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Abstract 

It is critical for numerical scheme to obtain numerical results as accurate as possible with limited 

computational resources. Turbulent processes are very sensitive to numerical dissipation, which may 

dissipate the small length scales. On the other hand, dealing with shock waves, capturing and 

reproducing of the discontinuity may lead to non-physical oscillations for non-dissipative schemes.  In 

the present work, a new high-order mixed weighted compact and non-compact (WCNC) difference 

scheme is proposed for accurate approximation of the derivatives in the governing Euler equations 

although the idea was given by Xie and Liu in 2007. The basic idea is to recover the non-dissipative high-

order weighted compact scheme (WCS) where solution is smooth, while using a lower-ordered non-

compact scheme for near-shock areas. Formulation and numerical tests are performed for the one 

dimensional case and results are compared with the well established weighted essentially non-

oscillatory (WENO) scheme and WCS. 

1. Introduction 

    It is desirable for a numerical scheme to attain high-order accuracy having limited computational 

resources. In the past two decades, many efforts have been made in development such high-order 

schemes, such as compact difference schemes (Lele, 1992; Visbal, et al., 2002; Yee, 1997), essentially 

non-oscillatory (ENO) schemes (Shu, et al., 1988; Shu, et al., 1989; Harten, et al., 1997) and their 

weighted variant (WENO) (Liu, et al., 1994; Jiang, et al., 1996; Shu, 2009), discontinuous Gelerkin (DG) 

methods (Cockburn, et al., 1989; Cockburn, et al., 1998; Cockburn, 2003; Bassi, et al., 1997), spectral 

element (SE) methods (Patera, 1984), spectral volume methods (SVM) (Wang, 2002; Liu, et al., 2006), 

spectral difference methods (SDM) (Liu, et al., 2006; Sun, et al., 2007),  low dissipative high-order 

schemes (Yee, et al., 2000), group velocity control schemes (Ma, et al., 2001), and hybrid schemes 

(Adams, et al., 1996 ; Wang, et al., 2002). 

     Physical processes usually have various different length scales. In the case of flow transition and 

turbulence, for example, small length scales are of great interest and very sensitive to any artificial 

numerical dissipation. A high order central compact scheme (Lele, 1992; Visbal, et al., 2002) is non-

dissipative with high-order and high-resolution, and thus appropriate for the solution of flow transition 

and turbulence cases. However, in many engineering applications such as shock-boundary layer 
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interaction, shock-acoustic interaction, image process, flow in porous media, multiphase flow and 

detonation wave, there is a presence of both different length scales and shocks/discontinuities.  

    The shock can be considered as a discontinuity or a mathematical singularity (there is no classical 

unique solution and the derivatives are not bounded). In the near-shock region, continuity and 

differentiability of the governing Euler equations are lost and only the weak solution can be obtained. In 

fluid dynamics it is possible to have a shock solution when considering, for instance, the super-sonic 

regime of the Euler equations, which are hyperbolic. Hyperbolic systems can be solved taking advantage 

of the characteristic lines and Riemann invariants. The physics of the shock indicate that the derivative 

across the shock is not finite, and that the downstream region cannot influence the upstream one. In the 

framework of finite differences, it makes no sense to use, for instance, a high order compact scheme, 

which takes all grid point on both sides of a shock into account for the numerical approximation of the 

derivatives. Apparently, the upwind strategies are more suitable than compact schemes in dealing with 

shocks, and indeed history has shown a great success of upwind technologies applied to hyperbolic 

systems. Among upwind or bias upwind schemes that are capable to capture a shock sharply, there are 

Godunov (Godunov, 1959), Roe (Roe, 1981), MUSCL (van Leer, 1997), TVD (Harten, 1983), ENO (Harten, 

et al., 1997; Shu, et al., 1988; Shu, et al., 1989)  and WENO (Liu, et al., 1994; Jiang, et al., 1996). All 

mentioned schemes above are based on upwind or bias upwind technology and are well suited for 

hyperbolic systems. On the other hand, upwinding strategies are not desirable for solving Navier-Stokes 

systems, which present a parabolic behavior, and are very sensitive to any numerical dissipation 

especially when tackling the problem of transitional and turbulent flow, where small length scales are 

important.  

