and transitive closure of

E = { (i, j) ∈ V × V | i < j and (lc(ai), lc(aj)) ∈ D } ,

and

• λ(i) = ai.

In this way, we obtain a surjective map trc : Σ+ → T(Σ). If we introduce a trace as
trc(w) = (V,v, λ) for some w ∈ Σ+, for simplicity we will assume that V , v, and
λ are constructed exactly like above.

Two words u, v ∈ Σ+ are called trace equivalent if trc(u) = trc(v). We conclude
this section by characterizing trace equivalence on the word level. The independence
relation I on Σ is defined as

I = { (a, b) ∈ Σ× Σ | (lc(a), lc(b)) 6∈ D } .

Clearly, I is symmetric and irreflexive. Moreover, the reflexive and transitive closure
of the relation

{ (xaby, xbay) | x, y ∈ Σ∗, (a, b) ∈ I } .
on Σ+ is denoted with ∼I. From trace theory it is well known that u, v ∈ Σ+

are trace equivalent if and only if u ∼I v. Intuitively, two words are trace equiv-
alent iff one can be obtained from the other by repeatedly interchanging adjacent
independent letters.

2.2 Asynchronous cellular automata

In this section we give a brief overview of asynchronous cellular automata. They
were introduced by Zielonka [41] and can be regarded as a distributed extension
of classical (non-deterministic) finite automata. Moreover, they turned out to be a
very natural automaton model for traces.

An asynchronous cellular automaton over Σ (ACA for short) is a tuple A =
((Q`)`∈L, I, (T`)`∈L, F ) where
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2 Traces and asynchronous cellular automata

• (Q`)`∈L is a family of mutually disjoint finite sets Q` of local states for each
` ∈ L,

• T` ⊆
∏

m∈D(`) Qm × Σ` ×Q` is a local transition relation for any ` ∈ L,

• I, F ⊆
∏

`∈LQ` are sets of global initial and final states, respectively.

The ACA A is deterministic if I is a singleton and T` is the graph of a function∏
m∈D(`) Qm × Σ` → Q` for each ` ∈ L.
Let t = (V,v, λ) ∈ T(Σ) be a trace. Due to the reflexivity of D and condition

(1) for traces, for each ` ∈ L and any U ⊆ V the set U ∩ lc−1
t (`) is totally ordered

by v. Hence, if this set is not empty, it contains a largest element ∂`(U). Moreover,
for x ∈ V we define

⇓x = { y ∈ V | y @ x } .
A run of A on t is a pair ρ = (ι, r) consisting of a global state ι ∈

∏
`∈LQ` and

a mapping r : V →
⋃
`∈LQ` satisfying r(x) ∈ Qlct(x) for any x ∈ V . The idea

behind is the following: before executing the run ρ, the automaton in each location
m ∈ L is in its initial state ιm. When executing an event x ∈ V , the automaton
in location lct(x) reads the current states readm(ρ, x) of the automata in locations
m ∈ D(lct(x)) and moves to its local state r(x). Formally,

readm(ρ, x) =

{
r(∂m(⇓x)) if ∂m(⇓x) is defined,
ιm otherwise,

and
readD(lct(x))(ρ, x) =

(
readm(ρ, x)

)
m∈D(lct(x))

.

At the end of the run, the automaton in location m ∈ L is in state finalm(ρ) defined
as

finalm(ρ) =

{
r(∂m(V )) if ∂m(V ) is defined,
ιm otherwise,

and we put
final(ρ) =

(
finalm(ρ)

)
m∈L.

The whole run ρ is said to be successful if ι ∈ I,

(readD(lct(x))(ρ, x), λ(x), r(x)) ∈ Tlct(x)

for all x ∈ V , and final(ρ) ∈ F . The set of all successful runs of A on t is denoted
with succ(A, t). The language recognized by A is the set of all traces which admit
a successful run, i.e.,

Lt(A) = { t ∈ T(Σ) | succ(A, t) 6= ∅ } .

Finally, a trace language L ⊆ T(Σ) is called recognizable if it is recognized by some
asynchronous cellular automaton over Σ.
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2 Traces and asynchronous cellular automata

2.3 Finite and I-diamond automata

Deterministic and non-deterministic finite automata are well known automaton
models for word languages. If they satisfy one additional condition – the so called
I-diamond property – they can be used in the field of trace theory as well.
A finite automaton over Σ (FA for short) is a tuple A = (Q, I, T, F ) where

• Q is a finite set of states,

• T ⊆ Q× Σ×Q is the transition relation, and

• I, F ⊆ Q are sets of initial and final states, respectively.

For a word w = a1 . . . an ∈ Σ+ a run of A on w is a tuple σ = (q0, . . . , qn) ∈ Qn+1.
We call σ successful if q0 ∈ I, (qi−1, ai, qi) ∈ T for all i = 1, . . . , n, and qn ∈ F .
The set of all successful runs of A on w is denoted with succ(A, w). The language
recognized by A is the set of all words which admit a successful run, i.e.,

Lw(A) = {w ∈ Σ+ | succ(A, w) 6= ∅ } .

A word language L ⊆ Σ+ is called recognizable if it is recognized by some finite
automaton over Σ.

An I-diamond automaton over Σ is an FA A = (Q, I, T, F ) over Σ which has the
I-diamond property, i.e., for all p, q, r ∈ Q and (a, b) ∈ I with (p, a, q), (q, b, r) ∈ T
there is some q′ ∈ Q such that (p, b, q′), (q′, a, r) ∈ T . In this situation it is well
known, that for all u ∼I v we have u ∈ Lw(A) iff v ∈ Lw(A). Thus, for any trace
t ∈ T(Σ) the automaton A accepts either all words from trc−1(t) or none of them.
In this way, we can understand an I-diamond automaton as device for recognizing
trace languages.

The connection between both automaton models for traces, ACAs and I-diamond
automata, was established by Zielonka:

Theorem 2.1 (Zielonka [42]). Let L ⊆ T(Σ) be trace language. The following are
equivalent:

(1) L is recognizable,

(2) L is recognized by some deterministic ACA over Σ,

(3) trc−1(L) is recognized by some I-diamond automaton over Σ, and

(4) trc−1(L) is recognizable.

At the end, we want to mention that there are other formalisms to characterize the
class of recognizable trace languages, namely algebraic recognizability, c-rational
expressions, loop-connected automata, and MSO logics. However, only the the latter
two will play a role in this thesis.

10



3 Weighted asynchronous cellular
automata

So far, we can use asynchronous cellular automata to model qualitative properties
of distributed systems. In this chapter we want to extend this automaton model
in a way that it can express quantitative aspects of such systems. Therefore, we
introduce weighted asynchronous cellular automata which essentially are ACAs
where a weight is assigned to each transition. They can be regarded as devices
that compute a weight for each trace by combining these transition weights in a
suitable manner. Hence, the underlying weight structure must essentially provide
two operations, one for combining all transition weights of a run and another for
resolving non-determinism, i.e., combining the weights of all successful runs a trace
admits. Recently, Droste and Meinecke [15] introduced valuation monoids for this
purpose.

3.1 Valuation monoids

A valuation monoid is an algebraic structure (D,+,Val,0) where

• (D,+,0) is a commutative monoid,

• Val : D+ → D is a total map called valuation function,

• Val(d) = d for all d ∈ D, and

• Val(d1, . . . , dn) = 0 whenever di = 0 for some i ∈ { 1, . . . , n }.

The intention is that + resolves non-determinism whereas the valuation function
Val combines the transition weights of a run.

Example 3.1. The following structures are examples for valuation monoids:

(1) (Q ∪ {−∞} ,max, avg,−∞) and (Q ∪ {∞} ,min, avg,∞) where

avg(d1, . . . , dn) =
d1 + · · ·+ dn

n
,
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3 Weighted asynchronous cellular automata

(2) (K,+,Π,0) where (K,+, · ,0,1) is a semiring and

Π(d1, . . . , dn) = d1 · · · dn,

(3) (L,∨, inf,⊥) where (L,∨,∧,⊥,>) is a bounded lattice and

inf(d1, . . . , dn) = d1 ∧ · · · ∧ dn.

For more examples we refer the reader to [15].
Since the transitions of an asynchronous cellular automaton are not executed in

some specific linear order, valuation monoids need to have an additional property
– called order independence – to fit into our distributed framework.

Definition 3.2. A valuation monoid (D,+,Val,0) is order independent if

Val(d1, . . . , dn) = Val(d′1, . . . , d
′
n)

for all n ≥ 1 and (d1, . . . , dn), (d′1, . . . , d
′
n) ∈ D+ where the first sequence is a

permutation of the second.

Obviously, the valuation monoids from Example 3.1 (1) and (3) are order indepen-
dent, whereas this is valid for (2) iff K is commutative.

3.2 Weighted asynchronous cellular automata

For the rest of this chapter we fix a distributed alphabet (Σ, lc) and a valuation
monoid (D,+,Val,0). In this section we also assume that D is order independent.
First, we define weighted asynchronous cellular automata.

Definition 3.3. A weighted asynchronous cellular automaton over Σ and D (wACA
for short) is a tuple A = ((Q`)`∈L, I, (T`)`∈L, F, (γ`)`∈L) where

• ((Q`)`∈L, I, (T`)`∈L, F ) is an ACA over Σ and

• γ` : T` → D is a transition weight function for each ` ∈ L.

For a trace t = (V,v, λ) ∈ T(Σ) (successful) runs ρ of A on t, read(ρ, x), final(ρ),
and succ(A, t) are defined like for (unweighted) ACAs. The weight of a successful
run ρ = (ι, r) of A on t is defined as

γ(ρ, t) = Val
((
γlct(x)(readD(lct(x))(ρ, x), λ(x), r(x))

)
x∈V

)
.

