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Thinning is a well-known technique for producing skeleton-like shape features from digital binary objects in
a topology-preserving way. Most of the existing thinning algorithms work on input images that are sampled
on orthogonal grids; however, it is also possible to perform thinning on hexagonal grids (or triangular
lattices). In this paper, we point out to the main similarities and differences between the topological
properties of these two types of sampling schemes. We give various characterizations of simple points and
present some new sufficient conditions for topology-preserving reductions working on hexagonal grids.
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1. Introduction

Various applications of image processing and pattern recognition are based on skeletons (i.e.
region-based shape features) [19]. Thinning is an iterative layer-by-layer object reduction until
only the skeletons of the binary objects are left [11]. Thinning algorithms in 2D are capable of
extracting medial lines and topological kernels [6]. A topological kernel is a minimal set of points
that is topologically equivalent to the original object [6,9,10,17]. Existing thinning algorithms are
generally assuming orthogonal grids, but thinning algorithms working on hexagonal grids have
also been proposed [3,4,7,20–22]. Besides the above results, a non-thinning-based hexagonal
skeletonization approach is presented in [1], which is based on distance transform.

Parallel thinning algorithms are composed of reductions (i.e. some object points having a value
of ‘1’ in a binary picture that satisfy certain topological and geometric constrains are changed to
‘0’ ones simultaneously) [5].

In the fields of digital topology and image processing, non-orthogonal grids have been studied
by a number of authors [2,10,15,18].A hexagonal grid, which is formed by a tessellation of regular
hexagons, corresponds, by duality, to the triangular lattice, where the points are the centres of
that hexagons (Figure 1). The advantage of hexagonal grids over the orthogonal ones lies in
the fact that in hexagonal sampling scheme, each pixel is surrounded by six equidistant nearest
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2 P. Kardos and K. Palágyi

Figure 1. A hexagonal grid and the triangular lattice that is dual to it. Hexagonal pixels are bounded by thick line
segments. Pixel centres (i.e. points in the triangular lattice) are joined with thin line segments.

neighbours, which results in a less ambiguous connectivity structure and in a better angular
resolution compared with the rectangular case [13,15]. Wuthrich and Stucki [23] give also an
algorithmic comparison between hexagonal and square-based models.

Topology preservation is an essential requirement for thinning algorithms [10]. In order to ver-
ify that a reduction preserves topology, Ronse [17], Kong [9], and Ma [14] gave some sufficient
conditions for topology-preserving reductions working on the orthogonal grids. Later, Palágyi
et al. proposed further sufficient conditions that consider individual pixels (instead of pixel con-
figurations), and thus they are capable of designing deletion rules of topologically correct 3D
thinning algorithms [16].

In our previous work [7] we showed a way to characterize simple pixels for the hexagonal
case, and we proposed some sufficient conditions similar to Ronse’s ones, which can be used
to verify the topological correctness of hexagonal reductions. In this paper, we present further
characterizations of simple pixels, and we give some new sufficient conditions that make possible
to generate deletion conditions for various topology-preserving parallel thinning algorithms. In
addition, two algorithms based on our new conditions are also proposed.

The rest of this paper is organized as follows. Section 2 reviews the basic notions of 2D dig-
ital hexagonal topology. Section 3 introduces various characterizations of simple pixels, which
play a key role in the view of topology preservation. In Section 4, we give our sufficient con-
ditions for reductions to preserve topology. To illustrate the usefulness of these criteria, we
propose in Section 5 two topology-preserving hexagonal parallel thinning algorithms, which
are derived from our sufficient conditions. Finally, we round off the paper with some concluding
remarks.