    Efforts have been made in developing high-order numerical schemes with high resolution for small 

length scales, but at the same time capable of sharply capture the shock/discontinuity without 

generating visible numerical oscillations. A combination of WENO and standard central scheme is 

proposed by (Kim, et al., 2005; Costa, et al., 2007), and a combination of WENO and upwinding compact 

scheme (UCS) is proposed by (Ren, et al., 2003), but the mixing function is still complex and has a 

number of case related adjustable coefficients, which is not convenient to use. 

    A weighted compact scheme (WCS) is developed by (Jiang, et al., 2001). WCS is based on using WENO 

(Liu, et al., 1994) weighting method for evaluating candidates which use the standard compact scheme. 

The building block for each candidate is a Lagrange polynomial in WENO, but is Hermite in WCS, 

obtaining for the latter a higher order of accuracy with the same stencil width. In shock regions, the WCS 

controls the contributions of different candidate stencils to minimize the influence of candidates 

containing a shock/discontinuity. On the other hand, in regions with smooth solution, WCS recovers the 

standard compact scheme (Lele, 1992) to achieve high accuracy and resolution. Numerical tests reveal 

that the original WCS works well in some cases such as Burgers’ equation, but is not suitable for solving 

the Euler equations. As mentioned, the usage of derivatives by compact schemes results in global 

dependency. WCS minimizes the influence of a shock-containing candidate stencil by assigning a smaller 

weight, but still uses all of the candidates, resulting in global dependency. 

    In order to overcome the drawback of WCS, local dependency has to be achieved in shock areas, while 

recovering global dependency in smooth regions. This fundamental idea leads naturally to the 

combination of compact and non-compact schemes, that is, to the mixed high order weighted compact 

and non-compact scheme (WCNC, (Xie, et al., 2007)). However, the mixing coefficient was not defined 

well and the scheme was still very dissipative. 

    The aim of this work is to develop a high order scheme for those cases where both discontinuities (e.g. 

shocks) and small length scales (e.g. sound wave, turbulence) are important. The proposed scheme 

captures the discontinuity (shocks) very sharply by upwinding dominant weights, and recovers the high 

order compact scheme for high accuracy and high resolution in the smooth area. A black-box type 
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subroutine is developed, which can be used for any discrete data set to achieve high order accuracy for 

derivatives. 

    The present work is organized as follows. In section 2 the WCNC formulation is described, section 3 

reports numerical results of test cases for the solution of the Euler equation in the one-dimensional 

case, and in section 4 conclusions are drawn along with the future work. 

 

  

2. The numerical scheme 

 

    As mentioned, the WCS (Jiang, et al., 2001) uses the ideas of WENO (Liu, et al., 1994) for controlling 

the contributions of different candidate stencils with the aim of minimizing the influence of the 

candidate containing a discontinuity. In smooth solution regions, WCS recovers the standard compact 

scheme of high order and high resolution. For a function f, a one-parameter family compact scheme 

(Lele, 1992) may be written as  

 

 ������ + ��� + ������ = 1
ℎ �− 1

12 �4� − 1����� − 1
3 �� + 2����� + 1

3 �� + 2����� + 1
12 �4� − 1������ (2.1) 

    

where fi and fi’ denote the function’s known value and its unknown derivative, respectively, at the i-th 

point, and α is the parameter to be determined for highest order. If � = 1/3, the scheme (2.1) recovers 

the standard sixth order compact scheme, corresponding to a symmetric and tri-diagonal system. If � = 0 only the fourth order non-compact central scheme is recovered.  

    WCS has shown to solve well certain test cases, such as the convection equation and Burgers’ 

equation, but unfortunately numerical solutions of the Euler equations are severely affected by 

numerical oscillations due to the use of derivatives by the compact scheme, which results in global 

dependency. WCNC is based on WCS (Jiang, et al., 2001) and is aimed to achieve local dependency in 

areas where discontinuities are present. 

 

2.1. Derivation of the WCNC scheme 

 

    For a given point i, three candidate stencils containing the point are defined as S0=(xi-2,xi-1,xi), 

 S1=(xi-1,xi,xi+1) and S2=(xi,xi+1,xi+2), as shown in Figure 1. 
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S
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Figure 1: Candidate stencils for an interior point i. 
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The one-parameter α-family of the compact scheme (Lele, 1992) is used. A compact scheme, namely F0, 

F1 and F2, is derived on each of the stencils S0, S1 and S2, respectively, as 
 

 ��: ��                                �������� + ��� = 1
ℎ �������� + ������� + ����   