Notice that the value of γ(ρ, t) does not depend on the order in which V is enu-
merated since D is order independent.
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3 Weighted asynchronous cellular automata

Definition 3.4. Let A be a wACA over Σ and D. The behavior of A is the function
‖A‖t : T(Σ)→ D defined as

‖A‖t(t) =
∑

ρ∈succ(A,t)

γ(ρ, t).

From the definition above, we see that maps T(Σ)→ D are subject to our interest.
Thus, they get a concise name and are called trace series from now on. In particular,
we are interested those trace series that can occur as the behavior of some wACA.

Definition 3.5. A trace series S : T(Σ)→ D is called recognizable if there exists a
wACA A such that

S = ‖A‖t.

A common pattern in the investigation of trace systems is to consider some under-
lying word structure and to lift statements about word systems to the trace level.
In this thesis we take the same approach and extend a recent result of Droste and
Meinecke [15].

3.3 Weighted finite and I-diamond automata

First, we need to reintroduce the weighted automaton model from Droste and Mei-
necke [15]. A weighted finite automaton over Σ and D (wFA for short) is a tuple
A = (Q, I, T, F, γ) where

• (Q, I, T, F ) is an FA over Σ and

• γ : T → D is the transition weight function.

For some word w = a1 . . . an ∈ Σ+ (successful) runs of A on w and succ(A, w) are
defined like for (unweighted) FAs. For a successful run σ = (q0, . . . , qn) of A on w
the weight of σ is defined as

γ(σ,w) = Val
((
γ(qi−1, ai, qi)

)
i=1,...,n

)
.

The (word) behavior ‖A‖w : Σ+ → D of A is computed by

‖A‖w(w) =
∑

σ∈succ(A,w)

γ(σ,w).

Similar to the situation for traces, a map Σ+ → D is called word series and a word
series S : Σ+ → D is recognizable if there exists a wFA A such that

S = ‖A‖w.
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3 Weighted asynchronous cellular automata

For the rest of this section, we assume that the valuation monoid D is order inde-
pendent. As explained earlier, finite automata having the I-diamond property can
be regarded as devices for recognizing trace languages. Thus, weighted finite au-
tomata satisfying some I-diamond property were investigated [10,23,25]. Moreover,
Kuske [31] introduced the stronger notion of I-consistency. Next, we adopt these
concepts to our setting with weights in a valuation monoid.

For some wFA A = (Q, I, T, F, γ) over Σ and for all a, b ∈ Σ and p, r ∈ Q we put

Qa,b
p,r = { q ∈ Q | (p, a, q) ∈ T and (q, b, r) ∈ T } .

Definition 3.6. Let A = (Q, I, T, F, γ) be a wFA.

• A is called I-consistent if for all p, q, r ∈ Q and (a, b) ∈ I the following three
conditions are met:

(1) if (p, a, q), (q, b, r) ∈ T then there exists some q′ ∈ Q such that (p, b, q′),
(q′, a, r) ∈ T ,

γ(p, a, q) = γ(q′, a, r), and γ(q, b, r) = γ(p, b, q′), (3.1)

(2) if (p, a, q), (q, b, r) ∈ T and (p, a, q′), (q′, b, r) ∈ T for some q′ ∈ Q then
q′ = q, and

(3) if (p, a, q), (p, b, r) ∈ T then there is some s ∈ Q such that (q, b, s) ∈ T .

• A has the I-diamond property if for all p, r ∈ Q and (a, b) ∈ I there is an
injective mapping f = fa,bp,r : Qa,b

p,r → Qb,a
p,r such that for any q ∈ Qa,b

p,r we have

γ(p, a, q) = γ(f(q), a, r) and γ(q, b, r) = γ(p, b, f(q)).

As already suggested, I-consistency is a stronger condition than the I-diamond
property.

Lemma 3.7. Let A be a wFA. If A is I-consistent then A has the I-diamond
property.

Proof. Let A = (Q, I, T, F, γ) be an I-consistent wFA. Consider p, r ∈ Q and
(a, b) ∈ I. Due to condition (2) for I-consistency the set Qa,b

p,r is either empty or a
singleton. In the first case there is nothing to prove. For the latter case let Qa,b

p,r =
{ q }. Condition (1) implies the existence of some q′ ∈ Qb,a

p,r satisfying Eq. (3.1).
Thus, the choice fa,bp,r (q) = q′ shows the claim.

The following lemma explains how the I-diamond property relates to the study of
trace series.
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3 Weighted asynchronous cellular automata

Lemma 3.8. Let A be a wFA having the I-diamond property. Then

‖A‖w(u) = ‖A‖w(v)

holds true for all u, v ∈ Σ+ satisfying u ∼I v.

Proof. First, recall that ∼I is the reflexive and transitive closure of the relation

R = { (xaby, xbay) | x, y ∈ Σ∗, (a, b) ∈ I }

on Σ+. Thus, it suffices to show ‖A‖w(u) = ‖A‖w(v) for all (u, v) ∈ R. Therefore,
let u = xaby and v = xbay where x, y ∈ Σ∗ and (a, b) ∈ I. Moreover, let m = |x|
and n = |y|. For every successful run σ = (q0, . . . , qm+n+2) of A on u we define a
run

f(σ) =
(
q0, . . . , qm, f

a,b
qm,qm+2

(qm+1), qm+2, . . . , qm+n+2

)
of A on v. Due to the choice of fa,bqm,qm+2

the run f(σ) is also successful and from the
order independence of D we conclude γ(f(σ), v) = γ(σ, u). Hence, f is a mapping
f : succ(A, u)→ succ(A, v).
Similarly, we define a map g : succ(A, v)→ succ(A, u) by

g(q0, . . . , qm+n+2) =
(
q0, . . . , qm, f

b,a
qm,qm+2

(qm+1), qm+2, . . . , qm+n+2

)
.

Since for all p, r ∈ Q the sets Qa,b
p,r and Qb,a

p,r are finite and the maps fa,bp,r : Qa,b
p,r → Qb,a

p,r

and f b,ap,r : Qb,a
p,r → Qa,b

p,r are injective, they form a pair of inverse bijections. This
carries over to f and g, i.e., f and g are bijections which are inverse to each other.
Thus,

‖A‖w(u) =
∑

σ∈succ(A,u)

γ(σ, u) =
∑

σ∈succ(A,u)

γ(f(σ), v)

=
∑

σ′∈succ(A,v)

γ(σ′, v) = ‖A‖w(v).

The assertion of the proposition above ensures that in the following definition the
behavior is independent from the choice of w ∈ trc−1(t):

Definition 3.9. A weighted I-diamond automaton over Σ over D is a wFA A
which has the I-diamond property. The trace behavior of A is the trace series
‖A‖t : T(Σ)→ D defined by

‖A‖t(t) = ‖A‖w(w),

where w ∈ trc−1(t). A weighted I-diamond automaton is called consistent if it is
I-consistent.
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In order to formulate our first new result on recognizable trace series, we need to
assign a word series to each trace series. Thus, for every S : T(Σ)→ D we define a
word series trc−1(S) : Σ+ → D by

trc−1(S)(w) = S(trc(w)).

Using this notation we obtain for every weighted I-diamond automaton A the
relation

‖A‖w = trc−1
(
‖A‖t

)
. (3.2)

Theorem 3.10. Let S : T(Σ)→ D be a trace series. The following are equivalent:

(1) S is recognizable,

(2) there exists some consistent weighted I-diamond automaton A such that
S = ‖A‖t,

(3) there exists some weighted I-diamond automaton A such that S = ‖A‖t, and

(4) trc−1(S) is recognizable.

The implication from (2) to (3) is trivial and the one from (3) to (4) follows im-
mediately from Eq. (3.2). The rest of this chapter is devoted to the proofs of the
missing implications from (1) to (2) (Section 3.4) and from (4) to (1) (Section 3.7).

3.4 From trace automata to word automata

For the rest of this chapter, we assume that the valuation monoid D is order in-
dependent. The objective of this section is to prove the proposition below which
restates the implication from (1) to (2) of Theorem 3.10.

Proposition 3.11. Let S : T(Σ) → D be a recognizable trace series. Then there
exists a consistent weighted I-diamond automaton A such that S = ‖A‖t.

The main idea of the proof is to construct for every wACA A an I-consistent wFA
Aw whose behavior is trc−1(‖A‖t). Therefore, letA = ((Q`)`∈L, I, (T`)`∈L, F, (γ`)`∈L)
be some wACA. We define the wFA Aw = (Q, I, T, F, γ) by letting

Q =
∏
`∈L

Q`,

T =
{

(p, a, q)
∣∣ (pD(lc(a)), a, qlc(a)) ∈ Tlc(a) and q` = p` for all ` ∈ L \ { lc(a) }

}
,

and

γ(p, a, q) = γlc(a)(pD(lc(a)), a, qlc(a)),

16
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where qX = (q`)`∈X for all q ∈ Q and X ⊆ L.
The rest of this section is devoted to investigating this wFA Aw, culminating in

the proof of Proposition 3.11.

Lemma 3.12. For each wACA A the wFA Aw is I-consistent.

Proof. Consider p, q, r ∈ Q and (a, b) ∈ I. First, let us assume that (p, a, q),
(q, b, r) ∈ T . From the choice of T we conclude q` = p` for all ` 6= lc(a) and r` = q`
for each ` 6= lc(b). Since lc(a) 6= lc(b), this implies that q is uniquely determined by
p, r, a, and b. Thus, requirement (2) for I-consistency is met.
In order to verify condition (1) we must construct some q′ ∈ Q such that

(p, b, q′), (q′, a, r) ∈ T and Eq. (3.1) is satisfied. We do this by putting

q′m =

{
rm if m = lc(b),
pm otherwise.