2. Basic notions

We use the fundamental concepts of digital topology as reviewed by Kong and Rosenfeld [10].
Let us consider the digital space V , and let us call the elements of V pixels. We refer with the

notation Nj(p) the set of pixels that are j-adjacent to pixel p and let N∗
j (p) = Nj(p) \ {p}. Note

that reflexive and symmetric adjacency relations are generally considered (i.e. p ∈ Nj(p) and if
q ∈ Nj(p), then p ∈ Nj(q)). The sequence of distinct pixels 〈x0, x1, . . . , xk〉 is called a j-path of
length k from pixel x0 to pixel xk in a non-empty set of pixels X ⊆ V if each pixel of the sequence
is in X and xi is j-adjacent to xi−1 for each 1 ≤ i ≤ k. Note that a single pixel is a j-path of length 0.
Two pixels are said to be j-connected in the set X ⊆ V if there is a j-path in X between them. A set
of pixels X ⊆ V is j-connected in the set of pixels Y ⊇ X if any two pixels in X are j-connected in Y .
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Figure 2. Indexing scheme for the elements of N∗
6 (p) on hexagonal grid. Pixels pi (i = 4, 5, 6), for which p ≺ pi holds,

are shown in grey.
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Figure 3. The two possible kinds of unit triangles. Since p ≺ q ≺ r, p is the first element of the unit triangle.

An (m, n) binary digital picture is a quadruple P = (V , m, n, B) [10]. Each pixel in B ⊆ V is
called a black pixel and has a value of 1 assigned to it. Each pixel in V \ B is called a white pixel
and has a value of 0 assigned to it. An object is a maximal m-connected set of black pixels, while
a white component is a maximal n-connected set of white pixels.

A maximal set of mutually m-adjacent pixels is called a unit cell. Let us denote by C(p) the
number of objects in picture P = (V , m, n, B ∩ N∗

k (p)), where k = max(m, n). A simple closed
m-curve in an (m, n) picture is a connected set of black pixels each of which is m-adjacent to
exactly two other points in the set. A black pixel p is called a border pixel in an (m, n) picture if
it is n-adjacent to at least one white pixel (i.e. Nn(p) \ B �= ∅).

For 2D binary pictures sampled on the orthogonal lattice Z
2, typically (8, 4) and (4, 8) pictures

are considered. Unit cells on (8, 4) pictures (that contain four mutually 8-adjacent pixels) are
called unit squares.

In the hexagonal case (6, 6) pictures are generally considered, i.e. pictures given by the quadru-
ple (H, 6, 6, B), where H denotes the set of pixels in the hexagonal grid. Figure 2 shows the
6-neighbours of a pixel p denoted by N6(p). We use the precedence relation denoted by ≺ between
two pixels p and q ∈ N6(p) as follows:

p ≺ q ⇔ q ∈ {p4, p5, p6}.

(It is easy to see that this relation is irreflexive, antisymmetric, and transitive; therefore, it is a
partial order on the set N6(p).) A unit cell in (6,6) pictures is composed of three mutually 6-
adjacent pixels p, q, and r , which we call a unit triangle (Figure 3), where pixel p is called the
first element of that unit triangle.

An important topological property of digital pictures is formulated in the discrete Jordan’s
theorem, which states that if the black pixels of a picture form a simple closed curve, then there
are exactly two white components in that picture [10,15]. This criterion does not hold for (8,8) and
(4,4) pictures, but only for (8,4) and (4,8) pictures on orthogonal grids. (Note that in the (4,8) case,
the simple closed curve may not be contained in a unit square.) For resolving the connectivity
paradoxes in the latter two cases, Latecki et al. have proposed a solution by introducing the
notion of well-composedness [12]. A binary digital picture sampled on the orthogonal grid is
well-composed, if every black or white 8-component is a 4-component, as well. Transforming
digital pictures into well-composed pictures guarantees that the discrete Jordan’s property will
hold even for the (8,8) and (4,4) case.
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4 P. Kardos and K. Palágyi

Interestingly, unlike (4, 4) and (8, 8) pictures, (6, 6) pictures satisfy the discrete Jordan theorem,
due to the special structure of hexagonal grids [15].As only one type of connectivity is considered,
there is no need for that kind of correction of hexagonal binary pictures as described in [12], i.e.
every (6, 6) picture is ‘well-composed’ in itself.

A reduction transforms a binary picture only by changing some black pixels to white ones (which
is referred to as the deletion of 1’s). A 2D reduction does not preserve topology if any object is
split or is completely deleted, any white component is merged with another white component, or
a new white component is created [9].

Besides the topological correctness, another key requirement of thinning is shape preservation.
For this aim, thinning algorithms usually apply reductions that do not delete so-called end pixels
that provide important geometrical information related to the shape of objects. We say that a
black pixel p is called an end pixel in a (6, 6) picture if it is 6-adjacent to exactly one black
pixel.