 ��: ��              �������� + ��� + �������� = 1
ℎ �������� + ���� + �������  (2.2) 

 ��: ��                                 ��� + �������� = 1
ℎ ����� + ������� + �������   

 

As for WCS, each compact scheme F0, F1 and F2, will be multiplied with an associated linear weight C0,C1 

and C2, respectively, and the summation of the three contributions will lead to the final scheme F as 

 � = !��� + !��� + !���       (2.3) 

where the condition on the linear weight has to be satisfied 

 

 !� + !� + !� = 1       (2.4) 

  

At this stage, the total number of 16 free parameters has to be determined: 

 

!� , ���, ���, ���, ��,  

!� , ���, ���, ���, ��, ���, 
!� , ���, ���, ���, ��.  

     

    By matching the Taylor series coefficients for each lower order compact scheme F0, F1 and F2, and 

solving for the right-hand side free parameters in (2.2), the following conditions are obtained 

 

 ��� = 1 − ���2 , ��� = −2, �� = 3 + ���2 ,  

 ��� = ��� − 3��� − 1
2 , �� = 2���� − ����, ��� = − ��� − 3��� − 1

2 ,  (2.5) 

 ��� = 2, ��� = − 1 − ���2 , �� = − 3 + ���2 .  

 

In order to reassemble the standard sixth order compact scheme (2.1), the following conditions have to 

be satisfied 
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!���� + !���� = �, !���� + !���� = �,   

!���� + !���� = − 1
3 �� + 2�, !��� + !��� + !��� = 0, !���� + !���� = 1

3 �� + 2�, (2.6) 

!���� = − 1
12 �4� − 1�, !���� = 1

12 �4� − 1�   

 

 

where α is treated as a parameter. The above system of equations, together with condition (2.4) for the 

linear weights, and the condition of symmetric scheme  ��� = ��� , is non-linear, and is not closed for 

solving the 16 unknowns listed above. An artificial condition may be added in order to close the system. 

In this preliminary study, it is chosen  

��� = 3�
4         (2.7) 

but future study may lead to a different choice for closing the system of equations. 

Solutions for the 16 unknowns of WCNC scheme are reported in Table 1. 

 
Table 1: Coefficients for WCNC for condition (2.7) on each of the three stencils $%, % = &, ', (. 

 !)  �)� �)� �)� 

�� 
5� − 2

6�3� − 2� 
6��2� − 1�

5� − 2   
1
2 − 3��2� − 1�

5� − 2  

�� 
4�� − 1�

3�3� − 2� 
3�
4  

3�
4   

�� 
5� − 2

6�3� − 2�  
6��2� − 1�

5� − 2   

 

 �)� �) �)� �)� 

�� −2 
3
2 + 3��2� − 1�

5� − 2    

�� − 3�
4 − 1

2 0 
3�
4 + 1

2  

��  − 3
2 − 3��2� − 1�

5� − 2  2 − 1
2 + 3��2� − 1�

5� − 2  

 

All the coefficients in Table 1 vary smoothly and monotonically when the parameter α varies from 0 to 

1/3. Substituting the found coefficients, (2.2) become 
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��: ��      6��2� − 1�
5� − 2 ����� + ��� = 1

ℎ �,1
2 − 3��2� − 1�

5� − 2 - ���� − 2���� + ,3
2 + 3��2� − 1�

5� − 2 - ��� 

 

��: ��       3�
4 ����� + ��� + 3�

4 ����� = 1
ℎ �− ,3�

4 + 1
2- ���� + ,3�

4 + 1
2- �����                                    �'. .� 

 

��: ��      ��� + 6��2� − 1�
5� − 2 ���� = 1

ℎ �− ,− 3
2 − 3��2� − 1�

5� − 2 - �� + 2���� − ,− 1
2 + 3��2� − 1�

5� − 2 - ����� 

 

     For the compact schemes �� and ��, corresponding to stencils �� and �� in (2.8), the calculation of 

the derivative at the i-th grid point, namely ���, involves the function value at three grid points and the 

value of the function’s derivative at one single grid point. Thus the schemes are one-sided, and at least 

second-order accurate (third-order accurate when � = 1/3). For the compact scheme ��, corresponding 

to the stencil ��in (2.8), the calculation of the punctual derivative ���  involves the function value at two 

grid points and the function derivative at two grid points. Thus the scheme is centered, and at least 

second-order accurate (fourth-order when � = 1/3).  As mentioned, the new scheme is obtained by 

multiplying each equation ��, �� and �� in (2.8) with the specific weight assigned, !�, !� and !� in Table 

1, respectively, as specified in (2.3). The proposed scheme reproduces the standard sixth-order compact 

scheme (2.1)  when � = 1/3, and is fourth-order accurate for 0 ≤ � < 1/3. 