First, lc(a) 6∈ D(lc(b)) and (q, b, r) ∈ T imply

(pD(lc(b)), b, q
′
lc(b)) = (qD(lc(b)), b, rlc(b)) ∈ Tlc(b),

i.e., (p, b, q′) ∈ T . Second, lc(b) 6∈ D(lc(a)) and (p, a, q) ∈ T analogously imply

(q′D(lc(a)), a, rlc(a)) = (pD(lc(a))a, qlc(a)) ∈ Tlc(a),

i.e., (q′, a, r) ∈ T . The previous two equalities and the definition of γ immediately
show Eq. (3.1).
Finally, assume (p, a, q), (p, b, r) ∈ T . To prove that condition (3) is met we must

find some s ∈ Q with (q, b, s) ∈ T . We show that

sm =

{
rm if m = lc(b),
qm otherwise,

is a suitable choice. Since lc(a) 6∈ D(lc(b)) and (p, b, r) ∈ T we have

(qD(lc(b)), b, slc(b)) = (pD(lc(b)), b, rlc(b)) ∈ Tlc(b),

i.e., (q, b, s) ∈ T .

Lemma 3.13. Let A be a wACA over Σ. Then for each w ∈ Σ+ we have

‖Aw‖w(w) = ‖A‖t(trc(w)).

17
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Proof. We fix some w = a1 . . . an ∈ Σ and let t = trc(w) = (V,v, λ). First, we
observe that

⇓ i ∩ lc−1
t (`) = { j ∈ V | i < j and lct(j) = ` }

for all i ∈ V and ` ∈ L. Moreover, for each run ρ of A on t and any i ∈ V we put

read(ρ, i) = (read`(ρ, i))`∈L.

Now, consider a successful run σ = (q0, . . . , qn) of Aw on w. Then ρ = (q0, r),
where r(i) = (qi)lct(i), is a run of A on t. Using induction on i = 1, . . . , n we show

read(ρ, i) = qi−1. (3.3)

Thus, take some i ∈ V and ` ∈ L. If i = 1 we have ⇓ i ∩ lc−1
t (`) = ∅ and hence

read`(ρ, i) = (q0)`. For i > 1 there are two cases. First, suppose lct(i − 1) = `.
Then we have ∂`(⇓ i) = i − 1 and read`(ρ, i) = r(i − 1) = (qi−1)`. Second, assume
lct(i− 1) 6= `. We obtain

⇓ i ∩ lc−1
t (`) = ⇓(i− 1) ∩ lc−1

t (`)

and hence
read`(ρ, i) = read`(ρ, i− 1).

By induction we have read`(ρ, i − 1) = (qi−2)`. Moreover, since lc(ai−1) 6= ` we
can conclude (qi−2)` = (qi−1)` from (qi−2, ai−1, qi−1) ∈ T . Combining the last three
insights we get read`(ρ, i) = (qi−1)`. Thus, we have shown Eq. (3.3). However, we
want to exploit these arguments once more to conclude

final(ρ) = qn. (3.4)

Therefore, we introduce an artificial node n + 1 which shall satisfy ⇓(n + 1) = V .
In this way, we get final(ρ) = read(ρ, n+ 1) and

⇓(n+ 1) ∩ lc−1
t (`) = V ∩ lc−1

t (`) = { j ∈ V | i < n+ 1 and lct(j) = ` } .

This equation justifies a use of the induction step for i = n + 1 and the claim of
Eq. (3.4) follows. Finally, Eqs. (3.3) and (3.4) imply that the run ρ is also successful
and satisfies γ(ρ, t) = γ(σ,w). Thus, putting f(σ) = ρ defines a map

f : succ(Aw, w)→ succ(A, t).

Next, we show that f is a bijection. In order to verify surjectivity, consider a
successful run ρ = (ι, r) of A on t. Using an induction argument very similar to the
one above we can easily show that

σ = (read(ρ, 1), . . . , read(ρ, n), final(ρ))
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is a successful run of Aw on w such that f(σ) = ρ. Concerning injectivity, let
σ = (p0, . . . , pn) and σ′ = (q0, . . . , qn) be two successful runs of Aw on w such that
f(σ) = f(σ′). By induction we prove that pi = qi holds true for all i = 0, . . . , n.
For i = 0 this follows immediately from the definition of f and f(σ) = f(σ′). For
i > 0 we have to show (pi)` = (qi)` for any ` ∈ L. For ` = lct(i) this is implied by
f(σ) = f(σ′) as well. For all other values of ` it follow from the definition of T and
the fact that both runs σ and σ′ are successful. Thus, we proved f to be bijective.
In the end, we conclude

‖Aw‖w(w) =
∑

σ∈succ(Aw,w)

γ(σ,w) =
∑

σ∈succ(Aw,w)

γ(f(σ), t)

=
∑

ρ∈succ(A,t)

γ(ρ, t) = ‖A‖t(t).

Now, we are prepared to prove Proposition 3.11.

Proof of Proposition 3.11. Let A be a wACA such that ‖A‖t = S. By Lemma 3.12
the wFA Aw is I-consistent and hence a consistent weighted I-diamond automaton.
Moreover, by Lemma 3.13 for each t ∈ T(Σ) and any w ∈ trc−1(t) we have

‖Aw‖t(t) = ‖Aw‖w(w) = ‖A‖t(t) = S(t).

3.5 Closure properties of recognizable trace series

In this section we define two operations on trace series, namely restriction and
projection, and investigate sufficient conditions under which they preserve recog-
nizability. Both operations will play an important role in Section 3.7.

First, let S : T(Σ)→ D be a trace series and L ⊆ T(Σ) be a trace language. We
define a trace series S�L : T(Σ)→ D by

S�L(t) =

{
S(t) if t ∈ L,
0 otherwise.

Proposition 3.14. Let S : T(Σ)→ D be a recognizable trace series and L ⊆ T(Σ)
be recognizable trace language. Then, S�L is also recognizable.

Proof. Let A′ = ((Q′`)`∈L, I
′, (T ′`)`∈L, F

′, (γ′`)`∈L) be a wACA with ‖A′‖ = S and
A′′ = ((Q′′` )`∈L, I

′′, (T ′′` )`∈L, F
′′) be a deterministic ACA satisfying Lt(A′′) = L.

We construct a wACA A = ((Q`)`∈L, I, (T`)`∈L, F, (γ`)`∈L) such that ‖A‖ = S�L.
Therefore, let Q` = Q′` ×Q′′` for each ` ∈ L,

I = { (q′`, q
′′
` )`∈L | q′ ∈ I ′, q′′ ∈ I ′′ } , and F = { (q′`, q

′′
` )`∈L | q′ ∈ F ′, q′′ ∈ F ′′ } .
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Moreover, we define T` by letting
(
(p′m, p

′′
m)m∈D(`), a, (q

′
`, q
′′
` )
)
∈ T` iff(

(p′m)m∈D(`), a, q
′) ∈ T ′ and ((p′′m)m∈D(`), a, q

′′)
)
∈ T ′′

and put
γ`
(
(p′m, p

′′
m)m∈D(`), a, (q

′
`, q
′′
` )
)

= γ′`
(
(p′m)m∈D(`), a, q

′
`

)
.

This completes the construction of A.
It remains to show that A has the desired behavior. Therefore, we consider some

trace t = (V,v, λ) ∈ T(Σ) and a run ρ = (ι, r) of A on t. By letting (ι′`, ι
′′
` ) = ι` for

each ` ∈ L and (r′(x), r′′(x)) = r(x) for any x ∈ V we obtain runs ρ′ = (ι′, r′) and
ρ′′ = (ι′′, r′′) of A′ respectively A′′ on t. For all m ∈ L and x ∈ V we obtain

readm(ρ, x) = (readm(ρ′, x), readm(ρ′′, x))

and
finalm(ρ) = (finalm(ρ′), finalm(ρ′′)).

Thus, ρ is successful iff both runs ρ′ and ρ′′ are successful and this case we have
γ(ρ, t) = γ′(ρ′, t). Hence, if t 6∈ L there exists no successful run of A on t and we
obtain ‖A‖t(t) = 0.

Now, let us assume t ∈ L. By letting f(ρ) = ρ′ we define a map

f : succ(A, t)→ succ(A′, t).

As already mentioned, we have γ(ρ, t) = γ′(f(ρ), t) for all ρ ∈ succ(A, t). Since
t ∈ L and A′′ is deterministic there is exactly one successful run ρ′′ of A′′ on t and
therefore f is a bijection. Finally, we obtain

‖A‖(t) =
∑

ρ∈succ(A,t)

γ(ρ, t) =
∑

ρ∈succ(A,t)

γ′(f(ρ), t)

=
∑

ρ′∈succ(A′,t)

γ′(ρ′, t) = ‖A′‖(t) = S(t).

Next, we define and study a projection operation on trace series. Thus, for the rest
of this chapter we fix a second distributed alphabet (Γ, lc′). Moreover, let π : Γ→ Σ
be a location preserving mapping, i.e., for all τ ∈ Γ we have

lc(π(τ)) = lc′(τ).

For any trace u = (V,v, λ) ∈ T(Γ) over Γ we can consider the Σ-poset (V,v, π ◦λ).
Since π is location preserving this is a trace over Σ, which we denote with π(u). In
this way, we extend π to a map π : T(Γ)→ T(Σ). From the finiteness of π−1(a) for
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every a ∈ Σ we can conclude that π−1(t) is finite for each t ∈ T(Σ). Thus, for any
trace series S : T(Γ)→ D we can define another trace series π(S) : T(Σ)→ D by

π(S)(t) =
∑

u∈π−1(t)

S(u).

Proposition 3.15. Let π : Γ→ Σ be a location preserving map and S : T(Γ)→ D
be a recognizable trace series. Then π(S) is also a recognizable trace series.