3. Characterizations of simple pixels

A simple pixel is a black pixel whose deletion is a topology-preserving reduction [10]. This
property of a pixel can be verified in different ways. A useful characterization of simple pixels on
(8,4) and (4,8) pictures is stated as follows:

Theorem 3.1 [10] Let p be a non-isolated border point in a (Z2, m, n, B) picture ((m, n) ∈

{(8, 4), (4, 8)}). Then the following are equivalent:

(1) p is a simple point.
(2) p is m-adjacent to just one m-component of N∗

8 (p) ∩ B.
(3) p is n-adjacent to just one n-component of N8(p) \ B.

For (6, 6) pictures, Kardos and Palágyi proved the following equivalency.

Theorem 3.2 [7] Black pixel p in picture (H, 6, 6, B) is simple if and only if both of the following
conditions are satisfied:

(1) p is a border pixel.
(2) C(p) = 1.

We show that the above results can be both written in the following general form.

Theorem 3.3 Let p be a non-isolated border point in a (V , m, n, B) picture ((V , m, n) ∈

{(Z2, 8, 4), (Z2, 4, 8), (H, 6, 6)}), and let k = max(m, n). Then the following are equivalent:

(1) p is a simple point.
(2) p is m-adjacent to just one m-component of N∗

k (p) ∩ B.
(3) p is n-adjacent to just one n-component of Nk(p) \ B.

Proof If (V , m, n) ∈ {(Z2, 8, 4), (Z2, 4, 8)}, then we get Theorem 3.1.
Let us suppose that (V , m, n) = (H, 6, 6) and let p be a non-isolated border point. First, we

prove that Conditions 1 and 2 are equivalent. By Theorem 3.2, pixel p is simple if and only if
C(p) = 1. By the definition of the notation C(p), this means that there is exactly one object in
picture (H , 6, 6, B ∩ N∗

6 (p)). Note that, as m = max(m, n) = 6, this statement is equivalent with
Condition 2.
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International Journal of Computer Mathematics 5

Now, we will see that Conditions 2 and 3 are equivalent.As p is a non-isolated border point, there
is at least 1 black and 1 white pixel in N∗

6 (p). As each pixel in N∗
6 (p) is 6-adjacent with exactly two

other members of N∗
6 (p), it can be easily checked that the number of ‘white to black’ and ‘black

to white’ transitions in the sequence of pixels 〈p1, p2, p3, p4, p5, p6, p1〉 is equal. Furthermore, as
each object of N∗

6 (p) ∩ B and each white component of N6(p) \ B determines exactly one ‘white
to black’ and one ‘black to white’ transition in that sequence, we can also state that the number
of objects in N∗

6 (p) ∩ B equals with the number of white components in N6(p) \ B, which implies
the equivalency between Conditions 2 and 3. �

Note that in both of the orthogonal and hexagonal cases, the simplicity of pixel p proves to
be a local property, as it depends only on the pixels in N8(p) or N6(p) (depending on the type of
picture).

Kong proposed an easily visualized characterization of simple pixels on conventional orthogo-
nal images by using the concept of attachment sets [9]. Here, we give an adaptation of his model
for the hexagonal case, using some notions from [9].

For this purpose, we consider a pixel p to be a closed regular hexagon in the Euclidean plane
(Figure 1). Let U(p) = {e1, . . . , e6} denote the boundary of that hexagon that is the union of its six
edges, where pixels p and pi share edge ei (i = 1, . . . , 6) (Figure 2). Two edges in the universe set
U(p) are adjacent if they share a vertex. A set of n (n = 0, 1, . . . , 6) edges E ⊆ U(p) is connected,
if its elements can be arranged in a sequence 〈ei1 , . . . , ein〉 such that eik and eik+1 are adjacent for
each k = 1, . . . , n − 1.

Let us suppose that p is an object pixel in picture P = (H, 6, 6, B). Then the P-attachment set
of p is defined as follows:

A(p) = { ei | ei ∈ U(p) and pi ∈ B}.

Its complement A(p) is defined as

A(p) = U(p) \ A(p).