    As mentioned above, WCNC uses the WENO (Jiang, et al., 1996) idea for calculating the weights for 

the final scheme. Instead of using directly !�, !� and !� of Table 1, the WENO weights 1�, 1� and 1� 

are used, so (2.3) becomes 

 � = 1��� + 1��� + 1���       (2.9) 

 where  

 1) = 2)345�� 24 ,            2) = !)�6 + 7�)�8      (2.10) 

 

where 6 is a small parameter in order to avoid divisions per zero, !)  are the weights defined in Table 1, 

p is an important parameter for controlling the WENO weights, and 7�) are the smoothness 

measurements (Jiang, et al., 1996).  

    The final scheme obtained using (2.9) is  

�1�
6��2� − 1�

5� − 2 + 1�
3�
4 � ����� + ��� + �1�

3�
4 + 1�

6��2� − 1�
5� − 2 � ����� = 

1
ℎ 91� �1

2 − 3��2� − 1�
5� − 2 �: ���� − �21� + 1� ,3�

4 + 1
2-� ���� + �1� − 1�� �3

2 + 3��2� − 1�
5� − 2 � �� +  

:�21� + 1� ,3�
4 + 1

2-� ���� + 1� �− 1
2 + 3��2� − 1�

5� − 2 � ����;                                                                �'. &&� 

 

2.2 Determination of the parameter α 
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    The only parameter left undetermined so far in the final expression of WCNC scheme (2.11) is �, 

which is  crucial for the schemes’ performance. The parameter � is determined in relation to the 

smoothness of the function. As mentioned, the basic idea is to recover the standard compact scheme 

(2.1) in smooth regions, taking advantage of global dependency of the compact scheme for achieving 

high order, and to reassemble a lower order scheme, non-compact, in regions where discontinuities are 

present. Thus the role of the parameter � is to assume the value 1/3 in smooth regions, and to range 

from zero to 1/3 according to the smoothness of the function. 

In this preliminary study, the formulation adopted is the following 

 � = �1 − µ� �< + µ
1
3     (2.12) 

where µ is a fixed parameter (µ = 0.95 in the present study), and 

 �< = 1
3 − 1

2 >,7��<<<< − 1
3-� + ,7��<<<< − 1

3-� + ,7��<<<< − 1
3-�?

��
     (2.13) 

 

The normalized smoothness parameters 7�)<<<< are  

 7�)<<<< = 7�) + 6
345�� �7�4 + 6�     (2.14) 

In smooth regions, the three normalized smoothness parameters 7�)<<<< are nearly equal, namely 

7��<<<< ≅ 7��<<<< ≅ 7��<<<< ≅ 1/3, thus �< ≅ 1/3 and also � ≅ 1/3, and the sixt-order standard compact scheme is 

recovered achieving global dependency and the best resolution. In shock/discontinuity regions, the 

worst case leads to dramatically different weights for the stencils. For instance, if 7��<<<< = 1 and 

7��<<<< = 7��<<<< = 0, the parameter �< = 0, so that the local dependency is introduced in the scheme and non-

oscillatory property is achieved.  

    Apparently, the WCNC scheme relies heavily on the function which controls the mixing between the 

non dissipative standard compact scheme for smooth regions, and the dissipative non-compact scheme 

for shock areas. The approach for finding the optimum α in relation to the smoothness of the function 

will be subject of future study.  

 

3.1 Numerical results 

 

    Numerical simulations of test cases are carried out using the proposed WCNC scheme, and compared 

with WCS (Jiang, et al., 2001) and the well established WENO (Jiang, et al., 1996). The proposed WCNC 

scheme is used in solving the Euler 1-D equations 

 
AB
AC + AD

AE = 0  

 B = �F, FG, H�I       (3.1.1) 

 D = JF, FG + K, G�H + K�LI
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where F is the density, G is the velocity, H denotes energy, K is the pressure, E ∈ N = �−5,5  is the 

spatial coordinate and C is time. Steger-Warming (Steger, et al., 1981) flux vector splitting is used. 