Proof. Let A = ((Q`)`∈L, I, (T`)`∈L, F, (γ`)`∈L) be a wACA over Γ with ‖A‖t =
S. We construct a wACA A′ = ((Q′`)`∈L, I

′, (T ′`)`∈L, F
′, (γ′`)`∈L) over Σ such that

‖A′‖t = π(S). First, we fix some arbitrary υ0
` ∈ Γ` for each ` ∈ L. Moreover, we let

Q′` = Q` × Γ` for any ` ∈ L,

I ′ =
{

(q`, υ
0
` )`∈L

∣∣ q ∈ I } , and F ′ = { (q`, τ`)`∈L | q ∈ F } .
We define T ′` by letting

(
(pm, υm)m∈D(`), a, (q`, τ`)

)
∈ T ′` iff(

(pm)m∈D(`), τ`, q`) ∈ T` and π(τ`) = a

and put
γ′`
(
(pm, υm)m∈D(`), a, (q`, τ`)

)
= γ`

(
(pm)m∈D(`), τ`, q`)

)
.

This completes the construction of A′.
It remains to show that A′ has the desired behavior. Therefore, we consider a

trace t = (V,v, λ) ∈ T(Σ) and a successful run ρ′ = (ι′, r′) ofA′ on t. Let (ι`, τ`) = ι′`
for all ` ∈ L and (r(x), µ(x)) = r′(x) for each x ∈ V . Then u = (V,v, µ) is a trace
over Γ and ρ = (ι, r) is a successful run of A on u with γ(ρ, u) = γ′(ρ′, t). Moreover,
we have τ` = υ0

` for all ` ∈ L and π(µ(x)) = λ(x) for any x ∈ V . Obviously, the
last condition is equivalent to π(u) = t. Hence, by putting f(ρ′) = (ρ, u) we obtain
a mapping

f : succ(A′, t)→
⋃

u∈π−1(t)

succ(A, u)× {u } .

Conversely, let u = (V,v, µ) ∈ π−1(t) and ρ = (ι, r) be a successful run of A on
u. By letting ι′` = (ι`, υ

0
` ) for ` ∈ L and r′(x) = (r(x), µ(x)) for x ∈ V we obtain a

successful run ρ′ = (ι′, r′) of A′ on t. Thus, g(ρ, u) = ρ′ defines map

g :
⋃

u∈π−1(t)

succ(A, u)× {u } → succ(A′, t).

Furthermore, g is inverse to f and hence f is a bijection. Finally, we conclude

‖A′‖t(t) =
∑

ρ′∈succ(A′,t)

γ′(ρ′, t) =
∑

ρ′∈succ(A′,t)

γ(f(ρ′)) =
∑

u∈π−1(t)
ρ∈succ(A,u)

γ(ρ, u)

=
∑

u∈π−1(t)

‖A‖t(u) =
∑

u∈π−1(t)

S(u) = π(S)(t).
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3.6 Lexicographic normal form

In order to prove the implication from (4) to (1) of Theorem 3.10 we have to consider
a wFA A satisfying ‖A‖w(u) = ‖A‖w(v) for all u ∼I v and to construct a wACA B,
such that ‖B‖t(trc(w)) = ‖A‖w(w) for any w ∈ Σ+. The strategy will be as follows:
for a given trace t ∈ T(Σ) the wACA B uniformly “chooses” some w ∈ trc−1(t) and
simulates all runs of A on w. In order to accomplish this uniform choice we use the
lexicographic normal form.

First, we fix a total order � on L for the rest of this chapter. This order induces
the lexicographic order on L+ which we denote with �, too. Moreover, to each word
w = a1 . . . an ∈ Σ+ we assign a sequence lc(w) ∈ L+ defined as

lc(w) = lc(a1) . . . lc(an).

A word w ∈ Σ+ is in lexicographic normal form if for all u ∈ Σ+ with w ∼I u
we have lc(w) � lc(u). We let LNF be the set of all words in lexicographic normal
form, i.e.,

LNF = {w ∈ Σ+ | ∀u ∈ Σ+ : w ∼I u→ lc(w) � lc(u) } .

The following lemma shows that for each trace t ∈ T(Σ) there is exactly one
w ∈ trc−1(t) which is in lexicographic normal form. This word w will be denoted
with lnf(t).

Lemma 3.16. Let u, v ∈ Σ+. If u ∼I v and lc(u) = lc(v), then u = v.

Proof. Let trc(u) = (V1,v1, λ1) and trc(w) = (V2,v2, λ2). By convention we have
V1 = V2 = { 1, . . . , n }. Since trc(u) = trc(v) there is a bijection f : V1 → V2 such
that i v1 j iff f(i) v2 f(j) for all all i, j ∈ V1 and λ1(i) = λ2(f(i)), i.e., ai = bf(i),
for each i ∈ V1. Thus, it suffices to show that f is the identity. Indirectly, let us
assume there is an i ∈ V1 such that f(i) 6= i and consider the smallest such i
w.r.t. ≤. Let k = f(i). Moreover, there exists a j ∈ V1 such that f(j) = i. Due
to the minimality of i we have j, k > i. Furthermore, we know that ai = bk and
aj = bi. Since lc(ai) = lc(bi) we obtain (lc(ai), lc(aj)) ∈ D and (lc(bi), lc(bk)) ∈ D.
This implies i v1 j and i v2 k. From the first equation we can can conclude
k = f(i) v2 f(j) = i and thus, i = k. However, this contradicts the choice of i.

3.7 From word automata to trace automata

This section is devoted to the proof of the missing implication from (4) to (1) of
Theorem 3.10 which is restated as a proposition below.
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Proposition 3.17. Let S : T(Σ)→ D be a trace series. If trc−1(S) is a recognizable
word series, then S is also recognizable.

In order to accomplish this proof we need to introduce loop-connected finite au-
tomata. Let A = (Q, I, T, F ) be a FA over Σ. A word w = a1 . . . an ∈ Σ+ is a
loop-label of A if there are q0, . . . , qn ∈ Q with q0 = qn and (qi−1, ai, qi) ∈ T for
all i = 1, . . . , n. Moreover, w is connected if the subgraph of (L,D) induced by
{ lc(a1), . . . , lc(an) } is connected. Notice that the connectedness of w solely de-
pends on lc(w). Finally, A is loop-connected if all loop-labels of A are connected.
The following lemma establishes a relationship between lexicographic normal forms
and loop-connected automata.

Lemma 3.18 (Kuske [31]). The set LNF ⊆ Σ+ can be recognized by some loop-
connected FA.

The subsequent two lemmas show that the class of word languages recognizable
by loop-connected FAs is closed under inverse projection and intersection with
recognizable languages. For the first lemma, we consider once a more another dis-
tributed alphabet (Γ, lc′) and a location preserving map π : Γ → Σ. By letting
π(τ1 . . . τn) = π(τ1) . . . π(τn) we extend π to a map π : Γ+ → Σ+.

Lemma 3.19. Let L ⊆ Σ+ be a word language which is recognized by some loop-
connected FA. Then there exists a loop-connected FA recognizing π−1(L).

Proof. Let A = (Q, I, T, F ) be a loop-connected FA recognizing L. From automata
theory it is well known that the FA A′ = (Q, I, T ′, F ) with

T ′ = { (p, τ, q) | (p, π(τ), q) ∈ T }

recognizes π−1(L). It remains to show that A′ is loop-connected. Let u ∈ Γ+ be
a loop-label of A′. Then π(u) is a loop-label of A and hence connected. Since
lc′(u) = lc(π(u)) this implies the connectedness of u.

Lemma 3.20. Let L ⊆ Σ+ be a word language which is recognized by some loop-
connected FA and L′ ⊆ Σ+ be a recognizable word language. Then there exists a
loop-connected FA recognizing L ∩ L′.

Proof. Let A = (Q, I, T, F ) be a loop-connected FA recognizing L and A′ =
(Q′, I ′, T ′, F ′) be an FA recognizing L′. Again, from automata theory it is known
that the FA A′′ = (Q×Q′, I × I ′, T ′′, F × F ′) with

T ′′ =
{ (

(p, p′), a, (q, q′)
) ∣∣ (p, a, q) ∈ T, (p′, a, q′) ∈ T ′

}
recognizes L ∩ L′. Thus, it remains to show that A′′ is loop-connected. However,
every loop-label of A′′ is also a loop-label of A and hence connected.
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As a last step before proving Proposition 3.17, we need to establish a connection
between loop-connected FAs and I-diamond automata. For a language L ⊆ Σ+ we
denote with L the trace closure of L, i.e.,

L = trc−1(trc(L)).

Lemma 3.21 (Kuske [31]). Let L ⊆ Σ+ be a language which is recognized by some
loop-connected FA. Then there exists an I-diamond automaton recognizing L.

Now, we are prepared to prove Proposition 3.17.

Proof of Proposition 3.17. Let A = (Q, I, T, F, γ) be a wFA with ‖A‖w = trc−1(S).
We put Γ = Q×Σ×Q and let L be the set of words (p1, a1, q1) . . . (pn, an, qn) ∈ Γ+

satisfying the following three conditions:

(1) a1 . . . an ∈ LNF,

(2) qi = pi+1 for all i = 1, . . . , n− 1, and

(3) p1 ∈ I, (pi, ai, qi) ∈ T for each i = 1, . . . , n, and qn ∈ F .

Obviously, such a word encodes a successful run of A on a1 . . . an.
Now, we turn Γ into a distributed alphabet (Γ, lcΓ) by letting lcΓ(p, a, q) = lc(a).

Then π(p, a, q) = a defines location preserving map π : Γ→ Σ. We will denote both
extensions of π to maps Γ+ → Σ+ and T(Γ) → T(Σ) with π as well, since it will
be clear from the context which one is meant.
Furthermore, the FA B = (Q, I, T ′, F ) over Γ with

T ′ = { (p, (p, a, q), q) | (p, a, q) ∈ T }

recognizes the set of all words from Γ+ satisfying conditions (2) and (3) from above.
Since

L = π−1(LNF) ∩ Lw(B),

the language L is recognized by some loop-connected FA due to Lemmas 3.18
to 3.20. In order to avoid ambiguities we denote the map trc : Γ+ → T(Γ) in the
following with trcΓ. By Lemma 3.21 the set

L = trc−1
Γ (trcΓ(L))

is recognizable by some I-diamond automaton and from Zielonka’s theorem (The-
orem 2.1) we conclude that trcΓ(L) ⊆ T(Γ) is a recognizable trace language.