Note that there exists a one-to-one correspondence between the possible 26 kinds of config-
urations in N⋆

6 (p) and the possible attachment sets A(p). This property does not hold for (8, 4)

pictures (i.e. the same attachment set may be assigned to numerous pixel configurations) [9].
Using the above terminology, we can state the following theorem, similarly as for the orthogonal
case in [9]:

Theorem 3.4 Let P = (H, 6, 6, B), p ∈ B, and let A(p) be the P-attachment set of p. Then, p is
simple in P if and only if both A(p) and its complement, A(p), are non-empty and connected.

Proof Let us suppose that p is simple. Then, from Theorem 3.2 it follows that C(p) = 1. This
implies that in the hexagonal grid model of P , the union of the hexagons representing the pixels
of N∗

6 (p) ∩ B forms a connected set in the Euclidean plane, which also means that the edges of
these hexagons contained also in p form a connected set, as well, and obviously this connected set
coincides with A(p). As C(p) �= 0, p is not an isolated object pixel, therefore, A(p) is non-empty.
It is not hard to see that from C(p) = 1 follows that the pixels of N∗

6 (p) \ B form a single object
in the picture (H, 6, 6, N∗

6 (p) \ B), hence A(p) is also connected. By Theorem 3.2, p is a border
pixel, i.e. N∗

6 (p) \ B is non-empty, therefore, A(p) must be also non-empty.
As Theorem 3.2 gives an equivalent property of simplicity, the proof for the case when p is not

simple can be proved by using a very similar train of thoughts as above. �

We note that it is not hard to see that if A(p) in Theorem 3.4 is connected, then so does A(p),
hence it is sufficient to check this connectivity for A(p) in order to decide the simplicity of p.

Figure 4 shows some illustrative examples for Theorem 3.4.
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6 P. Kardos and K. Palágyi
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Figure 4. Examples for the P-attachment sets. p is simple only in (d), as in the other cases A(p) = ∅ (a), or A(p) = ∅

(b), or both A(p) and A(p) are not connected (c). The thick line segments represent elements of A(p), while the points
covered by dashed line segments belong to A(p).

4. Sufficient conditions for topology-preserving reductions

Reductions delete a set of black pixels and not only a single simple pixel. Kardos and Palágyi
gave the following sufficient conditions for topology-preserving reductions on hexagonal grids.

Theorem 4.1 [7] A reduction O is topology preserving in picture (H, 6, 6, B), if all of the
following conditions hold:

(1) Only simple pixels are deleted by O.
(2) If O deletes two 6-adjacent pixels p, q, then p is simple in (H, 6, 6, B\{q}), or q is simple in

(H, 6, 6, B\{p}).
(3) O does not delete completely any black component contained in a unit triangle.

We note that this is an adaptation of Ronse’s sufficient conditions for (8,4) and (4,8) pictures [14,
17], which can be formulated as follows.

Theorem 4.2 [14] A reduction O is topology preserving in picture (Z2, m, n, B) ((m, n) ∈

{(8, 4), (4, 8)}), if all of the following conditions hold:

(1) Only simple pixels are deleted by O.
(2) For any two n-adjacent black pixels, p, q ∈ B that are deleted by O, p is simple in

(Z2, m, n, B\{q}), or q is simple in (Z2, m, n, B\{p}).
(3) if (m, n) = (8, 4), O never deletes any object contained in a unit square.

Furthermore, we state that Condition 3 of Theorem 4.1 can be simplified so that we get the
following result equivalent to Theorem 4.1.

Theorem 4.3 A reduction O is topology preserving in picture (H, 6, 6, B), if all of the following
conditions hold:

(1) Only simple pixels are deleted by O.
(2) If O deletes two 6-adjacent pixels p, q, then p is simple in (H, 6, 6, B\{q}), or q is simple in

(H, 6, 6, B\{p}).
(3) O does not delete completely any object that forms a unit triangle.

Proof Let us examine objects containing less then 3 black pixels. O does not delete an isolated
black pixel by Condition 1, as it is not a simple pixel. Let us consider an object composed by
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International Journal of Computer Mathematics 7

exactly two black pixels, p and q. p is an isolated pixel in (H, 6, 6, B\{q}) and vice versa; therefore,
O does not delete any object containing exactly two pixels by Condition 2.