 

 

3.1.1 One-dimensional shock tube  

 

    In order to test the capability of shock capturing, Euler equations (3.1.1.) are solved with the initial 

conditions given as   

 �F, G, K� = 9�1, 0, 1�                   C = 0, E < 0�0.125, 0, 0.1�      C = 0, E ≥ 0 :      (3.1.2) 

 

Figures 2 shows the plot of the solved velocity u, at time C = 2. Figures 2(a), (b) and (c) report the 

solution on the whole domain for WCNC, WCS and WENO schemes, respectively. The exact solution is 

regarded as the one obtained by the fifth-order WENO scheme using a mesh of 1600 points, labeled as 

WENO 1600. All the other calculations are made on a coarser mesh of 200 points. The solutions using 

WCNC (labeled as WCNC 200) and WENO scheme (labeled as WENO 200) are free from visible 

oscillations, which on the contrary, are present for WCS (labeled as WCS 200). Figure 2(d) report an 

enlargement of the downstream shock area, comparing the three different schemes. Using WCNC 

scheme, the discontinuity is captured more sharply and is less smeared compared to the fifth-order 

WENO, and the solution does not present unphysical oscillations, which affect the WCS. 

  

 
(a)                                                                                                              (b)  

Figure 2: Velocity u for the shock tube problem (3.1.1, 3.1.2) using (a) WCNC scheme, (b) WCS and (c) WENO scheme. (d) the 

detail enlargement of the downstream shock area is reported in order to compare the three different schemes. 
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                                                        (c)                                                                                                              (d) 

 

3.1.2 One-dimensional shock/entropy wave interaction 

  

    In order to test both shock capturing capability and resolution, the proposed WCNC scheme is used to 

solve the shock-entropy interaction problem using 1-D Euler equations (3.1.1.), with initial conditions 

given as 

 �F, G, K� = 9�3.857143, 2.629369, 10.33333�       C = 0, E < −4�1 + 0.2 sin�5E� , 0, 1�                            C = 0, E ≥ −4:      (3.1.3) 

Figure 3 shows the result for the solved density distribution ρ at time C = 1.8. Figures 3(a), (b) and (c) 

report the solution on the whole domain for WCNC, WCS and WENO schemes, respectively. The exact 

solution is regarded as the one obtained by the fifth-order WENO scheme using a mesh of 1600 points, 

labeled as WENO 1600. All the other calculations are made on a coarser mesh of 200 points. The WCNC 

scheme (labeled WCNC 200) shows higher resolution and sharper shock capturing compared to WENO 

(labeled WENO 200). WCS (labeled WCS 200) is capable of capturing the high-frequencies waves 

generated in the upstream area of the shock, due to the intrinsic non-dissipative nature of the scheme. 

Figure 3(d), (e) and (f) report detail enlargements of discontinuity areas in the upstream shock region, 

comparing the three different schemes. It can be observed that WCNC solution, compared to the fifth-

order WENO solution, can capture the shock more sharply, and is free from numerical oscillations. In 

certain areas (see, for instance, Figure 2(d)), the WCS appears to be very close to the reference solution, 

but is affected by numerical oscillations (see, for instance, Figure 3(e) and (f)).  
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(a)                                                                                                              (b)  

 
(c)                                                                                                               (d)                    

Figure 3: Density ρ for the shock tube problem (3.1.1, 3.1.3) using (a) WCNC scheme, (b) WCS and (c) WENO scheme. (d), (e) 

and (f): the detail enlargement of upstream shock areas are reported in order to compare the three different schemes. 
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(e)                                                                                                               (f)                    

 

 

4.1 Conclusions 

 

    The basic formulation for the high-order weighted compact and non-compact (WCNC) scheme is 

proposed for the calculation of derivatives with high-order accuracy of any function. The fundamental 

idea is to take advantage of the globally-dependent high-order compact scheme for smooth areas, and, 

through a weighting procedure, achieve local dependency of the non-compact scheme of lower order in 

shock regions. Numerical tests are carried out and compared to the well established WENO scheme and 

WCS. The WCNC scheme is shown to be capable of capturing the shock/discontinuity more sharply than 

WENO scheme, without generating the non-physical oscillations which were observed for WCS.  

     Future work will be dedicated to the development of an “optimum” mixing function for the control of 

the high-order WCNC, which apparently is of crucial importance for the proposed scheme. Simulations 

of multidimensional cases will be performed and reported in the AIAA Annual Scientific Conference.  
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