Next, consider the wACA B = ((Z`)`∈L, { z } , (∆`)`∈L, { z } , (δ`)`∈L) over Γ and
D where Z` is a singleton for each ` ∈ L, z ∈

∏
`∈L Z` is the unique global state,

∆` =
∏

m∈D(`)

Zm × (Γ` ∩ T )× Z`,
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and
δ`((pm)m∈D(`), τ, q`) = γ(τ).

By Propositions 3.14 and 3.15 it suffices to show S = π(‖B‖�trc(L)) in order to prove
that S is recognizable.
For the rest of this proof fix some t ∈ T(Σ) and let w = lnf(t) be the lexicographic

normal form of t. We observe that

π(‖B‖�trcΓ(L))(t) =
∑

u∈π−1(t)

‖B‖�trcΓ(L)(u) =
∑

u∈π−1(t)∩trcΓ(L)

‖B‖(u)

and

S(t) = trc−1(S)(w) = ‖A‖(w) =
∑

σ∈succ(A,w)

γ(σ,w).

Thus, it suffices to give a bijection f : succ(A, w) → π−1(t) ∩ trcΓ(L) such that
γ(σ,w) = ‖B‖t(f(σ)) for all σ ∈ succ(A, w). Therefore let a1, . . . , an ∈ Σ such that
w = a1 . . . an. We show that the following definition has the desired properties

f
(
(q0, . . . , qn)

)
= trcΓ

(
(q0, a1, q1) . . . (qn−1, an, qn)

)
.

Let σ = (q0, . . . , qn) ∈ succ(A, w). Clearly, π(f(σ)) = trc(a1 . . . an) = t. Since σ is a
successful run of A on w and w ∈ LNF we have (q0, a1, q1) . . . (qn−1, an, qn) ∈ L and
hence, f is well-defined w.r.t. its image. Since (qi−1, ai, qi) ∈ T for all i = 1, . . . , n,
from the definition of B we conclude

‖B‖(f(σ)) = Val
(
γ(q0, a1, q1), . . . , γ(qn−1, an, qn)

)
= γ(σ,w).

The injectivity of f follows directly from Lemma 3.16 and the fact that lcΓ(τ) only
depends on a for each τ = (p, a, q) ∈ Γ.
Finally, we have to show that f is surjective. Therefore, consider some trace

u ∈ π−1(t) ∩ trcΓ(L). By definition there is some τ1 . . . τn ∈ L such that u =
trcΓ(τ1 . . . τn). For i = 1, . . . , n let τi = (pi, bi, qi) and put v = b1 . . . bn. Then
t = π(u) = trc(v) and since v ∈ LNF we obtain v = w. Putting q0 = p1 we obtain
a successful run σ = (q0, . . . , qn) of A on w which satisfies f(σ) = u.
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4 Weighted MSO logics

Up to now, we have presented weighted asynchronous cellular automata as an ab-
stract model for quantitative distributed systems. In this chapter we introduce
weighted monadic second-order logics for traces as a formalism to write specifica-
tions for such systems. Since wACAs assign weights to traces, the interpretation of
a weighted MSO-formula has to do the same. Afterwards, we compare the expres-
siveness of weighted MSO logics to that of wACAs. The highlight of this chapter –
and the whole thesis in general – is a theorem stating sufficient conditions for the
coincidence of both expressive powers.

In order to allow this comparison, valuation monoids have to be taken as the
underlying weight structure. Since logical disjunction and existential quantification
are means to express non-determinism, they are interpreted by addition. Accord-
ingly, the zero from the valuation monoid is interpreted as the truth value “false”.
Moreover, the semantics of universal quantification can be defined using the valu-
ation function. However, valuation monoids do neither provide a way to interpret
logical conjunction nor do they offer a good candidate for the truth value “true”. For
this reason, Droste and Meinecke [15] extended their valuation monoids to product
valuation monoids.

4.1 Product valuation monoids

A product valuation monoid is an algebraic structure (D,+,Val, �,0,1) where

• (D,+,Val,0) is a valuation monoid,

• 1 ∈ D is a constant,

• � : D × D → D is a binary operation on D such that 0 � d = d � 0 = 0 and
1 � d = d � 1 = d for all d ∈ D, and

• Val(d1, . . . , dn) = 1 whenever di = 1 for all i = 1, . . . , n.

The product valuation monoid is order independent if the underlying valuation
monoid (D,+,Val,0) has this property.

In order to fix the shortcomings mentioned above, valuation monoids were ex-
tended in two ways. On the one hand, the operation � was introduced for defining
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4 Weighted MSO logics

the semantics of logical conjunction. On the other hand, the constant 1 shall serve
as truth value “true”. Besides, notice that the operation � needs to be neither asso-
ciative nor commutative. However, restricted to {0,1 } is has both properties and
models classical boolean conjunction.

Having in mind that the operations of a product valuation monoid will be used to
interpret logical operations and the latter are supposed to interact in several ways,
we define a couple of properties reflecting these connections. A product valuation
monoid (D,+,Val, �,0,1) is called left-distributive if � distributes over + from the
left and one of the following two properties is satisfied:

(1) left-multiplicativity, i.e., for all n ≥ 1 and d, d1, . . . , dn ∈ D we have

d � Val(d1, . . . , dn) = Val(d � d1, d2, . . . , dn),

or

(2) left-Val-distributivity, i.e., for all n ≥ 1 and d, d1, . . . , dn ∈ D we have

d � Val(d1, . . . , dn) = Val(d � d1, . . . , d � dn).

Moreover, D is conditionally commutative if

Val(d1, . . . , dn) � Val(d′1, . . . , d
′
n) = Val(d1 � d′1, . . . , dn � d′n).

for all n ≥ 1 and d1, . . . , dn, d
′
1, . . . , d

′
n ∈ D satisfying di � d′j = d′j � di whenever

i > j. If � is associative and distributes over + from both sides, then (D,+, �,0,1)
is a semiring and we call (D,+,Val, �,0,1) a valuation semiring. A cc-valuation
semiring is a valuation semiring which is left-distributive and conditionally com-
mutative. Finally, D is regular if for every alphabet Σ and any d ∈ D the word series
Σ+ → D, w 7→ d is recognizable. Since it is not pleasant that regularity is defined
using wFAs while the important automaton model in this thesis are wACAs, the
following lemma corrects this aesthetic mistake.

Lemma 4.1. Let D be a (product) valuation monoid and d ∈ D. The following are
equivalent:

(1) For every alphabet Σ the trace series Σ+ → D, w 7→ d is recognizable.

(2) There exists an alphabet Σ such that the word series Σ+ → D, w 7→ d is
recognizable.

If D is order independent both conditions are also equivalent to:

(3) For every distributed alphabet Σ the trace series T(Σ) → D, t 7→ d is recog-
nizable.
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4 Weighted MSO logics

(4) There exists a distributed alphabet Σ such that the trace series T(Σ) → D,
t 7→ d is recognizable.

Proof. The implications from (1) to (2) and from (3) to (4) are trivial. Those from
(1) to (3) and from (4) to (2) follow directly from Theorem 3.10. It remains to
show that (2) implies (1). Thus, let Σ be some alphabet such that the word series
Σ+ → D, w 7→ d is recognizable and Γ be another alphabet. By assumption, there
exists a wFA A = (Q, I, T, F, γ) over Σ such that ‖A‖w(w) = d for all w ∈ Σ+. We
fix some a0 ∈ Σ and define a wFA A′ = (Q, I, T ′, F, γ′) over Γ where

T ′ = { (p, τ, q) | τ ∈ Γ, (p, a0, q) ∈ T } and γ′(p, τ, q) = γ(p, a0, q).

We show that ‖A′‖w(u) = d for all u ∈ Γ+ and the claim follows.
Therefore, consider a word u ∈ Γ+. Let w = a0a0 . . . a0 ∈ Σ+ be the unique word

consisting entirely of a0’s with |w| = |u|. From the definition of A′ we conclude
succ(A′, u) = succ(A, w) and γ′(σ) = γ(σ) for all σ ∈ succ(A′, u). Hence,

‖A′‖w(u) = ‖A‖w(w) = d.

Moreover, Droste and Meinecke mentioned as a sufficient condition for regular-
ity that any left-distributive product valuation monoid is regular. However, they
neither gave a proof nor an argument for that. Thus, we want to do this here.

Lemma 4.2. Every left-distributive product valuation monoid is regular.

Proof. Let D be a left-distributive product valuation monoid, Σ an alphabet, and
d ∈ D. First, let us assume that D is left-multiplicative. Consider the wFA A =
(Q, I, T, F, γ) over Σ where Q = { p, q }, I = { p }, F = { q }, T = Q × Σ × { q },
γ(p, a, q) = d, and γ(q, a, q) = 1 for any a ∈ Σ. For every w ∈ Σ+ there is exactly
one successful run σ of A on w, namely σ = (p, q, . . . , q), and we have

‖A‖w(w) = γ(σ,w) = Val(d,1, . . . ,1) = d � Val(1,1, . . . ,1) = d.

Now, suppose that D is left-Val-distributive. Let B = (Q, I, T, F, γ) be the wFA
over Σ with Q = I = F = { q }, T = Q × Σ × Q, and γ(q, a, q) = d for each
a ∈ Σ. Again, there is exactly on successful run of B on each word w ∈ Σ+, namely
σ = (q, . . . , q), and we obtain

‖B‖w(w) = γ(σ,w) = Val(d, . . . , d) = Val(d � 1, . . . , d � 1) = d � Val(1, . . . ,1) = d.