Consequently, the verification of the above kinds of objects is unnecessary in Condition 3 of
Theorem 4.1, henceO fulfils Conditions 1–3 of our theorem if and only if it satisfies Conditions 1–3
of Theorem 4.1. �

While the above results state conditions for pixel-configurations, we can derive from
Theorem 4.3 some new criteria that examine if an individual pixel is deletable or not. Here,
we give two alternatives of such conditions, and then we compare their characteristics.

Theorem 4.4 A reduction O is topology preserving in picture (H, 6, 6, B), if each pixel p deleted
by O satisfies the following conditions:

(1) p is a simple pixel in (H, 6, 6, B).
(2) For any simple pixel q ∈ N∗

6 (p), p is simple in (H, 6, 6, B\{q}), or q is simple in (H , 6, 6, B\{p}).
(3) p is not an element of an object that forms a unit triangle.

Proof Let us suppose that S is the set of pixels deleted by O. By Condition 1, S contains only
simple pixels; therefore, Condition 1 of Theorem 4.3 is also satisfied. Let p, q ∈ S be two arbitrary
6-adjacent pixels. Then, according to Condition 2, p is simple in (H, 6, 6, B\{q}) or q is simple
in (H, 6, 6, B\{p}). This means that Condition 2 of Theorem 4.3 holds, as well. We show that
Condition 3 of Theorem 2 also holds. O does not delete a single pixel object by Condition 1.
Objects composed by two 6-adjacent black pixels may not be completely deleted by Condition
2. Finally, from Condition 3 it follows that each element of any object composed by 3 mutually
6-adjacent pixels is retained by O. �

Theorem 4.5 A reduction O is topology preserving in picture (H, 6, 6, B), if each pixel p deleted
by O satisfies the following conditions:

(1) p is a simple pixel in (H, 6, 6, B).
(2) For any simple pixel q ∈ N∗

6 (p) for which p ≺ q, p is simple in (H, 6, 6, B\{q}), or q is simple
in (H , 6, 6, B\{p}).

(3) p is not the first element of an object that forms a unit triangle.

Proof Again, let S be the set of pixels deleted by O. Similarly as it was seen for Theorem 4.3,
Condition 1 of Theorem 4.3 is satisfied. Let p, q ∈ S be again two arbitrary 6-adjacent pixels.
If p is simple in (H, 6, 6, B\{q}) or q is simple in (H, 6, 6, B\{p}), then we get Condition 2 of
Theorem 4.3, which corresponds to Condition 2 of Theorem 4.3. Let us suppose that for two
6-adjacent pixels p, q ∈ S p is not simple in (H, 6, 6, B\{q}) and q is not simple in (H, 6, 6, B\{p}).
In this case, by Condition 2, q ≺ p holds. But this would mean that q does not satisfy Condition
2, hence q /∈ S, which leads to a contradiction. Therefore, this situation cannot occur.

We can show the same way as for the previous theorem that O does not delete objects composed
by less than three black pixels. Furthermore, by Condition 3, exactly one element of any object
composed of 3 mutually 6-adjacent pixels is retained. �

We remark that, by examining only three-pixel objects in Condition 3, Theorem 4.5 can be
considered as a stronger version of Theorem 3 in [8].

To illustrate the difference between Theorems 4.3 and 4.5, we define two reductions.

Definition 4.6 Let R1 be the reduction that deletes all pixels satisfying all conditions of
Theorem 4.3 from any (6, 6) picture.
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8 P. Kardos and K. Palágyi

(a) (b) (c)

Figure 5. The original picture (a) and the results produced by the reductions R1 (b) and R2 (c) on it. Deleted pixels
are depicted in grey.
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Figure 6. The supports of the reductions R1 (a) and R2 (b). Pixels in the supports are depicted in grey.

Definition 4.7 Let R2 be the reduction that deletes all pixels satisfying all conditions of
Theorem 4.5 from any (6, 6) picture.