Thus, in both cases the word series Σ+ → D, w 7→ d is recognizable.

We conclude this section by extending the valuation monoids from Example 3.1 to
product valuation monoids.
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Example 4.3 (Continues Example 3.1). The following structures are product val-
uation monoids:
(1) (Q∪{−∞} ,max, avg,+,−∞, 0) and (Q∪{∞} ,min, avg,+,∞, 0) are both

order independent cc-valuation semirings.

(2) (K,+,Π, · ,0,1) is a cc-valuation semiring for every semiring (K,+, · ,0,1).
It is order independent iff K is commutative.

(3) (L,∨, inf,∧,⊥,>) is a left-multiplicative and left-Val-distributive order inde-
pendent product valuation monoid for every bounded lattice (L,∨,∧,⊥,>).
From the proof of Lemma 4.1 we can see that it is also regular.

More examples for product valuation monoids can be found in [15].

4.2 Weighted MSO logics for Σ-posets

For the rest of this chapter we fix a distributed alphabet (Σ, lc) and an order in-
dependent product valuation monoid (D,+,Val, �,0,1). Moreover, we provide two
disjoint countable sets V1 and V2 of first and second order variables, respectively. As
a convention, elements of V1 (respectively V2) will be denoted with small (respec-
tively capital) letters. The syntax of weighted MSO logics over Σ and D (wMSO
logics for short) is given by the following BNF grammar [15]:

β ::= Pa(x) | x ≤ y | x ∈ X | ¬β | β ∧ β | ∀x β | ∀X β

ϕ ::= d | β | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃xϕ | ∀xϕ | ∃X ϕ

where d ∈ D, a ∈ Σ, x, y ∈ V1, and X ∈ V2. The formulas β are called boolean
formulas whereas ϕ describes the weighted MSO-formulas (wMSO-formulas for
short). For a given wMSO-formula ϕ the set free(ϕ) ⊆ V1∪V2 of free variables, i.e.,
variables not in the range of any quantifier, is defined as usual. We call ϕ closed
whenever free(ϕ) = ∅.
Recall that we agreed to consider only finite, non-empty Σ-posets throughout this

thesis. For a Σ-poset s = (V,v, λ) an s-assignment is a pair α = (α1, α2) consisting
of two maps α1 : V1 → V and α2 : V2 → 2V . For x ∈ V1 and v ∈ V the update
α[x 7→ v] is defined as α[x 7→ v] = (α1[x 7→ v], α2) where

α1[x 7→ v](y) =

{
v if y = x,
α1(y) otherwise.

Similarly, for X ∈ V2 and U ⊆ V the update α[X 7→ U ] is defined as α[X 7→ U ] =
(α1, α2[X 7→ U ]) where

α2[X 7→ U ](Y ) =

{
U if Y = X,
α2(Y ) otherwise.
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Clearly, α[x 7→ v] and α[X 7→ U ] are s-assignments as well.
The semantics JϕK of a wMSO-formula ϕ assigns an element of D to each pair

(s, α) consisting of a Σ-poset s = (V,v, λ) and an s-assignment α. This semantics
JϕK is defined inductively on the structure of ϕ as follows:

JPa(x)K(s, α) =

{
1 if λ(α1(x)) = a

0 otherwise
Jx ≤ yK(s, α) =

{
1 if α1(x) v α1(y)

0 otherwise

Jx ∈ XK(s, α) =

{
1 if α1(x) ∈ α2(X)

0 otherwise
J¬βK(s, α) =

{
1 if JβK(s, α) = 0

0 otherwise

JdK(s, α) = d

Jϕ1 ∨ ϕ2K(s, α) = Jϕ1K(s, α) + Jϕ2K(s, α)

Jϕ1 ∧ ϕ2K(s, α) = Jϕ1K(s, α) � Jϕ2K(s, α)

J∃xϕK(s, α) =
∑
v∈V

JϕK(s, α[x 7→ v])

J∃X ϕK(s, α) =
∑
U⊆V

JϕK(s, α[X 7→ U ])

J∀xϕK(s, α) = Val
((

JϕK(s, α[x 7→ v])
)
v∈V

)
J∀X ϕK(s, α) = Val

((
JϕK(s, α[X 7→ U ])

)
U⊆V

)
In the last two equations the values of the right-hand sides do not depend on the
orders in which V and 2V are enumerated since D is order independent. Hence,
we leave these orders unspecified. Moreover, by induction we can easily show that
JβK(s, α) ∈ {0,1 } for each boolean formula β.
Notice that the boolean formulas include neither a test for equality of first order

variables nor disjunction nor existential quantification. However, all of them can
be expressed using the abbreviations from Table 4.1, where x, y ∈ V1, X ∈ V2, and
β, β1, β2 are boolean formulas.

abbr. long form ϕ semantics, i.e., JϕK(s, α) = 1 iff
x = y x ≤ y ∧ y ≤ x α1(x) = α1(y)
β1 ∨ β2 ¬(¬β1 ∧ ¬β2) Jβ1K(s, α) = 1 or Jβ2K(s, α) = 1
∃x β ¬∀x(¬β) there is some v ∈ V such that JβK(s, α[x 7→ v]) = 1
∃X β ¬∀X(¬β) there is some U ⊆ V such that JβK(s, α[X 7→ U ]) = 1

Table 4.1: Abbreviations for missing boolean formulas
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Finally, from the definition of the semantics it is easy to see that JϕK(s, α) does
not depend on the values of α for arguments outside free(ϕ). In particular, if ϕ is
closed then JϕK(s, α) does not depend on α at all and we write JϕK(s) instead.

4.3 Weighted MSO logics for traces and the main
theorem

Since traces are Σ-posets satisfying some additional conditions, the logics intro-
duced in the previous sections can directly be used for them. Though, to avoid
ambiguities we want to introduce a more explicit notation.

Definition 4.4. Let ϕ be a closed wMSO-formula. The trace semantics of ϕ is the
trace seriesJϕKt : T(Σ)→ D defined by

JϕKt(t) = JϕK(t).

As mentioned at the beginning of this chapter, we want to compare the expressive
powers of wACAs and wMSO logics. However, already in some very special cases
the full logics is expressively stronger than wACAs [15,23]. Thus, we define several
suitable fragments of wMSO logics and compare their expressiveness to the concept
of recognizability.
A wMSO-formula ϕ is almost boolean if it belongs to the smallest class of wMSO-

formulas containing all boolean formulas and all constants d ∈ D which is closed
under conjunction and disjunction. Furthermore, ϕ is ∀-restricted if for all of its sub-
formulas of the shape ∀xψ the formula ψ is almost boolean. For a wMSO-formula
ϕ we denote the set of all constants d ∈ D appearing in ϕ with const(ϕ). Finally,
we define three fragments of wMSO logics according to Table 4.2. A formula ϕ
belongs to a fragment if it is ∀-restricted and satisfies the given condition for every
sub-formula ψ1 ∧ ψ2 of ϕ. Clearly, each srMSO-formula is also an rMSO-formula
and every formula from rMSO belongs to crMSO as well.

Definition 4.5. Let X ∈ {wMSO, srMSO, rMSO, crMSO } be some fragment of
wMSO. A trace series S : T(Σ) → D is X-definable if there exists some closed
X-formula ϕ such that

S = JϕKt.

The following theorem is the main result of this thesis. Depending on the prop-
erties of the product valuation monoid, it gives a characterization of the class of
recognizable trace series by certain fragments of weighted MSO logics.

Theorem 4.6. Let S : T(Σ)→ D be a trace series.
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Fragment of wMSO Condition on every sub-formula ψ1 ∧ ψ2

strongly restricted wMSO
(srMSO)

• ψ1 and ψ2 are almost boolean, or
• ψ1 is boolean, or
• ψ2 is boolean

restricted wMSO
(rMSO)

• ψ1 is almost boolean, or
• ψ2 is boolean

commutatively restricted wMSO
(crMSO)

• const(ψ1) and const(ψ2) commute w.r.t. �,
or
• ψ1 is almost boolean

Table 4.2: Fragments of wMSO

(1) Let D be regular. Then S is recognizable if and only if S is srMSO-definable.

(2) Let D be left-distributive. Then S is recognizable if and only if S is rMSO-
definable.

(3) Let D be a cc-valuation semiring. Then S is recognizable if and only if S is
crMSO-definable.

The rest of this chapter is devoted to the proof of this theorem. For this, we adopt
a technique which was introduced by Ebinger and Muscholl [21] and extended to a
weighted setting by Meinecke [35]. The main idea is to use a translation of formulas
and to reduce to the corresponding characterization for word series [15].

4.4 Weighted MSO logics for words

In order to accomplish the mentioned reduction, we need to define word semantics
for weighted MSO logics. Thus, we assign to each word w = a1 . . . an ∈ Σ+ a
Σ-poset lto(w) = (V,≤, λ) where V = { 1, . . . , n }, ≤ is the natural order on V ,
and λ(i) = ai for all i ∈ V . Notice that lto(w) actually is a Σ-labeled total order,
hence the name lto. When introducing a Σ-poset as lto(w) = (V,≤, λ) we assume
that V and λ are constructed exactly in this way. Clearly, each lto(w)-assignment
is also a trc(w)-assignment and vice versa. For each closed wMSO-formula ϕ the
word semantics of ϕ is the word series JϕKw : Σ+ → D defined by

JϕKw(w) = JϕK(lto(w)).

It is easy to see that this definition of the word semantics coincides with the one
from [15]. For X ∈ {wMSO, srMSO, rMSO, crMSO } the notion X-definability of
word series is analogue to Definition 4.5. The connection between recognizability
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and definability of word series was already investigated in a more general setting
where order independence was not assumed.

Theorem 4.7 (Droste and Meinecke [15]). Let S : Σ+ → D be a word series.

(1) Let D be regular. Then S is recognizable if and only if S is srMSO-definable.

(2) Let D be left-distributive. Then S is recognizable if and only if S is rMSO-
definable.

(3) Let D be a cc-valuation semiring. Then S is recognizable if and only if S is
crMSO-definable.

Obviously, Theorem 4.6 follows from Theorems 3.10 and 4.7 in combination with
the following result.

Theorem 4.8. Let X ∈ {wMSO, srMSO, rMSO, crMSO } be a fragment of wMSO
and S : T(Σ)→ D be a trace series. Then S is X-definable if and only if trc−1(S)
is X-definable.

Therefore, the rest of this chapter is dedicated to proving this theorem. As already
mentioned, we will do this by using the translation technique introduced in [21].

4.5 From trace logics to word logics

For the rest of this chapter we fix a fragment X ∈ {wMSO, srMSO, rMSO, crMSO }
of wMSO. The goal of this section is to show the “only if”-part of Theorem 4.8 which
is restated by the following proposition.

Proposition 4.9. Let S : T(Σ)→ D be an X-definable trace series. Then trc−1(S)
is an X-definable word series.

The main idea is to take a closed X-formula ϕ with S = JϕKt and to transform
it into a closed X-formula ϕw satisfying trc−1(S) = JϕwKw. The first step is to
establish a connection between the orders of trc(w) and lto(w) for any w ∈ Σ+.
Therefore, we denote the number of different locations with N , i.e., N = |L|.

Lemma 4.10. Let w ∈ Σ+ and t = trc(w) = (V,v, λ). Then for all i, j ∈ V we
have i v j if and only if there are k0, . . . , kN ∈ V such that k0 = i, kN = j, and
kr−1 ≤ kr and

(
lct(kr−1), lct(kr)

)
∈ D for all r = 1, . . . , N .
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Proof. First, recall that v was defined to be the transitive and reflexive closure of
the set

E = { (i, j) ∈ V × V | i < j and (lct(i), lct(j)) ∈ D } .

Thus, the “if”-part follows immediately.
For the converse implication consider i v j. We call a sequence (k0, . . . , kn) ∈ V +

good if k0 = i, kn = j, and (kr−1, kr) ∈ E for all r = 1, . . . , n. By definition of v
there is at least one good sequence (k0, . . . , kn). Next, we show that there is also
a good sequence with n ≤ N . Therefore, assume n > N . According to the pigeon-
hole principle there are r, s ∈ { 1, . . . , n } with r < s such that lct(kr) = lct(ks).
Since (kr, ks) ∈ E+ we also have kr < ks. Moreover, from (lct(kr−1), lct(kr)) ∈ D
and lct(kr) = lct(ks) we conclude (lct(kr−1), lct(ks)) ∈ D. Thus, (kr−1, ks) ∈ E
and (k0, . . . , kr−1, ks, . . . , kn) is a good sequence which is shorter than the one
we started with. By repeatedly applying this argument we get a good sequence
(k0, . . . , kn) with n ≤ N . Finally, we put kn+1 = · · · = kN = j and obtain the
desired k0, . . . , kN ∈ V .

This allows us to give the desired translation. For some arbitrary X-formula ϕ we
denote with ϕw the formula which is obtained from ϕ by replacing every sub-formula
of the shape x ≤ y with

∃z0 ∃z1 · · · ∃zN
(
z0 = x∧ zN = y ∧

∧
1≤i≤N

(
zi−1 ≤ zi ∧ (lc(zi−1), lc(zi)) ∈ D

))
(4.1)

where (lc(z), lc(z′)) ∈ D is short hand for∨
a,b∈Σ

(lc(a),lc(b))∈D

Pa(z) ∧ Pb(z′).

Notice that the formula in Eq. (4.1) is boolean and hence ϕw is an X-formula.
Moreover, since formula (4.1) has exactly the same free variables as x ≤ y, namely
x and y, the formula ϕw is closed iff ϕ is closed. The following lemma and its
corollary state the desired property of this translation.

Lemma 4.11. Let ϕ be an X-formula, w ∈ Σ+ and α be an lto(w)-assignment.
Then

JϕwK(lto(w), α) = JϕK(trc(w), α).

Corollary 4.12. Let ϕ be a closed X-formula. Then for each w ∈ Σ+ we have

JϕwKw(w) = JϕKt(trc(w)).
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Proof of Lemma 4.11. The claim is proved by induction on the structure of ϕ and
the only non-trivial case is ϕ = (x ≤ y). However, this situation was subject of
Lemma 4.10 and formula (4.1) reflects exactly the results there.

Now, we are prepared to give the missing proof of Proposition 4.9.

Proof of Proposition 4.9. Let ϕ be a closed X-formula such that JϕKt = S. Then
ϕw is also a closed X-formula. Moreover, for any w ∈ Σ+ we obtain

JϕwKw(w) = JϕKt(trc(t)) = S(trc(w)) = trc−1(S)(w),

i.e., trc−1(S) = JϕwKw. Thus, trc−1(S) is X-definable.

4.6 From word logics to trace logics

This section is devoted to the missing proof of the “if”-part of Theorem 4.8:

Proposition 4.13. Let S : T(Σ)→ D be a trace series. If trc−1(S) is X-definable,
then S is also X-definable.

The key idea combines that from the previous section with the one described at the
beginning of Section 3.6. There, we introduced the lexicographic normal form for the
purpose of uniformly “choosing” an element from trc−1(t) for each t ∈ T(Σ). Here,
we fix again a total order � on Σ and reuse all other notations from Section 3.6. For
any w ∈ LNF we will investigate a relationship between the orders of lto(w) and
trc(w). Then, we exploit this relation for translating an X-formula ϕ for trc−1(S)
into an X-formula ϕt for S. Again, we let N = |L|.
Let t = (V,v, λ) ∈ T(Σ) be some trace. We inductively construct a sequence

R
(1)
t , . . . , R

(2N)
t ⊆ V × V of relations on V . First, we put

R
(1)
t = { (i, j) | i v j } .

Thereafter, for 2 ≤ n ≤ 2N we let R(n)
t be the set of all pairs (i, j) ∈ V × V which

satisfy one of the following three conditions:

(1) i v j, or

(2) lct(i) ≺ lct(j) and (j, i) 6∈ R(n−1)
t , or

(3) lct(i) � lct(j) and there exists a k ∈ V such that lct(i) ≺ lct(k), (i, k) ∈ R(n−1)
t ,

and k v j.

The following lemma establishes a relationship between R(2N)
t and the lexicographic

normal form of t.
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4 Weighted MSO logics

Lemma 4.14. Let w ∈ LNF, t = trc(w) = (V,v, λ), and i, j ∈ V . Then we have
(i, j) ∈ R(2N)

t if and only if i ≤ j.

Proof. First, let `1 � · · · � `N be the descending enumeration of L w.r.t �. For
i ∈ V we let ord(i) denote the unique n ∈ { 1, . . . , N } with lct(i) = `n. Moreover,
we define a map f : V × V → { 1, . . . , 2N } by

f(i, j) =

{
ord(i) + ord(j) if lct(i) ≺ lct(j),
ord(i) + ord(j)− 1 otherwise.

Using induction on n ∈ { 1, . . . , 2N } we show that for all i, j ∈ V with f(i, j) ≤ n

we have (i, j) ∈ R(n)
t iff i ≤ j. For n = 2N this implies the claim.

First, we consider n = 1 and i, j ∈ V with f(i, j) ≤ 1. The “only if”-part obviously
follows from i v j. Conversely, from f(i, j) ≤ 1 we conclude lct(i) = lct(j) = `1 and
hence (lct(i), lct(j)) ∈ D. Together with i ≤ j this implies i v j.
Now, assume n > 1 and consider i, j ∈ V with f(i, j) ≤ n. For the “only if”-part

presume (i, j) ∈ R
(n)
t . Then one of the three requirements from the definition of

R
(n)
t is met. Condition (1) obviously implies i ≤ j. If (2) holds, we have f(j, i) =

f(i, j) − 1 < n and by induction obtain j 6≤ i, i.e., i < j. Finally, assume (3) is
satisfied. From lct(k) � lct(i) � lct(j) we conclude ord(k) < ord(j) − 1 and hence
f(i, k) < f(i, j) ≤ n. By induction we get i ≤ k. Together with k ≤ j we obtain
i ≤ j.
In order to show the “if”-part, assume that i ≤ j holds true but conditions (1) and

(2) do not. We have to show that (3) is met. First, we indirectly show lct(i) � lct(j).
Thus, conversely suppose that lct(i) � lct(j). From i ≤ j and the violation of (1)
we conclude i 6w j and hence (lct(i), lct(j)) 6∈ D. In particular, lct(i) 6= lct(j) and
therefore lct(i) ≺ lct(j). However, since (2) does not hold we have (j, i) ∈ R(n−1)

t .
Moreover, from f(j, i) = f(i, j) − 1 < n we get by induction j ≤ i. Together
with i ≤ j this implies i = j and hence condition (1) is satisfied. Since this is a
contradiction we have shown lct(i) � lct(j).
Now, consider the smallest k ∈ V w.r.t. ≤ such that i ≤ k and k v j. Such a

k exists since k = j satisfies both conditions. Due to the violation of (1) we have
i < k. For all k′ ∈ { i, . . . , k − 1 } we have (k′, k) 6∈ E since the opposite would
imply k v j, contradicting the minimality of k. Therefore, from k′ < k we conclude
(lct(k

′), lct(k)) 6∈ D. Thus, for

u = a1 . . . ai−1akai . . . ak−1ak+1 . . . an

we have w ∼I u. Since w ∈ LNF we get lc(w) � lc(u) and hence lct(i) � lct(k).
Furthermore, (lct(i), lct(k)) 6∈ D implies lct(i) ≺ lct(k). Again, from lct(k) � lct(i) �
lct(j) we obtain f(i, k) < f(i, j) ≤ n and by induction get (i, k) ∈ R(n−1)

t .
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4 Weighted MSO logics

This lemma allows us to give the desired translation of formulas. We let

lex1(x, y) = (x ≤ y)

and for n > 1 we inductively define

lexn(x, y) =

(
x ≤ y ∨

(
lc(x) ≺ lc(y) ∧ ¬ lexn−1(y, x)

)
∨(

lc(y) ≺ lc(x) ∧ ∃z
(
lc(x) ≺ lc(z) ∧ lexn−1(x, z) ∧ z ≤ y

)))
,

where lc(x′) ≺ lc(y′) is an abbreviation for∨
a,b∈Σ

lc(a)≺lc(b)

Pa(x
′) ∧ Pb(y′).