Let us perform these reductions on a small hexagonal binary image containing two objects
shown in Figure 5(a). The effects of operators R1 and R2 can be observed in Figures 5(b)–(c).
The example in Figure 5 reveals that reductions derived from the conditions of Theorem 4.5 can
delete more simple pixels than the ones satisfying the conditions of Theorem 4.3. This could be a
drawback if we wanted to construct thinning algorithms from operators like R1, as skeleton-like
shape features in the ideal case should not contain any simple pixel. From this view, R2 may be
preferred to R1. However, it is also easy to see that the criteria in Theorem 4.5 take into account
the direction of p relative to the simple pixels of N∗

6 (p), while this is not the case for Theorem 4.3.
From this follows that, unlike R2, R1 is invariant on rotations by 60◦ and 120◦, and this geometric
property can be considered as another important aspect of thinning. Thus, it is not self-evident
which conditions should be applied for composing thinning algorithms, as it strongly depends on
the field of application.

Let us examine the supports (i.e. the minimal sets of pixels whose values determine the new
values of pixels [5]) of reductions R1 and R2. By Theorem 3.3, the simplicity of a black pixel p
required by Condition 1 of Theorem 4.3 is determined by the elements of N∗

6 (p). Furthermore,
for the verification of Condition 2 of Theorem 4.3, we also need to find out if the black pixels in
N6(p) are simple or not, which means that we need to check the elements of

⋃6
i=1 N6(pi) (note that

N6(p) is included in this set). Similarly, Condition 3 of Theorem 4.3 can be verified by exactly the
same elements as above. The difference between Theorems 4.3 and 4.5 is that, by the definition
of the relation ≺, Conditions 2 and 3 of the latter theorem only take into account the pixels in⋃6

i=4 N6(pi) and N6(p). Consequently, the supports of reductions R1 and R2 contain the pixels
depicted in grey in Figure 6.

5. Thinning algorithms derived from sufficient conditions for topology preservation

In this part, we give two thinning algorithms HT-1 and HT-2 that are derived from the previously
introduced reductions R1 and R2, respectively (see Algorithm 1). These algorithms are based
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International Journal of Computer Mathematics 9

on the fully parallel thinning scheme presented in [6], in which the same reduction operation is
applied in each phase of the thinning process.

Algorithm 1 Algorithm HT-i

1: Input: picture (H, 6, 6, X)
2: Output: picture (H, 6, 6, Y)
3: Y = X
4: repeat

5: D = {p | p is deletable by Ri in Y, and p is not an end pixel }

6: Y = Y \D
7: until D = ∅

The kernel of the repeat cycle in Algorithm 1 corresponds to one iteration step. All pixels in
the set of deletable pixels D are deleted simultaneously. HT-i terminates when stability is reached
(i = 1, 2). In an iteration step of the proposed algorithms, only black pixels that are not end pixels
may be deleted. As we mentioned in Section 2, end pixels play a key role in shape preservation,
which makes possible to produce the medial lines of objects.

Note that, as R1 and R2 fulfil the conditions of Theorems 4.3 and 4.5, it is self-evident that
they preserve topology.

(a)

(b)

HT-1

HT-2

Figure 7. Thinning of some characters sampled on hexagonal grids. Medial lines produced by Algorithm 1 are
superimposed on the original objects.
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10 P. Kardos and K. Palágyi

In experiments, our fully parallel algorithms were tested on objects of various pictures. Here,
we present an illustrative example below (Figure 7). By comparing the results of HT-1 and HT-2
in Figure 7, we can observe that algorithm HT-2 deletes more object pixels than algorithm HT-1.
As the deleting conditions of R1 are stricter than the ones of R2, algorithm HT-1 cannot alter
some 2-pixel wide segments.

We remark that by using our characterization of end pixels and by combining our sufficient
conditions for topology preservation with various thinning strategies we can derive further thinning
algorithms, similar to the results in [8,16].

6. Conclusions

In this work we have compared some of the relationships of 2D digital topology between pictures
sampled on orthogonal and hexagonal grids. For (6,6) pictures, we have also introduced some
characterizations of simple pixels and some new sufficient conditions for topology-preserving
reductions. The main novelty of the proposed conditions lies in the fact that they are based on the
verification of individual pixels, unlike the existing criteria which examine pixel configurations.
It might be a quite challenging task to prove topology preservation for hexagonal algorithms
like the ones presented in [4,21], as their deletion conditions are determined by several matching
templates or Boolean formulae whose verification usually requires a number of cases to deal
with. Our conditions, however, are capable of constructing hexagonal thinning algorithms whose
topological correctness is automatically (i.e. without the need of any proof) guaranteed.
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