Finally, put lex(x, y) = lex2N(x, y). For some X-formula ϕ we denote with ϕt the
formula which is obtained from ϕ by replacing every sub-formula of the shape
x ≤ y with lex(x, y). Since lex(x, y) is a boolean formula, ϕt also belongs to the
X-fragment of wMSO. Moreover, lex(x, y) has exactly the same free variables as
x ≤ y and hence ϕt is closed iff ϕ is closed. The lemma below and its corollary
establish a semantic relation between ϕ and ϕt.

Lemma 4.15. Let ϕ be a X-formula, w ∈ LNF, and α be a trc(w)-assignment.
Then

JϕtK(trc(w), α) = JϕK(lto(w), α).

Corollary 4.16. Let ϕ a closed X-formula. Then for all t ∈ T(Σ) we have

JϕtKt(t) = JϕKw(lnf(t)).

Proof of Lemma 4.15. Again, the claim is shown by induction on the structure of ϕ
and the only non-trivial case is ϕ = (x ≤ y). However, this situation was considered
in Lemma 4.14 and the formula lex(x, y) is translation of the results there.

Now, we are in a position to give the last of proof this chapter.

Proof of Proposition 4.13. Let ϕ be a closed X-formula such that JϕKw = trc−1(S).
Then ϕt is also a closed X-formula. Moreover, for any t ∈ T(Σ) we have

JϕtKt(t) = JϕKw(lnf(t)) = trc−1(S)(lnf(t)) = S(t),

i.e., S = JϕtKt. Thus, S is X-definable.
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5 Quantitative model-checking of
distributed systems

So far, we defined and studied weighted asynchronous automata and weighted
MSO logics for traces. The former can be used to model quantitative distributed
systems whereas the latter are a formalism to write specifications for such sys-
tems. Naturally, the question arises how we can check whether the abstract model
“matches” a given specification. This problem is commonly known as quantitative
model-checking. In this chapter we introduce two quantitative model-checking prob-
lems, one for distributed systems and another for sequential systems. Afterwards
we demonstrate how the former can be reduced to the latter.

Before we can delve into the details we have to agree on the meaning of the word
“matches”. Usually, this depends on the context. For example, if the automaton
models the consumption of some resource whereas the specification describes upper
bounds for the usage of this resource, then “matches” means “is at most”. However,
if the quantities represent some gain, we probably want the opposite. Finally, in
the setting of multi-valued logics we are also interested in equality. Due to these
various possibilities we do not specify the exact meaning here but consider an
arbitrary relation on the weight structure.
For the rest of this chapter we fix a product valuation monoid D and a fragment

X ∈ {wMSO, srMSO, rMSO, crMSO } of wMSO. Moreover, we fix some relation
R ⊆ D × D on D which shall be interpreted as the meaning of “matches”. The
mentioned quantitative model-checking problems are formally defined as follows.

Definition 5.1. Let D be order independent. The (quantitative) distributed model-
checking problem for D, R, and X (DMCP for short) is the following decision
problem:
Input: (L,D) – an architecture graph,

(Σ, lc) – a distributed alphabet over (L,D),
A – a wACA over Σ and D, and
ϕ – a closed X-formula over Σ and D.

Question: Does
(‖A‖t(t), JϕKt(t)) ∈ R

hold true for all t ∈ T(Σ)?
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5 Quantitative model-checking of distributed systems

Definition 5.2. The (quantitative) sequential model-checking problem for D, R,
and X (SMCP for short) is the following decision problem:

Input: Σ – an alphabet,
A – a wFA over Σ and D, and
ϕ – a closed X-formula over Σ and D.

Question: Does
(‖A‖w(w), JϕKw(w)) ∈ R

hold true for all w ∈ Σ+?

Next, we establish a connection between the decidability of both problems.

Theorem 5.3. Let D be order independent. Then the DMCP is decidable if and
only if the SMCP is decidable.

Proof. First, we show the “if”-part. Thus, consider an instance of the DMCP con-
sisting of an architecture graph (L,D), a distributed alphabet (Σ, lc) over (L,D),
a wACA A over Σ, and a closed X-formula ϕ over Σ. Then Aw is a wFA over Σ
and ϕw is a closed X-formula over Σ. From Lemma 3.13 and Corollary 4.12 we can
conclude that

(‖A‖t(t), JϕKt(t)) ∈ R

for all t ∈ T(Σ) if and only if

(‖Aw‖w(w), JϕwKw(w)) ∈ R.

The last question is an instance of the SMCP and hence decidable by assumption.
Since the constructions of Aw and ϕw from A and ϕ are effective, we can decide
the given instance of the DMCP as well.

For the “only if”-part, consider the case |L| = 1. Then the notions of traces and
words, wACAs and wFAs, and trace and word semantics of X-formulas coincide.
Hence, the SMCP is a special case of the DMCP.

Remark 5.4. Since computational complexity matters in the field of model-checking
as well, we will take this issue into account for a moment. Obviously, the reduction
does not change the size of the alphabet. If the input wACA A has at most n local
states for each location, then the wFA Aw has at most n|L| states. Let the size of an
X-formula be measured by the size of its syntax tree. Then the size of the formula
in Eq. (4.1) belongs to O(|L| · |Σ|2). Finally, if the input formula ϕ has size m then
the size of ϕw is in O(m · |L| · |Σ|2).

We want to conclude this section with a short discussion about the decidability
of the SMCP. Thus, let us assume that the product valuation monoid D and the
fragment X of wMSO are compatible in the sense of Theorems 4.6 and 4.7. Since
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5 Quantitative model-checking of distributed systems

all proofs in [15] are constructive, for each X-formula ϕ we can effectively obtain a
wFA such that

‖A‖w = JϕKw.

Hence, we can reduce the SMCP to the following wFA relationship problem:
Input: Σ – an alphabet,

A and B – two wFAs over Σ and D.
Question: Does

(‖A‖w(w), ‖B‖w(w)) ∈ R

hold true for all w ∈ Σ+?

It is well known, that the decidability of this problem depends on the choice of D
and R. Recall that we explained how to regard semirings and bounded lattices as
product valuation monoids in Example 4.3. If we construct D from the Boolean
semiring the problem is decidable for any choice of R. For computable fields it
is at least decidable when R is the equality relation [2, 12]. However, in case of
the tropical semiring the wFA relationship problem is undecidable for = and ≤,
respectively [28]. Furthermore, this implies undecidability for the weight structures
from Example 4.3 (1) and the relations = and ≤. Finally, from [19, 20] we can
conclude decidability for arbitrary bounded lattices and locally finite semirings as
soon as R is decidable.
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6 Conclusions

In this thesis we introduced weighted asynchronous cellular automata as an abstract
model for quantitative distributed systems. In order to get well defined semantics
we had to assume that the underlying valuation monoid is order independent. Af-
terwards, we established a connection between wACAs and weighted I-diamond
automata, providing a weighted version of Zielonka’s theorem [41] and generalizing
a result of Kuske [31]. Furthermore, we presented weighted MSO logics for traces as
a formalism to write specifications for quantitative distributed systems. We showed
a close relationship of this logics to weighted MSO logics for words. Combining
these two results with a recent one of Droste and Meinecke [15], we obtained our
main result. It gives a characterization of recognizable trace series by means of
weighted MSO logics. Depending on the properties of the weight structure we had
to choose different fragments of the logics. This characterization is an extension of
the results of Droste and Gastin [13], Kuske and Meinecke [23, 31, 35], and Droste
and Meinecke [15].

Since all proofs in the thesis were effective, we opened the way for quantitative
model-checking of distributed systems. This issue was discussed in the last chapter
where we reduced the model-checking problem for distributed systems to that for
sequential systems. Finally, we showed how the latter can be further reduced to
the wFA relationship problem and sketched the state of knowledge concerning the
decidability of this problem.

Model-checking is a field where complexity plays an important role beyond the
coarse separation into decidable and undecidable problems. In particular, the com-
putational complexity of decidable problems is of great interest. However, we put
no focus on this issue because it has not been studied yet how hard it is to reduce
the SMCP to the wFA relationship problem. Moreover, the complexity of the latter
problem has been analyzed only in some special cases [7,30]. Hence, both problems
need further investigation in future work.

Pointing in another direction, it would be interesting to consider other kinds of
logics in our quantitative framework. In particular, weighted temporal logics at-
tracted some attention [4,30]. Moreover, Kleene’s theorem [26] inspired characteri-
zations of the expressiveness of weighted finite automata by means of weighted ra-
tional expressions for several weight structures [16,20,39]. Analogously, Droste and
Gastin [10, 32] generalized Ochmańsky’s theorem [36, 37] by characterizing the ex-
pressive power of semiring weighted I-diamond automata by two classes of weighted
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6 Conclusions

rational expressions. Recently, we have shown that a similar result holds true when
we replace distributivity by some local finiteness condition [25]. Naturally, the ques-
tion arises whether we can also obtain such a characterization if the weights are
taken from a valuation monoid.
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